-
摘要:
沉积物中天然气水合物的生成受到多种因素的制约,其中沉积物自身的物理化学性质亦不容忽视。基于南海沉积物的矿物组成,选用橄榄石、碳酸盐、长石和石英4种矿物介质对水合物的生成过程进行了实验模拟。结果表明,在低含水率情况下,4种矿物中矿物的亲水性越强,水合物成核时间越长;而在沉积物含水率高的情况下,矿物亲水性的影响减弱,4种矿物中水合物成核时间接近。橄榄石中水合物的生长速率最快,石英中水合物的生长速率最慢。此外,4种矿物中,水合物均呈现由沉积物向上部气相空间生长的特征,这种生长方式使水合物的生长速率呈现出先快后慢再快的趋势。在4种矿物中,同一含水率条件下最终形成的水合物饱和度基本接近,约为12.52%~34.32%。实验结果对于水合物地质勘探以及开采选址具有一定的参考价值。
Abstract:The formation of natural gas hydrates in sediments is constrained by various factors, among which the physical and chemical properties of the sediments should not be overlooked. Based on the mineral composition of sediments in the South China Sea, the formation of natural gas hydrate was simulated experimentally by using four different minerals, olivine, carbonate, feldspar, and quartz. Results show that at low water saturation, the stronger hydrophilicity of the mineral, the longer the hydrate nucleation time; while at high water saturation, the effect of mineral hydrophilicity is weakened, the hydrate nucleation time is similar among the four minerals. The hydrate growth rate of olivine is the fastest, while quartz is the slowest. Additionally, the hydrate in all four minerals showed the characteristic of growing from sediment to the upper gas-phase space, which resulted in a trend of rapid growth followed by slow growth and then rapid growth of hydrates. The final hydrate saturation of the four minerals under same moisture content conditions was similar, ranging 12.52%~34.32%. The experimental results provide a reference for geological exploration and site selection for hydrate mining.
-
Key words:
- natural gas hydrates /
- minerals /
- hydrophilicity /
- initial moisture content /
- nucleation
-
-
表 1 矿物样品测量结果
Table 1. Measurements of four minerals
橄榄石 碳酸盐 长石 石英 密度/(g/cm3) 2.812±0.002 2.793±0.003 2.651±0.001 2.644±0.003 孔隙度 0.45±0.02 0.46±0.01 0.44±0.02 0.44±0.02 接触角/(º) 9.3±0.01 13.3±0.01 22.7±0.01 28.6±0.01 表 2 矿物中水合物生成实验条件与计算结果
Table 2. Experimental conditions and results for hydrate formation in minerals
初始含水率/% 矿物质量/g 去离子水体积/mL 水合物饱和度/% 残余水饱和度/% 橄榄石 25 691.325 47.1 12.84 0.00 40 692.771 75.3 22.60 4.43 55 698.551 105.2 29.78 9.02 70 698.551 133.9 30.08 46.08 85 698.551 162.6 33.54 58.33 碳酸盐 25 695.948 47.5 12.95 0.00 40 715.069 83.8 21.85 5.46 55 700.172 112.9 30.44 11.97 70 700.172 141.6 31.21 45.16 85 700.172 172.0 33.07 57.86 长石 25 699.250 47.0 12.25 0.00 40 699.061 82.8 21.93 6.34 55 700.707 114.2 30.46 14.21 70 700.707 145.3 31.72 44.83 85 700.707 176.5 33.61 58.22 石英 25 703.411 48.9 13.86 0.00 40 690.693 82.0 22.18 6.52 55 706.789 115.4 30.96 14.97 70 706.789 146.8 32.04 44.67 85 706.789 178.3 34.32 58.76 -
[1] Malagar B R C, Lijith K P, Singh D N. Formation & dissociation of methane gas hydrates in sediments: a critical review[J]. Journal of Natural Gas Science and Engineering, 2019, 65:168-184. doi: 10.1016/j.jngse.2019.03.005
[2] Sloan E D. Gas hydrates: review of physical/chemical properties[J]. Energy & Fuels, 1998, 12(2):191-196.
[3] Makogon Y F, Holditch S A, Makogon T Y. Natural gas-hydrates: a potential energy source for the 21st Century[J]. Journal of Petroleum Science and Engineering, 2007, 56(1-3):14-31. doi: 10.1016/j.petrol.2005.10.009
[4] Misyura S Y. The influence of porosity and structural parameters on different kinds of gas hydrate dissociation[J]. Scientific Reports, 2016, 6:30324. doi: 10.1038/srep30324
[5] Ren J J, Liu X H, Niu M Y, et al. Effect of sodium montmorillonite clay on the kinetics of CH4 hydrate-implication for energy recovery[J]. Chemical Engineering Journal, 2022, 437:135368. doi: 10.1016/j.cej.2022.135368
[6] Chen C, Zhang Y, Li X S, et al. Investigations into methane hydrate formation, accumulation, and distribution in sediments with different contents of Illite clay[J]. Applied Energy, 2024, 359:122661. doi: 10.1016/j.apenergy.2024.122661
[7] Mi F Y, He Z J, Zhao Y J, et al. Effects of surface property of mixed clays on methane hydrate formation in nanopores: a molecular dynamics study[J]. Journal of Colloid and Interface Science, 2022, 627:681-691. doi: 10.1016/j.jcis.2022.07.101
[8] 孙始财, 业渝光, 刘昌岭, 等. 甲烷水合物在石英砂中生成过程研究[J]. 石油与天然气化工, 2011, 40(2):123-127
SUN Shicai. , YE Yuguang, LIU Changling, et al. Research of methane hydrate formation process in quartz sand[J]. Chemical Engineering of Oil and Gas, 2011, 40(2):123-127.]
[9] Babu P, Yee D, Linga P, et al. Morphology of methane hydrate formation in porous media[J]. Energy & Fuels, 2013, 27(6):3364-3372.
[10] Zhang B, Zhou L H, Liu C L, et al. Influence of sediment media with different particle sizes on the nucleation of gas hydrate[J]. Natural Gas Industry B, 2018, 5(6):652-659. doi: 10.1016/j.ngib.2018.11.001
[11] Eswari C V V, Raju B, Chari V D, et al. Laboratory study of methane hydrate formation kinetics and structural stability in sediments[J]. Marine and Petroleum Geology, 2014, 58:199-205. doi: 10.1016/j.marpetgeo.2014.08.010
[12] Maiti M, Bhaumik A K, Mandal A. Geological characterization of natural gas hydrate bearing sediments and their influence on hydrate formation and dissociation[J]. Journal of Natural Gas Science and Engineering, 2022, 100:104491. doi: 10.1016/j.jngse.2022.104491
[13] Qin X W, Lu C, Wang P K, et al. Hydrate phase transition and seepage mechanism during natural gas hydrates production tests in the South China Sea: a review and prospect[J]. China Geology, 2022, 5(2):201-217.
[14] Sloan E D Jr, Koh C A. Clathrate Hydrates of Natural Gases[M]. 3rd ed. Boca Raton: CRC Press, 2007.
[15] Esmail S, Beltran J G. Methane hydrate propagation on surfaces of varying wettability[J]. Journal of Natural Gas Science and Engineering, 2016, 35:1535-1543. doi: 10.1016/j.jngse.2016.06.068
[16] Qin Y, Shang L Y, Lv Z B, et al. Methane hydrate formation in porous media: overview and perspectives[J]. Journal of Energy Chemistry, 2022, 74:454-480. doi: 10.1016/j.jechem.2022.07.019
[17] 张郁, 吴慧杰, 李小森, 等. 多孔介质中甲烷水合物的生成特性的实验研究[J]. 化学学报, 2011, 69(19):2221-2227
ZHANG Yu, WU Huijie, LI Xiaosen, et al. Experimental study on formation behavior of methane hydrate in porous media[J]. Acta Chimica Sinica, 2011, 69(19):2221-2227.
[18] Ke W, Svartaas T M, Chen D Y. A review of gas hydrate nucleation theories and growth models[J]. Journal of Natural Gas Science and Engineering, 2019, 61:169-196. doi: 10.1016/j.jngse.2018.10.021
[19] Taylor C J, Miller K T, Koh C A, et al. Macroscopic investigation of hydrate film growth at the hydrocarbon/water interface[J]. Chemical Engineering Science, 2007, 62(23):6524-6533. doi: 10.1016/j.ces.2007.07.038
[20] Chen Y, Gao Y H, Zhang N T, et al. Microfluidics application for monitoring hydrate phase transition in flow throats and evaluation of its saturation measurement[J]. Chemical Engineering Journal, 2020, 383:123081. doi: 10.1016/j.cej.2019.123081
[21] Liang S, Kusalik P G. Explorations of gas hydrate crystal growth by molecular simulations[J]. Chemical Physics Letters, 2010, 494(4-6):123-133. doi: 10.1016/j.cplett.2010.05.088
[22] 王亚东, 赵建忠, 高强, 等. 石英砂介质中甲烷水合物生成过程和相平衡的实验研究[J]. 石油与天然气化工, 2018, 47(6):44-49 doi: 10.3969/j.issn.1007-3426.2018.06.009
WANG Yadong, ZHAO Jianzhong, GAO Qiang, et al. Experimental study on the formation and phase equilibria of methane hydrate in quartz sand media[J]. Chemical Engineering of Oil and Gas, 2018, 47(6):44-49.] doi: 10.3969/j.issn.1007-3426.2018.06.009
[23] Jin Y, Konno Y, Nagao J. Growth of methane clathrate hydrates in porous media[J]. Energy & Fuels, 2012, 26(4):2242-2247.
[24] Guo G J, Li M, Zhang Y G, et al. Why can water cages adsorb aqueous methane? A potential of mean force calculation on hydrate nucleation mechanisms[J]. Physical Chemistry Chemical Physics, 2009, 11(44):10427-10437. doi: 10.1039/b913898f
-