矿物类型对天然气水合物生成过程影响

孙始财, 田万鑫, 孟庆国, 卜庆涛, 吴能友, 黄丽. 矿物类型对天然气水合物生成过程影响[J]. 海洋地质与第四纪地质, 2025, 45(2): 215-224. doi: 10.16562/j.cnki.0256-1492.2024053001
引用本文: 孙始财, 田万鑫, 孟庆国, 卜庆涛, 吴能友, 黄丽. 矿物类型对天然气水合物生成过程影响[J]. 海洋地质与第四纪地质, 2025, 45(2): 215-224. doi: 10.16562/j.cnki.0256-1492.2024053001
SUN Shicai, TIAN Wanxin, MENG Qingguo, BU Qingtao, WU Nengyou, HUANG Li. Effect of mineral type on the formation of natural gas hydrate[J]. Marine Geology & Quaternary Geology, 2025, 45(2): 215-224. doi: 10.16562/j.cnki.0256-1492.2024053001
Citation: SUN Shicai, TIAN Wanxin, MENG Qingguo, BU Qingtao, WU Nengyou, HUANG Li. Effect of mineral type on the formation of natural gas hydrate[J]. Marine Geology & Quaternary Geology, 2025, 45(2): 215-224. doi: 10.16562/j.cnki.0256-1492.2024053001

矿物类型对天然气水合物生成过程影响

  • 基金项目: 国家自然科学基金 “水合物降压开采过程中裹挟气泡、砂粒的储层产水多相运移机理” (52074165 ),“基于声电联合特性的裂隙充填型水合物识别及机理分析” (42376218 ), 南海北部神狐海域水合物储层特征对开采产能的影响(41706064);崂山实验室科技创新项目“西太平洋天然气水合物资源与环境效应及智能探测技术”(LSKJ202203500);山东省自然科学基金“储藏级水合物降压分解热效应机理及其与产能的响应关系”(ZR2022MD008)
详细信息
    作者简介: 孙始财(1975—),男,博士,教授,主要从事天然气水合物与新能源研究,E-mail:qdsunsc@163.com
    通讯作者: 黄丽(1989—),女,博士,副研究员,主要从事海洋天然气水合物研究,E-mail:lihuangocean@163.com
  • 中图分类号: P744.4

Effect of mineral type on the formation of natural gas hydrate

More Information
  • 沉积物中天然气水合物的生成受到多种因素的制约,其中沉积物自身的物理化学性质亦不容忽视。基于南海沉积物的矿物组成,选用橄榄石、碳酸盐、长石和石英4种矿物介质对水合物的生成过程进行了实验模拟。结果表明,在低含水率情况下,4种矿物中矿物的亲水性越强,水合物成核时间越长;而在沉积物含水率高的情况下,矿物亲水性的影响减弱,4种矿物中水合物成核时间接近。橄榄石中水合物的生长速率最快,石英中水合物的生长速率最慢。此外,4种矿物中,水合物均呈现由沉积物向上部气相空间生长的特征,这种生长方式使水合物的生长速率呈现出先快后慢再快的趋势。在4种矿物中,同一含水率条件下最终形成的水合物饱和度基本接近,约为12.52%~34.32%。实验结果对于水合物地质勘探以及开采选址具有一定的参考价值。

  • 加载中
  • 图 1  水合物生成实验装置图

    Figure 1. 

    图 2  样品密度测量示意图

    Figure 2. 

    图 3  4种矿物中水合物在不同含水率下成核时间对比

    Figure 3. 

    图 10  85%初始含水率条件下水合物形成过程中体系温度、压力与水合物饱和度变化

    Figure 10. 

    图 4  4种矿物中水合物在不同含水率下生长时间对比

    Figure 4. 

    图 5  70%初始含水率下4种矿物中水合物生长形貌

    Figure 5. 

    图 6  25%初始含水率条件下水合物形成过程中体系温度、压力与水合物饱和度变化

    Figure 6. 

    图 7  40%初始含水率条件下水合物形成过程中体系温度、压力与水合物饱和度变化

    Figure 7. 

    图 8  55%初始含水率条件下水合物形成过程中体系温度、压力与水合物饱和度变化

    Figure 8. 

    图 9  70%初始含水率条件下水合物形成过程中体系温度、压力与水合物饱和度变化

    Figure 9. 

    表 1  矿物样品测量结果

    Table 1.  Measurements of four minerals

    橄榄石碳酸盐长石石英
    密度/(g/cm3)2.812±0.0022.793±0.0032.651±0.0012.644±0.003
    孔隙度0.45±0.020.46±0.010.44±0.020.44±0.02
    接触角/(º)9.3±0.0113.3±0.0122.7±0.0128.6±0.01
    下载: 导出CSV

    表 2  矿物中水合物生成实验条件与计算结果

    Table 2.  Experimental conditions and results for hydrate formation in minerals

    初始含水率/%矿物质量/g去离子水体积/mL水合物饱和度/%残余水饱和度/%
    橄榄石25691.32547.112.840.00
    40692.77175.322.604.43
    55698.551105.229.789.02
    70698.551133.930.0846.08
    85698.551162.633.5458.33
    碳酸盐25695.94847.512.950.00
    40715.06983.821.855.46
    55700.172112.930.4411.97
    70700.172141.631.2145.16
    85700.172172.033.0757.86
    长石25699.25047.012.250.00
    40699.06182.821.936.34
    55700.707114.230.4614.21
    70700.707145.331.7244.83
    85700.707176.533.6158.22
    石英25703.41148.913.860.00
    40690.69382.022.186.52
    55706.789115.430.9614.97
    70706.789146.832.0444.67
    85706.789178.334.3258.76
    下载: 导出CSV
  • [1]

    Malagar B R C, Lijith K P, Singh D N. Formation & dissociation of methane gas hydrates in sediments: a critical review[J]. Journal of Natural Gas Science and Engineering, 2019, 65:168-184. doi: 10.1016/j.jngse.2019.03.005

    [2]

    Sloan E D. Gas hydrates: review of physical/chemical properties[J]. Energy & Fuels, 1998, 12(2):191-196.

    [3]

    Makogon Y F, Holditch S A, Makogon T Y. Natural gas-hydrates: a potential energy source for the 21st Century[J]. Journal of Petroleum Science and Engineering, 2007, 56(1-3):14-31. doi: 10.1016/j.petrol.2005.10.009

    [4]

    Misyura S Y. The influence of porosity and structural parameters on different kinds of gas hydrate dissociation[J]. Scientific Reports, 2016, 6:30324. doi: 10.1038/srep30324

    [5]

    Ren J J, Liu X H, Niu M Y, et al. Effect of sodium montmorillonite clay on the kinetics of CH4 hydrate-implication for energy recovery[J]. Chemical Engineering Journal, 2022, 437:135368. doi: 10.1016/j.cej.2022.135368

    [6]

    Chen C, Zhang Y, Li X S, et al. Investigations into methane hydrate formation, accumulation, and distribution in sediments with different contents of Illite clay[J]. Applied Energy, 2024, 359:122661. doi: 10.1016/j.apenergy.2024.122661

    [7]

    Mi F Y, He Z J, Zhao Y J, et al. Effects of surface property of mixed clays on methane hydrate formation in nanopores: a molecular dynamics study[J]. Journal of Colloid and Interface Science, 2022, 627:681-691. doi: 10.1016/j.jcis.2022.07.101

    [8]

    孙始财, 业渝光, 刘昌岭, 等. 甲烷水合物在石英砂中生成过程研究[J]. 石油与天然气化工, 2011, 40(2):123-127

    SUN Shicai. , YE Yuguang, LIU Changling, et al. Research of methane hydrate formation process in quartz sand[J]. Chemical Engineering of Oil and Gas, 2011, 40(2):123-127.]

    [9]

    Babu P, Yee D, Linga P, et al. Morphology of methane hydrate formation in porous media[J]. Energy & Fuels, 2013, 27(6):3364-3372.

    [10]

    Zhang B, Zhou L H, Liu C L, et al. Influence of sediment media with different particle sizes on the nucleation of gas hydrate[J]. Natural Gas Industry B, 2018, 5(6):652-659. doi: 10.1016/j.ngib.2018.11.001

    [11]

    Eswari C V V, Raju B, Chari V D, et al. Laboratory study of methane hydrate formation kinetics and structural stability in sediments[J]. Marine and Petroleum Geology, 2014, 58:199-205. doi: 10.1016/j.marpetgeo.2014.08.010

    [12]

    Maiti M, Bhaumik A K, Mandal A. Geological characterization of natural gas hydrate bearing sediments and their influence on hydrate formation and dissociation[J]. Journal of Natural Gas Science and Engineering, 2022, 100:104491. doi: 10.1016/j.jngse.2022.104491

    [13]

    Qin X W, Lu C, Wang P K, et al. Hydrate phase transition and seepage mechanism during natural gas hydrates production tests in the South China Sea: a review and prospect[J]. China Geology, 2022, 5(2):201-217.

    [14]

    Sloan E D Jr, Koh C A. Clathrate Hydrates of Natural Gases[M]. 3rd ed. Boca Raton: CRC Press, 2007.

    [15]

    Esmail S, Beltran J G. Methane hydrate propagation on surfaces of varying wettability[J]. Journal of Natural Gas Science and Engineering, 2016, 35:1535-1543. doi: 10.1016/j.jngse.2016.06.068

    [16]

    Qin Y, Shang L Y, Lv Z B, et al. Methane hydrate formation in porous media: overview and perspectives[J]. Journal of Energy Chemistry, 2022, 74:454-480. doi: 10.1016/j.jechem.2022.07.019

    [17]

    张郁, 吴慧杰, 李小森, 等. 多孔介质中甲烷水合物的生成特性的实验研究[J]. 化学学报, 2011, 69(19):2221-2227

    ZHANG Yu, WU Huijie, LI Xiaosen, et al. Experimental study on formation behavior of methane hydrate in porous media[J]. Acta Chimica Sinica, 2011, 69(19):2221-2227.

    [18]

    Ke W, Svartaas T M, Chen D Y. A review of gas hydrate nucleation theories and growth models[J]. Journal of Natural Gas Science and Engineering, 2019, 61:169-196. doi: 10.1016/j.jngse.2018.10.021

    [19]

    Taylor C J, Miller K T, Koh C A, et al. Macroscopic investigation of hydrate film growth at the hydrocarbon/water interface[J]. Chemical Engineering Science, 2007, 62(23):6524-6533. doi: 10.1016/j.ces.2007.07.038

    [20]

    Chen Y, Gao Y H, Zhang N T, et al. Microfluidics application for monitoring hydrate phase transition in flow throats and evaluation of its saturation measurement[J]. Chemical Engineering Journal, 2020, 383:123081. doi: 10.1016/j.cej.2019.123081

    [21]

    Liang S, Kusalik P G. Explorations of gas hydrate crystal growth by molecular simulations[J]. Chemical Physics Letters, 2010, 494(4-6):123-133. doi: 10.1016/j.cplett.2010.05.088

    [22]

    王亚东, 赵建忠, 高强, 等. 石英砂介质中甲烷水合物生成过程和相平衡的实验研究[J]. 石油与天然气化工, 2018, 47(6):44-49 doi: 10.3969/j.issn.1007-3426.2018.06.009

    WANG Yadong, ZHAO Jianzhong, GAO Qiang, et al. Experimental study on the formation and phase equilibria of methane hydrate in quartz sand media[J]. Chemical Engineering of Oil and Gas, 2018, 47(6):44-49.] doi: 10.3969/j.issn.1007-3426.2018.06.009

    [23]

    Jin Y, Konno Y, Nagao J. Growth of methane clathrate hydrates in porous media[J]. Energy & Fuels, 2012, 26(4):2242-2247.

    [24]

    Guo G J, Li M, Zhang Y G, et al. Why can water cages adsorb aqueous methane? A potential of mean force calculation on hydrate nucleation mechanisms[J]. Physical Chemistry Chemical Physics, 2009, 11(44):10427-10437. doi: 10.1039/b913898f

  • 加载中

(10)

(2)

计量
  • 文章访问数:  73
  • PDF下载数:  9
  • 施引文献:  0
出版历程
收稿日期:  2024-05-30
修回日期:  2024-07-15
刊出日期:  2025-04-28

目录