高黎贡山南段不同气候条件下稀土元素地球化学特征对比研究

夏顶洪, 赵忠强, 张佳琳, 李振阳, 曾丽源, 何洪鸣, 宋垠先, 陈忠. 高黎贡山南段不同气候条件下稀土元素地球化学特征对比研究[J]. 海洋地质与第四纪地质, 2025, 45(3): 83-95. doi: 10.16562/j.cnki.0256-1492.2024013102
引用本文: 夏顶洪, 赵忠强, 张佳琳, 李振阳, 曾丽源, 何洪鸣, 宋垠先, 陈忠. 高黎贡山南段不同气候条件下稀土元素地球化学特征对比研究[J]. 海洋地质与第四纪地质, 2025, 45(3): 83-95. doi: 10.16562/j.cnki.0256-1492.2024013102
XIA Dinghong, ZHAO Zhongqiang, ZHANG Jialin, LI Zhenyang, ZENG Liyuan, HE Hongming, SONG Yinxian, CHEN Zhong. Comparative study on the geochemical characteristics of rare earth elements under different climatic conditions in the southern segment of Gaoligong Mountain[J]. Marine Geology & Quaternary Geology, 2025, 45(3): 83-95. doi: 10.16562/j.cnki.0256-1492.2024013102
Citation: XIA Dinghong, ZHAO Zhongqiang, ZHANG Jialin, LI Zhenyang, ZENG Liyuan, HE Hongming, SONG Yinxian, CHEN Zhong. Comparative study on the geochemical characteristics of rare earth elements under different climatic conditions in the southern segment of Gaoligong Mountain[J]. Marine Geology & Quaternary Geology, 2025, 45(3): 83-95. doi: 10.16562/j.cnki.0256-1492.2024013102

高黎贡山南段不同气候条件下稀土元素地球化学特征对比研究

  • 基金项目: 国家重点研发计划项目“高黎贡山生态风险预警技术体系构建”(2022YFF1302401)
详细信息
    作者简介: 夏顶洪(1998—),男,硕士研究生,从事环境地质学研究,E-mail:2694113822@qq.com
    通讯作者: 陈忠(1970—),男,博士,副教授,从事环境地球化学研究,E-mail:qwchenzhong@163.com
  • 中图分类号: P534.63

Comparative study on the geochemical characteristics of rare earth elements under different climatic conditions in the southern segment of Gaoligong Mountain

More Information
  • 高黎贡山气候垂直分带明显,山体两侧分属亚热带季风气候与干热河谷气候,水热条件差异大。通过对高黎贡山南段东西两侧5个风化剖面的研究,利用矿物组成与稀土元素分析方法,对比得到不同气候条件下风化壳稀土元素地球化学特征。结果表明,两侧矿物包括石英、长石、方解石、白云石、伊利石与高岭石等,西侧还出现了白云母、蒙脱石与蒙脱石-绿泥石混层矿物等,表明西侧风化更强。总体上,西侧风化剖面稀土元素(REE)含量高于东侧,分异程度也更大,随着海拔的降低,稀土元素逐渐富集;东侧REE含量相对较低,存在一定波动,可能与遭受一定程度的淋滤作用和较强的蒸发作用有关。东西两侧都呈现明显的Eu负异常,西侧负异常更大,西侧Ce均为正异常而东侧为弱负异常。随着pH的升高,两侧均出现轻重稀土富集的现象,而西侧富集更加显著。稀土元素与矿物的相关性分析表明,轻稀土(LREE)与碳酸盐和黏土矿物相关性强,重稀土(HREE)与碳酸盐和长石矿物联系密切。风化壳中Eu/Sm和Ce/Eu比值对母岩具有较好的指示,西侧母岩来自于花岗质岩石,东侧为沉积岩。

  • 加载中
  • 图 1  研究区概况及采样点

    Figure 1. 

    图 2  高黎贡山南段东西两侧样品XRD分析结果

    Figure 2. 

    图 3  高黎贡山南段样品REE参数垂向变化特征

    Figure 3. 

    图 4  高黎贡山南段样品稀土配分模式

    Figure 4. 

    图 5  ∑REE及其特征参数与矿物组成的相关性分析

    Figure 5. 

    图 6  高黎贡山南段样品pH与LREE、HREE散点图

    Figure 6. 

    图 7  风化剖面样品与亚热带不同母岩发育土壤Ce/Eu-Eu/Sm关系图

    Figure 7. 

    表 1  剖面采样信息

    Table 1.  Specification of sampling sites along the cross-sections

    采样剖面 经纬度 海拔/m 样品个数/个 剖面高度/m 气温/℃ 降水/mm 母岩/母质
    LWQ 25°01′1.81″N、
    98°40′57.04″E
    1 246 3 2.5 18.62 1450 砂砾岩
    DHP 24°58′44.45″N、
    98°43′39.58″E
    2 012 3 4 15.38 1202 花岗岩
    SD 24°55′39.54″N、
    98°45′58.36″E
    2 232 7 3.5 14.40 1187 白云母花岗岩
    SY 24°56′13.34″N、
    98°49′42.46″E
    1 433 5 4 20.06 1020 泥沙质灰岩
    SJ 24°56′52.21″N、
    98°49′56.99″E
    1 046 6 4 21.30 850 泥质灰岩
    注:气候数据来源于“国家青藏高原科学数据中心” (http://data.tpdc.ac.cn)[15]
    下载: 导出CSV

    表 2  高黎贡山南段东西两侧样品矿物组成

    Table 2.  Mineral composition of samples from the two sides of the southern segment of the Gaoligong Mountain %

    n=24 石英 云母 钾长石 钠长石 方解石 白云石 S I K S-C
    LWQ-1 68.79 3.58 17.80 0.00 1.34 5.92 0.00 0.42 2.17 0.00
    LWQ-2 24.47 35.50 12.10 0.00 0.99 1.48 7.54 3.98 2.59 11.35
    LWQ-3 37.39 13.39 28.89 0.00 1.13 1.66 4.98 1.59 1.04 9.92
    DHP-1 46.11 16.08 28.86 0.00 0.70 2.54 0.00 2.03 2.72 0.96
    DHP-2 36.28 7.40 50.59 0.00 1.38 1.64 0.00 1.21 1.50 0.00
    DHP-3 49.87 11.37 25.32 0.00 1.13 1.88 0.00 1.49 3.08 5.86
    SD-1 31.98 28.08 26.87 1.95 0.28 1.67 0.00 3.85 0.52 4.80
    SD-2 17.98 50.20 15.36 0.00 0.13 0.42 0.00 13.30 1.32 1.29
    SD-3 24.33 37.85 20.12 0.00 0.40 0.54 0.00 9.38 1.39 5.99
    SD-4 15.55 45.97 26.06 0.00 0.41 0.26 0.00 9.96 0.97 0.81
    SD-5 26.57 40.19 20.62 0.00 0.29 0.65 0.00 9.10 1.88 0.71
    SD-6 17.57 39.53 25.22 0.00 0.23 0.55 1.40 8.95 4.12 2.42
    SD-7 16.16 44.23 30.48 0.00 0.56 1.56 0.00 4.76 2.25 0.00
    XC 31.77 28.72 25.25 0.15 0.69 1.60 1.07 5.39 1.97 3.39
    SY-1 74.50 0.00 16.90 1.54 3.20 0.66 0.00 1.58 1.62 0.00
    SY-2 69.33 0.00 26.50 0.65 0.97 0.87 0.00 1.31 0.38 0.00
    SY-3 77.48 0.00 12.50 1.97 1.28 2.48 0.00 1.95 2.34 0.00
    SY-4 67.60 0.00 25.58 1.49 0.70 1.33 0.00 1.82 1.47 0.00
    SY-5 70.66 0.00 22.32 1.21 0.64 0.60 0.00 2.30 2.27 0.00
    SJ-1 46.50 0.00 43.13 0.94 0.28 0.48 0.00 2.14 6.53 0.00
    SJ-2 78.31 0.00 10.09 3.55 0.18 0.60 0.00 4.37 2.91 0.00
    SJ-3 60.53 0.00 21.85 6.53 0.38 1.42 0.00 2.15 7.15 0.00
    SJ-4 89.91 0.00 5.07 0.00 0.40 0.40 0.00 3.76 0.47 0.00
    SJ-5 58.49 0.00 20.95 8.02 0.90 0.44 0.00 4.58 6.63 0.00
    SJ-6 51.34 0.00 21.53 4.07 2.16 0.44 0.00 12.53 7.94 0.00
    DC 67.69 0.00 20.58 2.72 1.01 0.88 0.00 3.50 3.61 0.00
    平均 48.24 15.56 23.11 1.33 0.84 1.27 0.58 4.52 2.72 1.84
    注:S:蒙脱石,I:伊利石,K:高岭石,S-C:蒙脱石-绿泥石混层。
    下载: 导出CSV

    表 3  高黎贡山南段东西两侧样品稀土元素含量

    Table 3.  Rare earth content of samples from the two sides of the southern segment of the Gaoligong Mountain (μg/g)

    样品 La Ce Pr Nd Sm Eu Gd Tb Dy Ho Er Tm Yb Lu ∑REE
    LWQ-1 130.0 198.0 26.8 91.4 15.8 1.2 12.2 1.9 9.5 1.8 4.7 0.7 4.3 0.6 498.8
    LWQ-2 73.6 208.0 16.2 56.3 10.1 0.9 7.5 1.1 5.5 1.0 2.7 0.4 2.6 0.4 386.4
    LWQ-3 57.5 197.0 13.2 46.9 9.2 0.8 7.6 1.3 6.7 1.3 3.5 0.6 3.6 0.5 349.6
    DHP-1 53.8 141.0 11.6 39.9 7.8 0.6 6.7 1.2 6.9 1.5 4.6 0.8 5.2 0.8 282.3
    DHP-2 52.6 121.0 11.9 41.4 9.5 0.4 11.3 2.4 16.6 4.0 13.4 2.5 17.2 2.8 306.9
    DHP-3 88.1 172.0 18.7 63.1 12.2 0.5 10.0 1.6 8.5 1.6 4.5 0.7 4.3 0.6 386.4
    SD-1 33.7 72.9 7.1 25.0 4.7 0.7 3.8 0.6 3.2 0.6 1.6 0.2 1.6 0.2 156.0
    SD-2 25.8 73.1 4.5 14.9 2.6 0.3 1.7 0.3 1.2 0.2 0.5 0.1 0.4 0.1 125.6
    SD-3 21.6 67.3 4.1 14.2 2.6 0.3 1.8 0.3 1.4 0.2 0.6 0.1 0.6 0.1 115.2
    SD-4 25.7 53.7 4.9 15.9 2.8 0.3 1.8 0.2 1.1 0.2 0.4 0.1 0.3 0.0 107.3
    SD-5 26.7 65.2 4.7 15.0 2.5 0.4 1.7 0.2 1.0 0.2 0.4 0.1 0.3 0.0 118.3
    SD-6 29.3 47.4 6.2 20.9 3.6 0.4 2.2 0.3 1.3 0.2 0.5 0.1 0.5 0.1 112.8
    SD-7 47.2 67.2 8.6 28.4 4.8 0.5 3.0 0.4 1.7 0.3 0.6 0.1 0.5 0.1 163.3
    XC 51.2 114.1 10.7 36.4 6.8 0.6 5.5 0.9 5.0 1.0 2.9 0.5 3.2 0.5 239.2
    SY-1 41.8 77.3 9.2 33.7 5.9 1.0 4.4 0.7 3.8 0.8 2.2 0.4 2.3 0.4 183.8
    SY-2 46.8 92.3 10.2 36.6 6.2 1.0 4.6 0.7 3.7 0.8 2.2 0.3 2.2 0.3 208.1
    SY-3 35.9 66.2 8.5 31.4 5.5 1.0 4.3 0.6 3.5 0.7 2.0 0.3 2.0 0.3 162.2
    SY-4 50.7 90.7 11.0 40.0 6.9 1.2 5.2 0.8 4.2 0.8 2.3 0.4 2.3 0.3 216.9
    SY-5 33.3 54.0 7.9 29.1 5.1 0.9 3.9 0.6 3.3 0.7 1.9 0.3 1.9 0.3 143.2
    SJ-1 34.9 58.5 8.3 31.4 6.1 1.3 5.2 0.8 4.3 0.9 2.6 0.4 2.7 0.4 157.7
    SJ-2 44.5 86.3 9.9 36.7 6.7 1.3 5.6 0.9 4.8 1.0 2.8 0.4 2.9 0.4 204.3
    SJ-3 38.0 66.5 8.7 32.7 5.9 1.2 4.8 0.7 4.0 0.8 2.4 0.4 2.4 0.4 168.8
    SJ-4 53.1 110.0 12.0 43.8 7.8 1.4 6.4 1.1 6.2 1.3 3.6 0.6 3.6 0.5 251.4
    SJ-5 35.5 56.7 8.9 34.4 7.0 1.5 6.2 1.0 5.4 1.1 3.2 0.5 3.2 0.5 165.1
    SJ-6 40.2 70.7 9.5 35.1 6.4 1.1 4.9 0.7 4.2 0.9 2.6 0.4 2.6 0.4 179.6
    DC 41.3 75.4 9.5 35.0 6.3 1.2 5.0 0.8 4.3 0.9 2.5 0.4 2.6 0.4 185.6
    下载: 导出CSV

    表 4  高黎贡山南段样品REE特征参数

    Table 4.  REE characteristic parameters of the samples in the southern segment of the Gaoligong Mountain

    样品 (La/Lu)N (La/Sm)N (Gd/Lu)N δEu δCe ∑LREE/(μg/g) ∑HREE/(μg/g) ∑L/∑H pH
    LWQ-1 21.64 5.18 2.43 0.27 0.81 463.22 35.62 13.00 3.81
    LWQ-2 19.60 4.58 2.39 0.33 1.45 365.13 21.24 17.19 4.71
    LWQ-3 11.18 3.94 1.78 0.30 1.72 324.59 25.03 12.97 3.73
    DHP-1 6.97 4.35 1.04 0.25 1.36 254.66 27.60 9.23 3.73
    DHP-2 1.99 3.47 0.51 0.11 1.16 236.80 70.10 3.38 4.04
    DHP-3 14.41 4.54 1.95 0.14 1.02 354.61 31.83 11.14 4.08
    SD-1 15.42 4.48 2.08 0.52 1.13 144.15 11.86 12.15 3.74
    SD-2 45.42 6.27 3.58 0.44 1.63 121.22 4.37 27.72 3.86
    SD-3 27.70 5.21 2.81 0.35 1.71 110.10 5.08 21.65 3.93
    SD-4 57.66 5.77 4.73 0.35 1.16 103.22 4.06 25.42 3.96
    SD-5 60.55 6.61 4.48 0.52 1.40 114.48 3.86 29.63 4.26
    SD-6 42.27 5.16 3.75 0.43 0.85 107.73 5.08 21.21 5.26
    SD-7 77.21 6.24 5.91 0.43 0.80 156.74 6.61 23.72 7.35
    XC 30.92 5.06 2.88 0.34 1.25 219.74 19.41 17.57 4.34
    SY-1 12.20 4.46 1.55 0.62 0.95 168.96 14.87 11.36 3.79
    SY-2 14.21 4.75 1.67 0.60 1.02 193.14 14.91 12.95 4.78
    SY-3 12.11 4.11 1.72 0.61 0.91 148.44 13.73 10.81 5.17
    SY-4 15.13 4.61 1.87 0.62 0.92 200.54 16.36 12.26 7.16
    SY-5 11.65 4.09 1.64 0.63 0.80 130.31 12.92 10.08 7.43
    SJ-1 8.69 3.62 1.54 0.70 0.83 140.42 17.25 8.14 6.68
    SJ-2 10.46 4.16 1.58 0.66 0.99 185.44 18.90 9.81 7.30
    SJ-3 10.84 4.03 1.63 0.67 0.88 153.03 15.81 9.68 5.93
    SJ-4 10.10 4.28 1.46 0.61 1.05 228.13 23.30 9.79 7.01
    SJ-5 7.26 3.19 1.51 0.72 0.77 144.03 21.02 6.85 8.36
    SJ-6 10.52 3.97 1.52 0.60 0.87 162.94 16.62 9.81
    DC 11.20 4.12 1.61 0.64 0.91 168.67 16.88 10.14 6.36
    注:陨石数据根据Boynton(1984);δEu=EuN/(SmN×GdN)1/2;δCe=CeN/(LaN×PrN)1/2
    下载: 导出CSV
  • [1]

    丁振举, 姚书振, 刘丛强, 等. 东沟坝多金属矿床喷流沉积成矿特征的稀土元素地球化学示踪[J]. 岩石学报, 2003, 19(4):792-798 doi: 10.3321/j.issn:1000-0569.2003.04.022

    DING Zhenju, YAO Shuzhen, LIU Congqiang, et al. The characteristics of exhalation-sedimentary deposit of Donggouba polymetal deposit: evidence from ore's REE composition[J]. Acta Petrologica Sinica, 2003, 19(4):792-798.] doi: 10.3321/j.issn:1000-0569.2003.04.022

    [2]

    Borrego J, Carro B, López-González N, et al. Effect of acid mine drainage on dissolved rare earth elements geochemistry along a fluvial estuarine system: the Tinto-Odiel Estuary (S. W. Spain)[J]. Hydrology Research, 2012, 43(3):262-274. doi: 10.2166/nh.2012.012b

    [3]

    Tachikawa K, Piotrowski A M, Bayon G. Neodymium associated with foraminiferal carbonate as a recorder of seawater isotopic signatures[J]. Quaternary Science Reviews, 2014, 88:1-13. doi: 10.1016/j.quascirev.2013.12.027

    [4]

    池汝安, 田君, 罗仙平, 等. 风化壳淋积型稀土矿的基础研究[J]. 有色金属科学与工程, 2012, 3(4):1-13

    CHI Ru’an, TIAN Jun, LUO Xianping, et al. The basic research on the weathered crust elution-deposited rare earth ores[J]. Nonferrous Metals Science and Engineering, 2012, 3(4):1-13.]

    [5]

    王登红, 赵芝, 于扬, 等. 离子吸附型稀土资源研究进展、存在问题及今后研究方向[J]. 岩矿测试, 2013, 32(5):796-802 doi: 10.3969/j.issn.0254-5357.2013.05.020

    WANG Denghong, ZHAO Zhi, YU Yang, et al. Progress, problems and research orientation of Ion-adsorption type rare earth resources[J]. Rock and Mineral Analysis, 2013, 32(5):796-802.] doi: 10.3969/j.issn.0254-5357.2013.05.020

    [6]

    许成, 宋文磊, 何晨, 等. 外生稀土矿床的分布、类型和成因概述[J]. 矿物岩石地球化学通报, 2015, 34(2):234-241 doi: 10.3969/j.issn.1007-2802.2015.02.04

    XU Cheng, SONG Wenlei, HE Chen, et al. The overview of the distribution, type and genesis of the exogenetic rare earth elements(REE)deposits[J]. Bulletin of Mineralogy, Petrology and Geochemistry, 2015, 34(2):234-241.] doi: 10.3969/j.issn.1007-2802.2015.02.04

    [7]

    赵芝, 王登红, 陈郑辉, 等. 南岭离子吸附型稀土矿床成矿规律研究新进展[J]. 地质学报, 2017, 91(12):2814-2827 doi: 10.3969/j.issn.0001-5717.2017.12.016

    ZHAO Zhi, WANG Denghong, CHEN Zhenghui, et al. Progress of research on metallogenic regularity of Ion-adsorption type REE deposit in the Nanling range[J]. Acta Geologica Sinica, 2017, 91(12):2814-2827.] doi: 10.3969/j.issn.0001-5717.2017.12.016

    [8]

    池汝安, 刘雪梅. 风化壳淋积型稀土矿开发的现状及展望[J]. 中国稀土学报, 2019, 37(2):129-140

    CHI Ru’an, LIU Xuemei. Prospect and development of weathered crust elution-deposited rare earth ore[J]. Journal of the Chinese Society of Rare Earths, 2019, 37(2):129-140.]

    [9]

    陆蕾, 王登红, 王成辉, 等. 云南临沧花岗岩中离子吸附型稀土矿床的成矿规律[J]. 地质学报, 2019, 93(6):1466-1478 doi: 10.3969/j.issn.0001-5717.2019.06.022

    LU Lei, WANG Denghong, WANG Chenghui, et al. Mineralization regularity of ion-adsorption type REE deposits on Lincang granite in Yunnan Province[J]. Acta Geologica Sinica, 2019, 93(6):1466-1478.] doi: 10.3969/j.issn.0001-5717.2019.06.022

    [10]

    陆蕾, 王登红, 王成辉, 等. 云南离子吸附型稀土矿成矿规律[J]. 地质学报, 2020, 94(1):179-191

    LU Lei, WANG Denghong, WANG Chenghui, et al. The metallogenic regularity of ion-adsorption type REE deposit in Yunnan Province[J]. Acta Geologica Sinica, 2020, 94(1):179-191.]

    [11]

    黄健. 广东仁居风化壳离子吸附型稀土矿床中稀土元素的富集分异机制研究[D]. 中国科学院广州地球化学研究所博士学位论文, 2021

    HUANG Jian. REE enrichment and fractionation mechanism of the Renju ion adsorption type REE deposit in Guangdong Province[D]. Doctor Dissertation of Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, 2021.]

    [12]

    梁晓亮, 谭伟, 马灵涯, 等. 离子吸附型稀土矿床形成的矿物表/界面反应机制[J]. 地学前缘, 2022, 29(1):29-41

    LIANG Xiaoliang, TAN Wei, MA Lingya, et al. Mineral surface reaction constraints on the formation of ion-adsorption rare earth element deposits[J]. Earth Science Frontiers, 2022, 29(1):29-41.]

    [13]

    崔丽峰, 刘丛强, 赵志琦, 等. 青藏高原东南缘花岗岩风化壳稀土元素地球化学特征[J]. 矿物岩石地球化学通报, 2017, 36(S1):515

    CUI Lifeng, LIU Congqiang, ZHAO Zhiqi, et al. Geochemical characteristics of rare earth elements in granite weathering crusts from the southeastern margin of the Tibetan Plateau[J]. Bulletin of Mineralogy, Petrology and Geochemistry, 2017, 36(S1):515.]

    [14]

    王佳龙. 青藏高原东南缘高黎贡山新生代剥露演化[D]. 中国地震局地质研究所博士学位论文, 2022

    WANG Jialong. Exhumation processes and evolution of the Gaoligong Mountains at the Southeastern margin of the Qinghai-Tibet Plateau since the cenozoic[D]. Doctor Dissertation of Institute of Geology, China Earthquake Administration, 2022.]

    [15]

    Ding Y X, Peng S Z. Spatiotemporal trends and attribution of drought across China from 1901-2100[J]. Sustainability, 2020, 12(2):477. doi: 10.3390/su12020477

    [16]

    王泽丽. 金沙江河谷黄土状物质的成因及其环境指示意义研究[D]. 云南师范大学硕士学位论文, 2016

    WANG Zeli. Study on the genesis of loess-like materials in the Jinsha River valley and their environmental indicative significance[D]. Master Dissertation of Yunnan Normal University, 2016.]

    [17]

    叶玉林, 苏怀, 董铭, 等. 元素和矿物组成揭示的金沙江干热河谷黄土状物质的物源[J]. 地球环境学报, 2018, 9(3):238-244 doi: 10.7515/JEE182020

    YE Yulin, SU Huai, DONG Ming, et al. Elements and mineral composition indicating the provenance of loess-like sediments in Dry-Hot Valleys of Jinsha River[J]. Journal of Earth Environment, 2018, 9(3):238-244.] doi: 10.7515/JEE182020

    [18]

    Cook H E, Johnson P D, Matti J C, et al. Methods of sample preparation and X-ray diffraction data analysis, X-Ray mineralogy laboratory, deep sea drilling project, university of California, riverside[J]. 1975.

    [19]

    Yuan Y Y, Liu S L, Wu M, et al. Effects of topography and soil properties on the distribution and fractionation of REEs in topsoil: A case study in Sichuan Basin, China[J]. Science of the Total Environment, 2021, 791:148404. doi: 10.1016/j.scitotenv.2021.148404

    [20]

    Boynton W V. Cosmochemistry of the Rare Earth Elements: Meteorite Studies[J]. Developments in Geochemistry, 1984, 2:63-114.

    [21]

    陈骏, 王洪涛, 鹿化煜. 陕西洛川黄土沉积物中稀土元素及其它微量元素的化学淋滤研究[J]. 地质学报, 1996, 70(1):61-72

    CHEN Jun, WANG Hongtao, LU Huayu. Behaviours of ree and other trace elements during pedological weathering-evidence from chemical leaching of loess and paleosol from the Luochuan section in central China[J]. Acta Geologica Sinica, 1996, 70(1):61-72.]

    [22]

    陈亮, 刘春莲, 庄畅, 等. 三水盆地古近系下部湖相沉积的稀土元素地球化学特征及其古气候意义[J]. 沉积学报, 2009, 27(6):1155-1162

    CHEN Liang, LIU Chunlian, ZHUANG Chang, et al. Rare earth element records of the lower paleogene sediments in the Sanshui basin and their paleocliate implications[J]. Acta Sedimentologica Sinica, 2009, 27(6):1155-1162.]

    [23]

    张虎才, 张文翔, 常凤琴, 等. 稀土元素在湖相沉积中的地球化学分异: 以柴达木盆地贝壳堤剖面为例[J]. 中国科学 D辑: 地球科学, 2009, 39(8): 1160-1168

    ZHANG Hucai, ZHANG Wenxiang, CHANG Fengqin, et al. Geochemical fractionation of rare earth elements in lacustrine deposits from Qaidam basin[J]. Science in China Series D: Earth Sciences, 2009, 52(11): 1703-1713.]

    [24]

    王中刚, 于学元. 稀土元素地球化学[M]. 北京: 科学出版社, 1989

    WANG Zhonggang, YU Xueyuan. Rare Earth Element Geochemistry[M]. Beijing: Science Press, 1989.]

    [25]

    Duddy L R. Redistribution and fractionation of rare-earth and other elements in a weathering profile[J]. Chemical Geology, 1980, 30(4):363-381. doi: 10.1016/0009-2541(80)90102-3

    [26]

    杨骏雄, 刘丛强, 赵志琦, 等. 不同气候带花岗岩风化过程中稀土元素的地球化学行为[J]. 矿物学报, 2016, 36(1):125-137

    YANG Junxiong, LIU Congqiang, ZHAO Zhiqi, et al. Geochemical behavior of rare-earth element during the weathering of granite under different climatic conditions[J]. Acta Mineralogica Sinica, 2016, 36(1):125-137.]

    [27]

    Condie K C, Dengate J, Cullers R L. Behavior of rare earth elements in a paleoweathering profile on granodiorite in the Front Range, Colorado, USA[J]. Geochimica et Cosmochimica Acta, 1995, 59(2):279-294. doi: 10.1016/0016-7037(94)00280-Y

    [28]

    Dawood Y H, El-Naby H H A, Sharafeldin A A. Influence of the alteration processes on the origin of uranium and europium anomalies in trachyte, central Eastern Desert, Egypt[J]. Journal of Geochemical Exploration, 2004, 81(1-3):15-27. doi: 10.1016/S0375-6742(03)00210-3

    [29]

    刘英俊, 曹励明. 元素地球化学导论[M]. 北京: 地质出版社, 1987

    LIU Yingjun, CAO Liming. Introduction to Elemental Geochemistry[M]. Beijing: Geological Press, 1987.]

    [30]

    Nesbitt H W, Wilson R E. Recent chemical weathering of basalts[J]. American Journal of Science, 1992, 292(10):740-777. doi: 10.2475/ajs.292.10.740

    [31]

    Censi P, Sprovieri M, Saiano F, et al. The behaviour of REEs in Thailand's Mae Klong estuary: Suggestions from the Y/Ho ratios and lanthanide tetrad effects[J]. Estuarine, Coastal and Shelf Science, 2007, 71(3-4):569-579. doi: 10.1016/j.ecss.2006.09.003

    [32]

    Topp S E, Salbu B, Roaldset E, et al. Vertical distribution of trace elements in laterite soil (Suriname)[J]. Chemical Geology, 1984, 47(1-2):159-174. doi: 10.1016/0009-2541(84)90104-9

    [33]

    Banfield J F, Eggleton R A. Apatite replacement and rare earth mobilization, fractionation, and fixation during weathering[J]. Clays and Clay Minerals, 1989, 37(2):113-127. doi: 10.1346/CCMN.1989.0370202

    [34]

    包志伟. 华南花岗岩风化壳稀土元素地球化学研究[J]. 地球化学, 1992, 21(2):166-174 doi: 10.3321/j.issn:0379-1726.1992.02.008

    BAO Zhiwei. A geochemical study of the granitoid weathering crust in Southeast China[J]. Geochimica, 1992, 21(2):166-174.] doi: 10.3321/j.issn:0379-1726.1992.02.008

    [35]

    雒恺, 马金龙. 花岗岩风化过程中稀土元素迁移富集机制研究进展[J]. 地球科学进展, 2022, 37(7):692-708 doi: 10.11867/j.issn.1001-8166.2022.7.dqkxjz202207003

    LUO Kai, MA Jinlong. Recent advances in migration and enrichment of rare earth elements during chemical weathering of granite[J]. Advances in Earth Science, 2022, 37(7):692-708.] doi: 10.11867/j.issn.1001-8166.2022.7.dqkxjz202207003

    [36]

    马英军, 霍润科, 徐志方, 等. 化学风化作用中的稀土元素行为及其影响因素[J]. 地球科学进展, 2004, 19(1):87-94 doi: 10.3321/j.issn:1001-8166.2004.01.012

    MA Yingjun, HUO Runke, XU Zhifang, et al. REE behavior and influence factors during chemical weathering[J]. Advances in Earth Science, 2004, 19(1):87-94.] doi: 10.3321/j.issn:1001-8166.2004.01.012

    [37]

    Mihajlovic J, Stärk H J, Rinklebe J. Geochemical fractions of rare earth elements in two floodplain soil profiles at the Wupper River, Germany[J]. Geoderma, 2014, 228-229:160-172. doi: 10.1016/j.geoderma.2013.12.009

    [38]

    Bray A W, Oelkers E H, Bonneville S, et al. The effect of pH, grain size, and organic ligands on biotite weathering rates[J]. Geochimica et Cosmochimica Acta, 2015, 164:127-145. doi: 10.1016/j.gca.2015.04.048

    [39]

    何耀, 程柳, 李毅, 等. 离子吸附型稀土矿的成矿机理及找矿标志[J]. 稀土, 2015, 36(4):98-103

    HE Yao, CHENG Liu, LI Yi, et al. The mineralization mechanism of the ion adsorption type rare earths ore and prospecting marks[J]. Chinese Rare Earths, 2015, 36(4):98-103.]

    [40]

    池汝安, 田君. 风化壳淋积型稀土矿评述[J]. 中国稀土学报, 2007, 25(6):641-650 doi: 10.3321/j.issn:1000-4343.2007.06.001

    CHI Ru’an, TIAN Jun. Review of weathered crust rare earth ore[J]. Journal of the Chinese Rare Earth Society, 2007, 25(6):641-650.] doi: 10.3321/j.issn:1000-4343.2007.06.001

    [41]

    Sanematsu K, Watanabe Y. Characteristics and genesis of ion adsorption-type rare earth element deposits[M]//Verplanck P L, Hitzman M W. Rare Earth and Critical Elements in Ore Deposits. Society of Economic Geologists, 2016.

    [42]

    赵芝, 王登红, 刘新星, 等. 广西花山岩体不同风化阶段稀土元素特征及其影响因素[J]. 稀土, 2015, 36(3):14-20

    ZHAO Zhi, WANG Denghong, LIU Xinxing, et al. Geochemical features of rare earth elements in different weathering stage of the Guangxi Huashan granite and its influence factors[J]. Chinese Rare Earths, 2015, 36(3):14-20.]

    [43]

    Li M Y H, Zhou M F, Williams-Jones A E. The genesis of regolith-hosted heavy rare earth element deposits: insights from the world-class Zudong deposit in Jiangxi province, South China[J]. Economic Geology, 2019, 114(3):541-568. doi: 10.5382/econgeo.4642

    [44]

    Fu W, Li X T, Feng Y Y, et al. Chemical weathering of S-type granite and formation of Rare Earth Element (REE)-rich regolith in South China: Critical control of lithology[J]. Chemical Geology, 2019, 520:33-51. doi: 10.1016/j.chemgeo.2019.05.006

    [45]

    Wen X Y, Huang C M, Tang Y, et al. Rare earth elements: a potential proxy for identifying the lacustrine sediment source and soil erosion intensity in karst areas[J]. Journal of Soils and Sediments, 2014, 14(10):1693-1702. doi: 10.1007/s11368-014-0928-y

    [46]

    Xie Y Y, Meng J, Guo L E. REE geochemistry of modern Eolian dust deposits in Harbin city, Heilongjiang province, China: implications for provenance[J]. Catena, 2014, 123:70-78. doi: 10.1016/j.catena.2014.07.008

    [47]

    周国兴, 赵恩好, 岳明新, 等. 稀土元素地球化学分析在地质学中的意义[J]. 地质与资源, 2014, 23(5):495-499 doi: 10.3969/j.issn.1671-1947.2014.05.016

    ZHOU Guoxing, ZHAO Enhao, YUE Mingxin, et al. Geological significance of rare earth elements in geochemical analysis[J]. Geology and Resources, 2014, 23(5):495-499.] doi: 10.3969/j.issn.1671-1947.2014.05.016

    [48]

    Egashira K, Iwashita S, Yamasaki S I. Clay mineral status of paddy soils from the Tai Lake Region of China in relation to high paddy-rice productivity[J]. Soil Science and Plant Nutrition, 1997, 43(3):521-530. doi: 10.1080/00380768.1997.10414779

    [49]

    Egashira K, Fujii K, Yamasaki S, et al. Rare earth element and clay minerals of paddy soils from the central region of the Mekong River, Laos[J]. Geoderma, 1997, 78(3-4):237-249. doi: 10.1016/S0016-7061(97)00031-1

    [50]

    杨恬, 朱照宇, 吴翼, 等. 中国东部地带表土稀土元素的地球化学特征[J]. 地学前缘, 2010, 17(3):233-241

    YANG Tian, ZHU Zhaoyu, WU Yi, et al. Rare earth elements geochemistry in topsoils from the eastern part of China[J]. Earth Science Frontiers, 2010, 17(3):233-241.]

    [51]

    陶安, 宋照亮, 李建武. 玄武岩发育土壤稀土元素地球化学特征及其指示意义[J]. 地球与环境, 2023, 51(4):388-400

    TAO An, SONG Zhaoliang, LI Jianwu. Geochemical characteristics and indicative significance of soil rare earth elements developed from basalt[J]. Earth and Environment, 2023, 51(4):388-400.]

    [52]

    钱建民, 华杰雄. 浙江省燕山期花岗岩化学元素丰度及特征[J]. 矿产勘查, 2022, 13(11):1581-1602

    QIAN Jianmin, HUA Jiexiong. Abundances of elements of Yanshanian granitoids in Zhejiang province and their characteristics[J]. Mineral Exploration, 2022, 13(11):1581-1602.]

    [53]

    魏震洋, 于津海, 王丽娟, 等. 南岭地区新元古代变质沉积岩的地球化学特征及构造意义[J]. 地球化学, 2009, 38(1):1-19 doi: 10.3321/j.issn:0379-1726.2009.01.001

    WEI Zhenyang, YU Jinhai, WANG Lijuan, et al. Geochemical features and tectonic significances of Neoproterozoic metasedimentary rocks from Nanling range[J]. Geochimica, 2009, 38(1):1-19.] doi: 10.3321/j.issn:0379-1726.2009.01.001

    [54]

    罗改, 张彤, 贾小川, 等. 滇西北石鼓杂岩中花岗质片麻岩年代学、地球化学特征及地质意义[J]. 地质学报, 2021, 95(11):3335-3351 doi: 10.3969/j.issn.0001-5717.2021.11.012

    LUO Gai, ZHANG Tong, JIA Xiaochuan, et al. Geochronology, geochemical features and geological significance of the granitic gneiss in the Shigu complex, northwest Yunnan, China[J]. Acta Geologica Sinica, 2021, 95(11):3335-3351.] doi: 10.3969/j.issn.0001-5717.2021.11.012

  • 加载中

(7)

(4)

计量
  • 文章访问数:  40
  • PDF下载数:  6
  • 施引文献:  0
出版历程
收稿日期:  2024-01-31
修回日期:  2024-03-14
刊出日期:  2025-06-28

目录