西北印度洋底层水组成:来自表层沉积物Nd同位素和氧化还原敏感元素的证据

黄子钊, 乔淑卿, 金丽娜, 李小艳, 陈亮, 刘强, 殷征欣. 西北印度洋底层水组成:来自表层沉积物Nd同位素和氧化还原敏感元素的证据[J]. 海洋地质与第四纪地质, 2025, 45(2): 68-78. doi: 10.16562/j.cnki.0256-1492.2024050901
引用本文: 黄子钊, 乔淑卿, 金丽娜, 李小艳, 陈亮, 刘强, 殷征欣. 西北印度洋底层水组成:来自表层沉积物Nd同位素和氧化还原敏感元素的证据[J]. 海洋地质与第四纪地质, 2025, 45(2): 68-78. doi: 10.16562/j.cnki.0256-1492.2024050901
HUANG Zizhao, QIAO Shuqing, JIN Lina, LI Xiaoyan, CHEN Liang, LIU Qiang, YIN Zhengxin. Composition of deep water in the northwestern Indian Ocean: Evidence from Nd isotopes and redox sensitive elements of surface sediments[J]. Marine Geology & Quaternary Geology, 2025, 45(2): 68-78. doi: 10.16562/j.cnki.0256-1492.2024050901
Citation: HUANG Zizhao, QIAO Shuqing, JIN Lina, LI Xiaoyan, CHEN Liang, LIU Qiang, YIN Zhengxin. Composition of deep water in the northwestern Indian Ocean: Evidence from Nd isotopes and redox sensitive elements of surface sediments[J]. Marine Geology & Quaternary Geology, 2025, 45(2): 68-78. doi: 10.16562/j.cnki.0256-1492.2024050901

西北印度洋底层水组成:来自表层沉积物Nd同位素和氧化还原敏感元素的证据

  • 基金项目: 国家自然科学基金“MIS7期以来热带西印度洋底层水演化及其环境气候效应”(42376083),“中印度洋脊侧翼断裂带内钙质浊流沉积过程及其对地震活动的响应”(42206072);科技部国家重点研发项目“晚新生代亚洲大陆风化过程、沉积记录及碳汇效应”(2022YFF0800503)
详细信息
    作者简介: 黄子钊(1999—),男,硕士研究生,海洋地质学专业,E-mail:huangzizhao@fio.org.cn
    通讯作者: 乔淑卿(1979—),女,博士,研究员,从事海洋沉积和古环境研究,E-mail:qiaoshuqing@fio.org.cn
  • 中图分类号: P736.2

Composition of deep water in the northwestern Indian Ocean: Evidence from Nd isotopes and redox sensitive elements of surface sediments

More Information
  • 作为全球大洋循环的重要组成部分,印度洋底层水是当前深水物质循环与环境变化研究的热点,主要由南极底层水(AABW)和北大西洋深层水(NADW)组成。本研究通过对西北印度洋表层沉积物Nd同位素、氧化还原敏感元素、TOC等指标的分析,探讨了底层水的氧化还原状态与水团组成。结果表明Mn、Mo和Ni等敏感元素的富集指示研究区整体为氧化环境,在洋脊南部存在强氧化区域。εNd的分布范围为−7.16~−8,指示该区底层水团主要由AABW组成。与邻近区域的Nd同位素记录相比更重,这主要是受到一定风尘输入的影响。研究区南部较重的εNd指示了AABW贡献的增加,这可能是受到了索马里盆地内赤道强东向流的影响。本研究初步揭示了区域氧化还原状态和εNd的空间分布变化特征及其可能的影响因素,为后续对底层水的深入研究提供了重要的参考依据。

  • 加载中
  • 图 1  研究区概况和采样站位(a)以及印度洋64.5°E溶解氧剖面(b)

    Figure 1. 

    图 2  印度洋εNd值分布及陆地端元

    Figure 2. 

    图 3  研究区沉积物深度、TOC与常量元素的分布图

    Figure 3. 

    图 4  研究区Mn/Ti与氧化还原敏感金属富集因子分布图

    Figure 4. 

    图 5  研究区Fe/Ti比值与Al/(Al +Fe +Mn)比值二元图

    Figure 5. 

    表 1  经方差极大旋转后的沉积物元素因子荷载矩阵

    Table 1.  Sediment element factor-loading matrix after varimax rotation

    F1 F2 F3 F4
    TiO2 0.9716 0.0017 0.2228 0.0685
    Fe2O3 0.9589 0.0027 0.2611 0.0992
    MnO 0.8044 0.0130 0.1926 0.5572
    CaO 0.3284 0.0884 0.9353 0.0834
    TOC −0.002 0.9988 0.0488 0.0040
    Mo 0.9042 0.0080 0.1071 0.3773
    U 0.9499 0.0120 0.2934 0.0548
    V 0.9553 0.0006 0.2863 0.0594
    Cu 0.8289 0.0137 0.3937 0.3671
    Ni 0.9132 0.0035 0.1966 0.3434
    下载: 导出CSV

    表 2  印度洋表层沉积物和海水的εNd数据统计

    Table 2.  εNd data of surface sediments and sea water collected in Indian Ocean

    站位 深度/m 地理位置 εNd 样品类型 文献来源
    02-09站 3483 中印度洋脊西侧 −7.77 铁锰氧化相 本研究
    02-11站 3733 中印度洋脊东侧 −7.48
    02-29站 3519 中印度洋脊西侧 −7.27
    03-09站 4206 卡尔斯伯格脊东侧 −8.0
    03-26站 3996 卡尔斯伯格脊西侧 −7.86
    04-02站 4022 卡尔斯伯格脊东侧 −7.74
    04-15站 4085 卡尔斯伯格脊西侧 −7.89
    04-29站 4900 卡尔斯伯格脊西侧 −7.16
    SK221-05站 2700 东南阿拉伯海 −8.8 Lathika[21]
    SK129-CR2站 3800 查戈斯-拉克代夫海岭东侧 −9.3 Piotrowski[19]
    V19-188站 马斯克林台地东北侧 −8.1 Pahnke[40]
    5B站 3684 马达加斯加盆地 −8.32 Wilson[20]
    30B站 3950 马斯克林盆地 −8.38
    RC11-83站 4718 开普盆地 −8.39 Rutberg[52]
    02-01站 3508 中印度洋脊东侧 −10.26 去碳酸盐残留相 何州天[41]
    SS-3101G站 查戈斯-拉克代夫海岭东侧 −13.0 Goswami[44]
    SS-3104G站 东南阿拉伯海 −9.9
    803站 2504 查戈斯-拉克代夫海岭西北侧 −10.2 海水 Goswami[1]
    804站 2350 印度大陆南端 −10.6
    1504站 4500 马达加斯加盆地 −8.5 Bertram & Elderfield[17]
    1507站 4000 索马里盆地 −8.6
    下载: 导出CSV
  • [1]

    Goswami V, Singh S K, Bhushan R. Impact of water mass mixing and dust deposition on Nd concentration and εNd of the Arabian Sea water column[J]. Geochimica et Cosmochimica Acta, 2014, 145:30-49. doi: 10.1016/j.gca.2014.09.006

    [2]

    Manabe S, Stouffer R J. The rôle of thermohaline circulation in climate[J]. Tellus B: Chemical and Physical Meteorology, 1999, 51(1):91-109. doi: 10.3402/tellusb.v51i1.16262

    [3]

    Rahmstorf S. Ocean circulation and climate during the past 120 000 years[J]. Nature, 2002, 419(6903):207-214. doi: 10.1038/nature01090

    [4]

    Clark P U, Pisias N G, Stocker T F, et al. The role of the thermohaline circulation in abrupt climate change[J]. Nature, 2002, 415(6874):863-869. doi: 10.1038/415863a

    [5]

    Talley L D. Closure of the global overturning circulation through the Indian, Pacific, and Southern Oceans: schematics and transports[J]. Oceanography, 2013, 26(1):80-97. doi: 10.5670/oceanog.2013.07

    [6]

    Mantyla A W, Reid J L. On the origins of deep and bottom waters of the Indian Ocean[J]. Journal of Geophysical Research: Oceans, 1995, 100(C2):2417-2439. doi: 10.1029/94JC02564

    [7]

    Johnson G C, Rudnick D L, Taft B A. Bottom water variability in the Samoa passage[J]. Journal of Marine Research, 1994, 52(2):177-196. doi: 10.1357/0022240943077118

    [8]

    Schmiedl G, Leuschner D C. Oxygenation changes in the deep western Arabian Sea during the last 190, 000 years: Productivity versus deepwater circulation[J]. Paleoceanography, 2005, 20(2):PA2008.

    [9]

    Tyson R V, Pearson T H. Modern and ancient continental shelf anoxia: an overview[J]. Geological Society, London, Special Publications, 1991, 58(1):1-24. doi: 10.1144/GSL.SP.1991.058.01.01

    [10]

    Tribovillard N, Algeo T J, Lyons T, et al. Trace metals as paleoredox and paleoproductivity proxies: an update[J]. Chemical Geology, 2006, 232(1-2):12-32. doi: 10.1016/j.chemgeo.2006.02.012

    [11]

    Pattan J N, Pearce N J G. Bottom water oxygenation history in southeastern Arabian Sea during the past 140ka: results from redox-sensitive elements[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2009, 280(3-4):396-405. doi: 10.1016/j.palaeo.2009.06.027

    [12]

    Nambiar R, Bhushan R, Raj H. Paleoredox conditions of bottom water in the northern Indian Ocean since 39 ka[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2022, 586:110766. doi: 10.1016/j.palaeo.2021.110766

    [13]

    Amsler H E, Thöle L M, Stimac I, et al. Bottom water oxygenation changes in the southwestern Indian Ocean as an indicator for enhanced respired carbon storage since the last glacial inception[J]. Climate of the Past, 2022, 18(8):1797-1813. doi: 10.5194/cp-18-1797-2022

    [14]

    Tachikawa K, Jeandel C, Roy-Barman M. A new approach to the Nd residence time in the ocean: the role of atmospheric inputs[J]. Earth and Planetary Science Letters, 1999, 170(4):433-446. doi: 10.1016/S0012-821X(99)00127-2

    [15]

    Bender M L. Tracers in the sea[J]. BioScience, 1984, 34(7):452.

    [16]

    Albarède F, Goldstein S L. World map of Nd isotopes in sea-floor ferromanganese deposits[J]. Geology, 1992, 20(8):761-763. doi: 10.1130/0091-7613(1992)020<0761:WMONII>2.3.CO;2

    [17]

    Bertram C J, Elderfield H. The geochemical balance of the rare earth elements and neodymium isotopes in the oceans[J]. Geochimica et Cosmochimica Acta, 1993, 57(9):1957-1986. doi: 10.1016/0016-7037(93)90087-D

    [18]

    Dileep Kumar M, Li Y H. Spreading of water masses and regeneration of silica and 226Ra in the Indian Ocean[J]. Deep Sea Research Part II: Topical Studies in Oceanography, 1996, 43(1):83-110. doi: 10.1016/0967-0645(95)00084-4

    [19]

    Piotrowski A M, Banakar V K, Scrivner A E, et al. Indian Ocean circulation and productivity during the last glacial cycle[J]. Earth and Planetary Science Letters, 2009, 285(1-2):179-189. doi: 10.1016/j.jpgl.2009.06.007

    [20]

    Wilson D J, Piotrowski A M, Galy A, et al. A boundary exchange influence on deglacial neodymium isotope records from the deep western Indian Ocean[J]. Earth and Planetary Science Letters, 2012, 341-344:35-47. doi: 10.1016/j.jpgl.2012.06.009

    [21]

    Lathika N, Rahaman W, Tarique M, et al. Deep water circulation in the Arabian Sea during the last glacial cycle: implications for paleo-redox condition, carbon sink and atmospheric CO2 variability[J]. Quaternary Science Reviews, 2021, 257:106853. doi: 10.1016/j.quascirev.2021.106853

    [22]

    Singh S P, Singh S K, Goswami V, et al. Spatial distribution of dissolved neodymium and εNd in the Bay of Bengal: role of particulate matter and mixing of water masses[J]. Geochimica et Cosmochimica Acta, 2012, 94:38-56. doi: 10.1016/j.gca.2012.07.017

    [23]

    Bang S, Huh Y, Khim B K, et al. Deep-water circulation over the last two glacial cycles reconstructed from authigenic neodymium isotopes in the equatorial Indian Ocean (Core HI1808-GPC04)[J]. Ocean Science Journal, 2022, 57(2):324-333. doi: 10.1007/s12601-021-00046-8

    [24]

    Zhang H D, Luo Y M, Yu J M, et al. Indian Ocean sedimentary calcium carbonate distribution and its implications for the glacial deep ocean circulation[J]. Quaternary Science Reviews, 2022, 284:107490. doi: 10.1016/j.quascirev.2022.107490

    [25]

    余星, 韩喜球, 邱中炎, 等. 西北印度洋脊的厘定及其地质构造特征[J]. 地球科学, 2019, 44(2):626-639

    YU Xing, HAN Xiqiu, QIU Zhongyan, et al. Definition of northwest Indian ridge and its geologic and tectonic signatures[J]. Earth Science, 2019, 44(2):626-639.]

    [26]

    Gordon A L, Ma S B, Olson D B, et al. Advection and diffusion of Indonesian Throughflow water within the Indian Ocean South Equatorial Current[J]. Geophysical Research Letters, 1997, 24(21):2573-2576. doi: 10.1029/97GL01061

    [27]

    You Y Z. Implications of the deep circulation and ventilation of the Indian Ocean on the renewal mechanism of North Atlantic Deep Water[J]. Journal of Geophysical Research: Oceans, 2000, 105(C10):23895-23926. doi: 10.1029/2000JC900105

    [28]

    He Z T, Qiao S Q, Jin L N, et al. Clay mineralogy and geochemistry of surface sediments in the equatorial western Indian Ocean and implications for sediment sources and the Antarctic bottom water inputs[J]. Journal of Asian Earth Sciences, 2023, 254:105741. doi: 10.1016/j.jseaes.2023.105741

    [29]

    Cai M J, Colin C, Xu Z K, et al. Climate and sea level forcing of terrigenous sediments input to the eastern Arabian Sea since the last glacial period[J]. Marine Geology, 2022, 450:106860.

    [30]

    Kumar A, Suresh K, Rahaman W. Geochemical characterization of modern aeolian dust over the Northeastern Arabian Sea: implication for dust transport in the Arabian Sea[J]. Science of the Total Environment, 2020, 729:138576.

    [31]

    Johnson G C, Warren B A, Olson D B. Flow of bottom water in the Somali Basin[J]. Deep Sea Research Part A. Oceanographic Research Papers, 1991, 38(6):637-652. doi: 10.1016/0198-0149(91)90003-X

    [32]

    Ewing M, Eittreim S, Truchan M, et al. Sediment distribution in the Indian Ocean[J]. Deep Sea Research and Oceanographic Abstracts, 1969, 16(3):231-248.

    [33]

    Murray R W, Leinen M. Scavenged excess aluminum and its relationship to bulk titanium in biogenic sediment from the central equatorial Pacific Ocean[J]. Geochimica et Cosmochimica Acta, 1996, 60(20):3869-3878.

    [34]

    Algeo T J, Liu J S. A re-assessment of elemental proxies for paleoredox analysis[J]. Chemical Geology, 2020, 540:119549.

    [35]

    Li Y H, Schoonmaker J E. Chemical composition and mineralogy of marine sediments[J]. Treatise on Geochemistry, 2003, 7:1-35.

    [36]

    Algeo T J, Tribovillard N. Environmental analysis of paleoceanographic systems based on molybdenum–uranium covariation[J]. Chemical Geology, 2009, 268(3-4):211-225.

    [37]

    何连花, 张辉, 刘季花, 等. MC-ICP-MS测定海洋沉积物中钕同位素的化学分离方法[J]. 矿产与地质, 2020, 34(5):1018-1022

    HE Lianhua, ZHANG Hui, LIU Jihua, et al. Chemical separation method for MC-ICP-MS determination of Nd isotopes in marine sediment[J]. Mineral Resources and Geology, 2020, 34(5):1018-1022.]

    [38]

    Tanaka T, Togashi S, Kamioka H, et al. JNdi-1: a neodymium isotopic reference in consistency with LaJolla neodymium[J]. Chemical Geology, 2000, 168(3-4):279-281.

    [39]

    Jacobsen S B, Wasserburg G J. Sm-Nd isotopic evolution of chondrites and achondrites, II[J]. Earth and Planetary Science Letters, 1984, 67(2):137-150.

    [40]

    Pahnke K, Goldstein S L, Hemming S R. Abrupt changes in Antarctic Intermediate Water circulation over the past 25, 000 years[J]. Nature Geoscience, 2008, 1(12):870-874.

    [41]

    何州天. MIS 7期以来赤道西印度洋沉积物特征及其对物源和古环境的指示意义[D]. 自然资源部第一海洋研究所硕士学位论文, 2023

    HE Zhoutian. Characteristics of sediments in the equatorial western Indian Ocean since MIS 7 and implications for sediment sources and paleoenvironment[D]. Master Dissertation of the First Institute of Oceanography, MNR, 2023.]

    [42]

    McLennan S M. Relationships between the trace element composition of sedimentary rocks and upper continental crust[J]. Geochemistry, Geophysics, Geosystems, 2001, 2(4):2000GC000109.

    [43]

    Boström K. Origin and fate of ferromanganoan active ridge sediments[M]//Hsü K J, Jenkyns H C. Pelagic Sediments: on Land and under the Sea. Oxford: Blackwell Scientific, 1974: 401-401.

    [44]

    Qiu Z Y, Fan W J, Han X Q, et al. Distribution, speciation and mobility of metals in sediments of the Tianxiu hydrothermal field, Carlsberg Ridge, Northwest Indian Ocean[J]. Journal of Marine Systems, 2023, 237:103826.

    [45]

    Qiu Z Y, Han X Q, Li M, et al. The temporal variability of hydrothermal activity of Wocan hydrothermal field, Carlsberg Ridge, northwest Indian Ocean[J]. Ore Geology Reviews, 2021, 132:103999.

    [46]

    Goswami V, Singh S K, Bhushan R, et al. Temporal variations in 87Sr/86Sr and ɛNd in sediments of the southeastern Arabian Sea: impact of monsoon and surface water circulation[J]. Geochemistry, Geophysics, Geosystems, 2012, 13(1):Q01001.

    [47]

    Kohfeld K E, Harrison S P. DIRTMAP: the geological record of dust[J]. Earth-Science Reviews, 2001, 54(1-3):81-114.

    [48]

    Mahowald N M, Muhs D R, Levis S, et al. Change in atmospheric mineral aerosols in response to climate: last glacial period, preindustrial, modern, and doubled carbon dioxide climates[J]. Journal of Geophysical Research: Atmospheres, 2006, 111(D10):D10202.

    [49]

    Halliday A N, Davidson J P, Holden P, et al. Metalliferous sediments and the scavenging residence time of Nd near hydrothermal vents[J]. Geophysical Research Letters, 1992, 19(8):761-764.

    [50]

    Lacan F, Jeandel C. Tracing Papua New Guinea imprint on the central Equatorial Pacific Ocean using neodymium isotopic compositions and Rare Earth Element patterns[J]. Earth and Planetary Science Letters, 2001, 186(3-4):497-512.

    [51]

    Tachikawa K, Athias V, Jeandel C. Neodymium budget in the modern ocean and paleo-oceanographic implications[J]. Journal of Geophysical Research: Oceans, 2003, 108(C8):3254.

    [52]

    Rutberg R L, Hemming S R, Goldstein S L. Reduced North Atlantic Deep Water flux to the glacial Southern Ocean inferred from neodymium isotope ratios[J]. Nature, 2000, 405(6789):935-938.

    [53]

    Johnson G C, Musgrave D L, Warren B A, et al. Flow of bottom and deep water in the Amirante Passage and Mascarene Basin[J]. Journal of Geophysical Research: Oceans, 1998, 103(C13):30973-30984.

  • 加载中

(5)

(2)

计量
  • 文章访问数:  30
  • PDF下载数:  6
  • 施引文献:  0
出版历程
收稿日期:  2024-05-09
修回日期:  2024-09-22
录用日期:  2024-09-22
刊出日期:  2025-04-28

目录