Riverine primary productivity dominated the source of particulate organic carbon in Liaohe River System
-
摘要:
作为关键陆源物质,河流颗粒态有机碳(POC)的来源、输运及入海通量是当前关注的热点问题。然而,受水库等人类活动影响,河流颗粒碳的组分正在发生变化,这势必给陆地和海洋间碳的源汇过程和生物地球化学循环机制带来深刻影响。围绕上述问题,以辽河水系为研究区,于2023年7月沿河采集14个样品,将生物地球化学指标分析与最新的基因检测技术相结合,分析了POC含量和来源在流域内的变化规律,探讨了初级生产力主导辽河水系POC来源的可能机制,对比和总结了中国典型河流POC来源改变的共同趋势。研究结果显示,初级生产力是当前辽河水系POC的最主要来源,其中共球藻纲和蓝藻门生物是最主要贡献者;动物可能也是POC的重要来源,未来在分析POC来源时需加以重视;水库拦蓄效应可改变河流浮游生物的组成,进而对河流POC的来源产生重要影响;长江、黄河、珠江以及台湾岛和海南岛的诸多河流POC的浮游生物来源比例也在显著增加。上述趋势性变化,可能导致POC在流域-河口-陆架间的源汇格局发生剧烈变化,需要持续关注。
Abstract:As a crucial terrestrial source, the source, transport, and flux of riverine particulate organic carbon (POC) to the ocean are currently of significant interest. However, human activities, such as the construction of reservoirs, are changing the composition of river POC, potentially impacting the source-sink processes between land and sea, as well as biogeochemical cycles. To address this issue, the Liaohe River System was selected for this study, in which 14 samples were collected in July 2023, and the trends in POC content and sources within the drainage basin were analyzed using biogeochemical methods and gene detection technology. The potential mechanisms by which riverine primary production (Rpp) has become a dominant POC source in the Liaohe River System was explored and those in other typical Chinese rivers were compared. Results indicate that the Rpp was the predominant source of POC in the Liaohe River System, and Trebouxiophyceae and Cyanobacteria were the primary contributors. Additionally, animals may also play a significant role as POC sources in rivers, warranting further attention in future analyses. The retention effect in reservoirs could alter the composition of river plankton and thus significantly affect the POC sources. Moreover, the proportions of plankton-derived POC in the Changjiang River, Huanghe River, and Zhujiang River in the continent, and rivers in Taiwan and Hainan islands have also seen notable increases. These changing trends could lead to substantial shifts in the patterns of POC sources and sinks across watersheds, estuaries, and continental shelves, meriting considerable attention.
-
-
表 2 辽河水系SPM元素特征、同位素特征和POC来源分析
Table 2. Elemental and isotopic characteristics and POC source analysis of SPM in Liaohe River system
编号 流系 PN /% POC /% C/N Chla /(μg/L) Δ14C /‰ 14C年龄/aBP δ13C /‰ POC来源占比/% 岩石 土壤 植被 Rpp LH2 辽河 0.16 1.30 7.92 0.02 LH7 辽河 0.17 1.35 8.11 0.29 LH8 辽河 0.13 1.01 7.66 0.26 −153.74 1270 −23.9 1.55 25.89 19.60 52.96 LH9 辽河 0.14 1.19 8.62 0.33 −269.35 2450 −22.9 8.69 43.88 9.91 37.51 LH10 辽河 0.13 1.23 9.33 0.47 −291.74 2700 −23.3 12.33 42.19 13.63 31.85 LH11 辽河 0.63 3.92 6.19 0.83 −248.13 2220 −23.6 7.88 21.14 3.28 67.69 LH12 辽河 0.25 2.18 8.60 N.D. −250.00 2240 −23.5 7.21 41.83 11.45 39.52 LH13 辽河 0.13 1.10 8.36 0.07 −296.14 2750 −22.1 11.28 44.05 7.59 37.07 LH14 辽河 0.12 0.97 8.09 0.21 −269.35 2450 −22.8 8.53 41.34 7.68 42.45 LH15 辽河 0.10 0.80 8.25 0.32 LH16 太子河(大辽河) 0.81 4.87 5.98 2.25 −226.29 1990 −27.3 7.09 7.55 4.99 80.37 LH17 浑河(大辽河) 0.72 4.26 5.92 3.78 −144.21 1180 −25.7 1.34 7.65 8.11 82.90 LH18 大辽河 0.25 1.87 7.41 1.10 −261.12 2360 −26.2 0.57 1.25 95.73 2.45 LH19 大凌河 0.20 1.88 9.31 0.29 表中“N.D.”代表未测出相关指标。 表 1 来自岩石、土壤、植被和Rpp的POC的δ13C、Δ14C和N/C端元值(用平均值±标准差表示)
Table 1. δ13C, Δ14C, and N/C endmembers of POC from rocks, soils, vegetation, and Rpp (expressed as mean ± standard deviation)
来源 δ13C/‰ Δ14C/‰ N/C值 岩石 −22.4±4.9 1000 ±00.045±0.066 土壤 −21.8±4.9 276±30 0.075±0.018 植被 −28.5±2.0 0±50 0.038±0.019 Rpp −28.0±1.1 −161±22 0.184±0.011 注:由于辽河数据有限,部分端元值参考长江[22]。 表 3 选定指标与生物门类的相关关系
Table 3. Correlation between selected indicators and biological categories
POC C/N Chla Δ14C δ13C Rpp 绿藻纲 共球藻纲 动物界 蓝藻门 POC 1 −0.87** 0.79** 0.42 −0.71* 0.75* 0.33 0.68* 0.70* 0.6 C/N −0.87** 1 −0.77** −0.61 0.70* −0.86** −0.42 −0.59 −0.63 −0.48 Chla 0.79** −0.77** 1 0.61 −0.75* 0.80** 0.34 0.45 0.61 0.38 Δ14C 0.42 −0.61 0.61 1 −0.47 0.51 0.1 0.19 0.24 0.13 δ13C −0.71* 0.70* −0.75* −0.47 1 −0.62 −0.80** −0.85** −0.91*** −0.65* Rpp 0.75* −0.86** 0.80** 0.51 −0.62 1 0.13 0.61 0.65* 0.63 绿藻纲 0.33 −0.42 0.34 0.1 −0.80** 0.13 1 0.65* 0.67* 0.34 共球藻纲 0.68* −0.59 0.45 0.19 −0.85** 0.61 0.65* 1 0.96*** 0.91*** 动物界 0.70* −0.63 0.61 0.24 −0.91*** 0.65* 0.67* 0.96*** 1 0.89*** 蓝藻门 0.6 −0.48 0.38 0.13 −0.65* 0.63 0.34 0.91*** 0.89*** 1 注:由于PN和POC具有高度相关性(R=1; P<0.001),所以进一步分析时没有计算PN与其他数据的关系。 表 4 中国主要河流的悬浮颗粒物的部分特征
Table 4. Characteristics of SPM in major rivers of China
河流和流域 POC/% C/N值 δ13C/‰ Δ14C年龄/aBP 平均值 范围 平均值 范围 平均值 范围 平均值 范围 辽河 上游 1.30 N.D. 7.92 N.D. N.D. N.D. N.D. N.D. 中游 1.74 1.01~3.92 7.98 6.19~8.62 −23.43 −23.9~−22.9 2160 1270 ~2700 下游 1.26 0.80~2.18 8.32 8.09~8.60 −22.80 −23.5~−22.1 2480 2240 ~2750 平均 1.5 8.11 −23.19 2297 大辽河 3.67 1.87~4.87 6.44 5.92~7.41 −23.11 −27.3~−25.7 1843 1180 ~2360 黄河[58, 72-80] 中游 0.31 0.14~0.48 7.45 6.60~7.60 −24.16 −24.8~−23.3 5362 3650 ~7770 下游 0.49 0.13~1.78 7.12 5.80~10.5 −24.77 −27.4~−22.6 4868 3100 ~7160 平均 0.40 7.28 −24.47 5115 长江[22, 81] 上游 1.42 1.03~2.10 7.83 6.03~8.82 −25.65 −26.7~−24.3 3271 2620 ~4810 中游 1.48 1.41~1.59 7.59 7.37~7.82 −26.39 −27.3~−25.8 2816 2620 ~3040 下游 1.07 1.03~1.12 7.67 7.06~8.67 −26.03 −26.8~−25.2 2850 2480 ~3380 平均 1.36 7.74 −26.02 3069 珠江[69-70, 82-86] 上游 0.65 0.12~0.95 N.D. N.D. −25.90 −27.4~−24.8 2076 1040 ~3085 中游 0.33 0.09~0.81 N.D. N.D. −25.50 −28.6~−18.8 2731 760~ 3730 下游 0.39 0.24~0.52 6.55 6.20~6.90 −28.50 −31.8~−21.9 1908 985~ 2800 平均 0.46 6.55 −25.77 2331 台湾岛[87-88] 0.76 0.30~2.77 6.29 5.20~9.30 −24.31 −28.1~−22.0 N.D. N.D. 海南岛[89-90] 3.42 1.80~13.57 6.78 4.30~36.00 −25.96 −29.5~−19.0 N.D. N.D. 表格中长江数据部分来自未发表研究,N.D.代表没有相应数据。 表 5 中国主要河流POC入海通量及不同来源占比
Table 5. POC flux and percentage content of different sources from major rivers in China
POC通量/(Tg/a) POC来源/% 岩石 土壤 植被 Rpp 辽河 0.03 8.21 37.19 10.45 44.15 大辽河 0.08 3.00 5.48 36.28 55.24 黄河 0.47 34.08 14.96 8.81 42.15 长江 2.15 14.38 20.74 14.33 50.55 珠江 0.51 5.35 10.56 9.68 74.41 注:由于大辽河干流缺少控口水文站,因此使用太子河和浑河POC通量之和代表。 -
[1] Drake T W, Raymond P A, Spencer R G M. Terrestrial carbon inputs to inland waters: a current synthesis of estimates and uncertainty[J]. Limnology and Oceanography Letters, 2018, 3(3):132-142. doi: 10.1002/lol2.10055
[2] Mckee B. The transport, transformation, and fate of carbon in river-dominated ocean margins[C]//Proceedings of the RiOMar Workshop New Orleans: Tulane University, 2003.
[3] Galy V, Peucker-Ehrenbrink B, Eglinton T. Global carbon export from the terrestrial biosphere controlled by erosion[J]. Nature, 2015, 521(7551):204-207. doi: 10.1038/nature14400
[4] Ludwig W, Probst J L, Kempe S. Predicting the oceanic input of organic carbon by continental erosion[J]. Global Biogeochemical Cycles, 1996, 10(1):23-41. doi: 10.1029/95GB02925
[5] Schlünz B, Schneider R R. Transport of terrestrial organic carbon to the oceans by rivers: re-estimating flux-and burial rates[J]. International Journal of Earth Sciences, 2000, 88(4):599-606. doi: 10.1007/s005310050290
[6] Boyd P W, Claustre H, Levy M, et al. Multi-faceted particle pumps drive carbon sequestration in the ocean[J]. Nature, 2019, 568(7752):327-335. doi: 10.1038/s41586-019-1098-2
[7] Liu D, Tian L Q, Jiang X T, et al. Human activities changed organic carbon transport in Chinese rivers during 2004-2018[J]. Water Research, 2022, 222:118872. doi: 10.1016/j.watres.2022.118872
[8] Repasch M, Scheingross J S, Hovius N, et al. Fluvial organic carbon cycling regulated by sediment transit time and mineral protection[J]. Nature Geoscience, 2021, 14(11):842-848. doi: 10.1038/s41561-021-00845-7
[9] Bouchez J, Galy V, Hilton R G, et al. Source, transport and fluxes of Amazon River particulate organic carbon: insights from river sediment depth-profiles[J]. Geochimica et Cosmochimica Acta, 2014, 133:280-298. doi: 10.1016/j.gca.2014.02.032
[10] Hilton R G. Climate regulates the erosional carbon export from the terrestrial biosphere[J]. Geomorphology, 2017, 277:118-132. doi: 10.1016/j.geomorph.2016.03.028
[11] van Hoek W J, Vilmin L, Beusen A H W, et al. CARBON-DISC 1.0-A coupled, process-based model of global in-stream carbon biogeochemistry[J]. Geoscientific Model Development Discussions, 2019: 1-31.
[12] Dudgeon D, Arthington A H, Gessner M O, et al. Freshwater biodiversity: importance, threats, status and conservation challenges[J]. Biological Reviews, 2006, 81(2):163-182. doi: 10.1017/S1464793105006950
[13] Lin B Z, Liu Z F, Eglinton T I, et al. Perspectives on provenance and alteration of suspended and sedimentary organic matter in the subtropical Pearl River system, South China[J]. Geochimica et Cosmochimica Acta, 2019, 259:270-287. doi: 10.1016/j.gca.2019.06.018
[14] Mendonça R, Kosten S, Sobek S, et al. Hydroelectric carbon sequestration[J]. Nature Geoscience, 2012, 5(12):838-840. doi: 10.1038/ngeo1653
[15] Battin T J, Lauerwald R, Bernhardt E S, et al. River ecosystem metabolism and carbon biogeochemistry in a changing world[J]. Nature, 2023, 613(7944):449-459. doi: 10.1038/s41586-022-05500-8
[16] Bauer J E, Cai W J, Raymond P A, et al. The changing carbon cycle of the coastal ocean[J]. Nature, 2013, 504(7478):61-70. doi: 10.1038/nature12857
[17] Syvitski J, Ángel J R, Saito Y, et al. Earth’s sediment cycle during the Anthropocene[J]. Nature Reviews Earth & Environment, 2022, 3(3):179-196.
[18] Li G, Wang X T, Yang Z F, et al. Dam-triggered organic carbon sequestration makes the Changjiang (Yangtze) river basin (China) a significant carbon sink[J]. Journal of Geophysical Research: Biogeosciences, 2015, 120(1):39-53. doi: 10.1002/2014JG002646
[19] Engel F, Attermeyer K, AyalA A I, et al. Phytoplankton gross primary production increases along cascading impoundments in a temperate, low-discharge river: insights from high frequency water quality monitoring[J]. Scientific Reports, 2019, 9(1):6701. doi: 10.1038/s41598-019-43008-w
[20] Kang S J, Kim J H, Kim D, et al. Temporal variation in riverine organic carbon concentrations and fluxes in two contrasting estuary systems: geum and Seomjin, South Korea[J]. Environment International, 2019, 133:105126. doi: 10.1016/j.envint.2019.105126
[21] Kronvang B, Hejzlar J, Boers P, et al. Nutrient retention handbook. Software manual for EUROHARP-NUTRET and scientific review on nutrient retention[R]. Oslo, Norway: Norwegian Institute for Water Research, 2005.
[22] Lyu J, Shi Y, Zhang S, et al. The reservoirs gradually changed the distribution, source, and flux of particulate organic carbon within the Changjiang River catchment[J]. Journal of Hydrology, 2023, 623:129808. doi: 10.1016/j.jhydrol.2023.129808
[23] Burford M A, O'Donohue M J. A comparison of phytoplankton community assemblages in artificially and naturally mixed subtropical water reservoirs[J]. Freshwater Biology, 2006, 51(5):973-982. doi: 10.1111/j.1365-2427.2006.01536.x
[24] Xiao Y, Li Z, Guo J S, et al. Succession of phytoplankton assemblages in response to large-scale reservoir operation: a case study in a tributary of the Three Gorges Reservoir, China[J]. Environmental Monitoring and Assessment, 2016, 188(3):153. doi: 10.1007/s10661-016-5132-7
[25] Li Z, Lu L H, Guo J S, et al. Responses of spatial-temporal dynamics of bacterioplankton community to large-scale reservoir operation: a case study in the Three Gorges Reservoir, China[J]. Scientific Reports, 2017, 7(1):42469. doi: 10.1038/srep42469
[26] Li Y L, Liu K, Li L, et al. Relationship of land use/cover on water quality in the Liao River basin, China[J]. Procedia Environmental Sciences, 2012, 13:1484-1493. doi: 10.1016/j.proenv.2012.01.140
[27] 曲凤垚, 李瑞. 辽河干流主要水库工程防洪作用与防洪效果分析[J]. 水利科学与寒区工程, 2021, 4(5):151-155 doi: 10.3969/j.issn.2096-5419.2021.05.035
QU Fengyao, LI Rui. Analysis on flood control function and effect of Liaohe main reservoir project[J]. Hydro Science and Cold Zone Engineering, 2021, 4(5):151-155.] doi: 10.3969/j.issn.2096-5419.2021.05.035
[28] Yue F J, Li S L, Liu C Q, et al. Using dual isotopes to evaluate sources and transformation of nitrogen in the Liao River, northeast China[J]. Applied Geochemistry, 2013, 36:1-9. doi: 10.1016/j.apgeochem.2013.06.009
[29] 翁巧然, 吕旭波, 孙明东, 等. 基于控制单元划分的大辽河流域污染物空间分布及来源解析[J]. 环境工程技术学报, 2023, 13(1):171-179 doi: 10.12153/j.issn.1674-991X.20210573
WENG Qiaoran, LYU Xubo, SUN Mingdong, et al. Spatial distribution and source analysis of pollutants in Daliao River Basin based on control unit division[J]. Journal of Environmental Engineering Technology, 2023, 13(1):171-179.] doi: 10.12153/j.issn.1674-991X.20210573
[30] 杜甫, 闫晓惠, 陈小强. 基于Delft3D的大辽河水动力水质数值模拟[J]. 水电能源科学, 2024, 42(1):32-35,161
DU Fu, YAN Xiaohui, CHEN Xiaoqiang. Numerical simulation of hydrodynamic water quality of Daliao River based on Delft3D[J]. Water Resources and Power, 2024, 42(1):32-35,161.]
[31] 许晓艳, 高世斌. 辽河流域洪水河库联合调度实践探析[J]. 东北水利水电, 2022, 40(1):42-43,49,72 doi: 10.3969/j.issn.1002-0624.2022.1.dbslsd202201016
XU Xiaoyan, GAO Shibin. Practice analysis on combined flood and river storage operation in Liaohe River Basin[J]. Water Resources & Hydropower of Northeast China, 2022, 40(1):42-43,49,72.] doi: 10.3969/j.issn.1002-0624.2022.1.dbslsd202201016
[32] 杨赫男. 大凌河流域河流中氮磷变化特征分析[J]. 水土保持应用技术, 2024(4):49-52 doi: 10.3969/j.issn.1673-5366.2024.04.20
YANG Henan. Variation characteristics of nitrogen and phosphorus in the Daling River basin[J]. Technology of Soil and Water Conservation, 2024(4):49-52.] doi: 10.3969/j.issn.1673-5366.2024.04.20
[33] 董浩. 小凌河流域土壤侵蚀强度空间分布特征研究[J]. 水土保持应用技术, 2024(4):9-10 doi: 10.3969/j.issn.1673-5366.2024.04.04
DONG Hao. Spatial distribution characteristics of soil erosion intensity in Xiaoling River Basin[J]. Technology of Soil and Water Conservation, 2024(4):9-10.] doi: 10.3969/j.issn.1673-5366.2024.04.04
[34] Xu S, Yue F J, Li S L, et al. Carbon and nitrogen isotope constraints on source and variation of particulate organic matter in high-latitude agricultural rivers, Northeast China[J]. Journal of Cleaner Production, 2021, 321:128974. doi: 10.1016/j.jclepro.2021.128974
[35] Duan X W, Xie Y, Ou T H, et al. Effects of soil erosion on long-term soil productivity in the black soil region of northeastern China[J]. Catena, 2011, 87(2):268-275. doi: 10.1016/j.catena.2011.06.012
[36] Lu L, Cheng H G, Pu X, et al. Identifying organic matter sources using isotopic ratios in a watershed impacted by intensive agricultural activities in Northeast China[J]. Agriculture, Ecosystems & Environment, 2016, 222: 48-59.
[37] 水电知识网. 辽河[Z]. 2019
Hydropower knowledge Network. Liaohe River[Z]. 2019.]
[38] Xing L, Zhang H L, Yuan Z N, et al. Terrestrial and marine biomarker estimates of organic matter sources and distributions in surface sediments from the East China Sea shelf[J]. Continental Shelf Research, 2011, 31(10):1106-1115. doi: 10.1016/j.csr.2011.04.003
[39] Andersson A, Deng J J, Du K, et al. Regionally-varying combustion sources of the january 2013 severe haze events over eastern China[J]. Environmental Science & Technology, 2015, 49(4):2038-2043.
[40] Chen S F, Zhou Y Q, Chen Y R, et al. fastp: an ultra-fast all-in-one FASTQ preprocessor[J]. Bioinformatics, 2018, 34(17):884-890. doi: 10.1093/bioinformatics/bty560
[41] Magoč T, Salzberg S L. FLASH: fast length adjustment of short reads to improve genome assemblies[J]. Bioinformatics, 2011, 27(21):2957-2963. doi: 10.1093/bioinformatics/btr507
[42] Wang Q, Garrity G M, Tiedje J M, et al. Naive bayesian classifier for rapid assignment of rrna sequences into the new bacterial taxonomy[J]. Applied and Environmental Microbiology, 2007, 73(16):5261-5267. doi: 10.1128/AEM.00062-07
[43] Stackebrandt E, Goebel B M. Taxonomic note: a place for DNA-DNA reassociation and 16S rRNA sequence analysis in the present species definition in bacteriology[J]. International Journal of Systematic and Evolutionary Microbiology, 1994, 44(4):846-849. doi: 10.1099/00207713-44-4-846
[44] Edgar R C. UPARSE: highly accurate OTU sequences from microbial amplicon reads[J]. Nature Methods, 2013, 10(10):996-998. doi: 10.1038/nmeth.2604
[45] Douglas G M, Maffei V J, Zaneveld J R, et al. PICRUSt2 for prediction of metagenome functions[J]. Nature Biotechnology, 2020, 38(6):685-688. doi: 10.1038/s41587-020-0548-6
[46] Ren Y, Yu G, Shi C P, et al. Majorbio cloud: a one-stop, comprehensive bioinformatic platform for multiomics analyses[J]. iMeta, 2022, 1(2):e12. doi: 10.1002/imt2.12
[47] Schwestermann T, Eglinton T I, Haghipour N, et al. Event-dominated transport, provenance, and burial of organic carbon in the Japan Trench[J]. Earth and Planetary Science Letters, 2021, 563:116870. doi: 10.1016/j.jpgl.2021.116870
[48] Hedges J I, Clark W A, Quay P D, et al. Compositions and fluxes of particulate organic material in the Amazon River1[J]. Limnology and Oceanography, 1986, 31(4):717-738. doi: 10.4319/lo.1986.31.4.0717
[49] Mayer L M, Schick L L, Hardy K R, et al. Organic matter in small mesopores in sediments and soils[J]. Geochimica et Cosmochimica Acta, 2004, 68(19):3863-3872. doi: 10.1016/j.gca.2004.03.019
[50] Goni M A, Monacci N, Gisewhite R, et al. Terrigenous organic matter in sediments from the Fly River delta-clinoform system (Papua New Guinea)[J]. Journal of Geophysical Research: Earth Surface, 2008, 113(F1):F01S10.
[51] Lamb A L, Wilson G P, Leng M J. A review of coastal palaeoclimate and relative sea-level reconstructions using δ13C and C/N ratios in organic material[J]. Earth-Science Reviews, 2006, 75(1-4):29-57. doi: 10.1016/j.earscirev.2005.10.003
[52] Wei B B, Mollenhauer G, Hefter J, et al. Dispersal and aging of terrigenous organic matter in the Pearl River Estuary and the northern South China Sea Shelf[J]. Geochimica et Cosmochimica Acta, 2020, 282:324-339. doi: 10.1016/j.gca.2020.04.032
[53] Yu F L, Zong Y Q, Lloyd J M, et al. Bulk organic δ13C and C/N as indicators for sediment sources in the Pearl River delta and estuary, southern China[J]. Estuarine, Coastal and Shelf Science, 2010, 87(4):618-630. doi: 10.1016/j.ecss.2010.02.018
[54] Hedges J I, Cowie G L, Richey J E, et al. Origins and processing of organic matter in the Amazon River as indicated by carbohydrates and amino acids[J]. Limnology and Oceanography, 1994, 39(4):743-761. doi: 10.4319/lo.1994.39.4.0743
[55] Qu Y X, Jin Z D, Wang J, et al. The sources and seasonal fluxes of particulate organic carbon in the Yellow River[J]. Earth Surface Processes and Landforms, 2020, 45(9):2004-2019. doi: 10.1002/esp.4861
[56] Wu Y, Zhang J, Liu S M, et al. Sources and distribution of carbon within the Yangtze River system[J]. Estuarine, Coastal and Shelf Science, 2007, 71(1-2):13-25. doi: 10.1016/j.ecss.2006.08.016
[57] 中华人民共和国水利部. 2022年全国水利发展统计公报[M]. 北京: 中国水利水电出版社, 2022
Ministry of Water Resources of the People’s Republic of China. 2022 National Water Conservancy Development Statistical Bulletin[M]. Beijing: China Water & Power Press, 2022.]
[58] Lu T A, Wang H J, Wu X, et al. Transport of particulate organic carbon in the lower Yellow River (Huanghe) as modulated by dam operation[J]. Global and Planetary Change, 2022, 217:103948. doi: 10.1016/j.gloplacha.2022.103948
[59] Huisman J, Codd G A, Paerl H W, et al. Cyanobacterial blooms[J]. Nature Reviews Microbiology, 2018, 16(8):471-483. doi: 10.1038/s41579-018-0040-1
[60] Imtiazy M N, Hunter K, Sereda J, et al. Effects of regional climate, hydrology and river impoundment on long-term patterns and characteristics of dissolved organic matter in semi-arid northern plains rivers[J]. Science of The Total Environment, 2023, 870:161961. doi: 10.1016/j.scitotenv.2023.161961
[61] Pradhan U K, Wu Y, Shirodkar P V, et al. Multi-proxy evidence for compositional change of organic matter in the largest tropical (peninsular) river basin of India[J]. Journal of Hydrology, 2014, 519:999-1009. doi: 10.1016/j.jhydrol.2014.08.018
[62] Voss B M, Wickland K P, Aiken G R, et al. Biological and land use controls on the isotopic composition of aquatic carbon in the Upper Mississippi River Basin[J]. Global Biogeochemical Cycles, 2017, 31(8):1271-1288. doi: 10.1002/2017GB005699
[63] Wang H, Ran X B, Bouwman A F, et al. Damming alters the particulate organic carbon sources, burial, export and estuarine biogeochemistry of rivers[J]. Journal of Hydrology, 2022, 607:127525. doi: 10.1016/j.jhydrol.2022.127525
[64] Wang H J, Yang Z S, Saito Y, et al. Stepwise decreases of the Huanghe (Yellow River) sediment load (1950-2005): impacts of climate change and human activities[J]. Global and Planetary Change, 2007, 57(3-4):331-354. doi: 10.1016/j.gloplacha.2007.01.003
[65] Dethier E N, Renshaw C E, Magilligan F J. Rapid changes to global river suspended sediment flux by humans[J]. Science, 2022, 376(6600):1447-1452. doi: 10.1126/science.abn7980
[66] Ran X B, Wu W T, Song Z L, et al. Decadal change in dissolved silicate concentration and flux in the Changjiang (Yangtze) River[J]. Science of The Total Environment, 2022, 839:156266. doi: 10.1016/j.scitotenv.2022.156266
[67] Maavara T, Chen Q W, Van Meter K, et al. River dam impacts on biogeochemical cycling[J]. Nature Reviews Earth & Environment, 2020, 1(2):103-116.
[68] Raymond P A, Bauer J E, Caraco N F, et al. Controls on the variability of organic matter and dissolved inorganic carbon ages in Northeast US rivers[J]. Marine Chemistry, 2004, 92(1-4):353-366. doi: 10.1016/j.marchem.2004.06.036
[69] Yang M X, Liu Z H, Sun H L, et al. Organic carbon source tracing and DIC fertilization effect in the Pearl River: insights from lipid biomarker and geochemical analysis[J]. Applied Geochemistry, 2016, 73:132-141. doi: 10.1016/j.apgeochem.2016.08.008
[70] Liu Z H, Zhao M, Sun H L, et al. “Old” carbon entering the South China Sea from the carbonate-rich Pearl River Basin: coupled action of carbonate weathering and aquatic photosynthesis[J]. Applied Geochemistry, 2017, 78:96-104. doi: 10.1016/j.apgeochem.2016.12.014
[71] Prats J, Armengol J, Marcé R, et al. Dams and reservoirs in the lower ebro river and its effects on the river thermal cycle[M]//Barceló D, Petrovic M. The Ebro River Basin. Berlin, Heidelberg: Springer, 2010: 77-95.
[72] Ge T T, Xue Y J, Jiang X Y, et al. Sources and radiocarbon ages of organic carbon in different grain size fractions of Yellow River-transported particles and coastal sediments[J]. Chemical Geology, 2020, 534:119452. doi: 10.1016/j.chemgeo.2019.119452
[73] Hu B Q, Li J, Bi N S, et al. Effect of human-controlled hydrological regime on the source, transport, and flux of particulate organic carbon from the lower Huanghe (Yellow River)[J]. Earth Surface Processes and Landforms, 2015, 40(8):1029-1042. doi: 10.1002/esp.3702
[74] Tao S Q, Eglinton T I, Montluçon D B, et al. Pre-aged soil organic carbon as a major component of the Yellow River suspended load: regional significance and global relevance[J]. Earth and Planetary Science Letters, 2015, 414:77-86. doi: 10.1016/j.jpgl.2015.01.004
[75] Tao S Q, Eglinton T I, Zhang L, et al. Temporal variability in composition and fluxes of Yellow River particulate organic matter[J]. Limnology and Oceanography, 2018, 63(S1):S119-S141.
[76] Wang S J, Yan Y X, Li Y K. Spatial and temporal variations of suspended sediment deposition in the alluvial reach of the upper Yellow River from 1952 to 2007[J]. Catena, 2012, 92:30-37. doi: 10.1016/j.catena.2011.11.012
[77] Xue Y J, Zou L, Ge T T, et al. Mobilization and export of millennial-aged organic carbon by the Yellow River[J]. Limnology and Oceanography, 2017, 62(S1):S95-S111.
[78] Yu M, Eglinton T I, Haghipour N, et al. Molecular isotopic insights into hydrodynamic controls on fluvial suspended particulate organic matter transport[J]. Geochimica et Cosmochimica Acta, 2019, 262:78-91. doi: 10.1016/j.gca.2019.07.040
[79] Ke Y T, Calmels D, Bouchez J, et al. Channel cross-section heterogeneity of particulate organic carbon transport in the Huanghe[J]. Earth Surface Dynamics, 2023, 12(1):347-365.
[80] Lu T A, Wang H J, Hu L M, et al. Dynamic transport of particulate organic carbon in the Yellow River during dam-orientated Water-Sediment Regulation[J]. Marine Geology, 2023, 460:107054. doi: 10.1016/j.margeo.2023.107054
[81] Wang Z H, Bai Y, He X Q, et al. Assessing the effect of strong wind events on the transport of particulate organic carbon in the Changjiang River estuary over the last 40 years[J]. Remote Sensing of Environment, 2023, 288:113477. doi: 10.1016/j.rse.2023.113477
[82] Wei X G, Yi W X, Shen C D, et al. 14C as a tool for evaluating riverine POC sources and erosion of the Zhujiang (Pearl River) drainage basin, South China[J]. Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms, 2010, 268(7-8):1094-1097. doi: 10.1016/j.nimb.2009.10.107
[83] Wei X G, Shen C D, Li N L, et al. Apparent ages of suspended sediment and soil erosion of the Pearl River (Zhujiang) drainage basin[J]. Chinese Science Bulletin, 2010, 55(15):1547-1553. doi: 10.1007/s11434-010-3067-x
[84] Guo W, Ye F, Xu S D, et al. Seasonal variation in sources and processing of particulate organic carbon in the Pearl River estuary, South China[J]. Estuarine, Coastal and Shelf Science, 2015, 167:540-548. doi: 10.1016/j.ecss.2015.11.004
[85] Liu D, Bai Y, He X Q, et al. Changes in riverine organic carbon input to the ocean from mainland China over the past 60 years[J]. Environment International, 2020, 134:105258. doi: 10.1016/j.envint.2019.105258
[86] He B Y, Dai M H, Zhai W D, et al. Distribution, degradation and dynamics of dissolved organic carbon and its major compound classes in the Pearl River estuary, China[J]. Marine Chemistry, 2010, 119(1-4):52-64. doi: 10.1016/j.marchem.2009.12.006
[87] Hilton R G, Galy A, Hovius N, et al. The isotopic composition of particulate organic carbon in mountain rivers of Taiwan[J]. Geochimica et Cosmochimica Acta, 2010, 74(11):3164-3181. doi: 10.1016/j.gca.2010.03.004
[88] Bao H Y, Lee T Y, Huang J C, et al. Importance of Oceanian small mountainous rivers (SMRs) in global land-to-ocean output of lignin and modern biospheric carbon[J]. Scientific Reports, 2015, 5(1):16217. doi: 10.1038/srep16217
[89] Wu Y, Bao H Y, Unger D, et al. Biogeochemical behavior of organic carbon in a small tropical river and estuary, Hainan, China[J]. Continental Shelf Research, 2013, 57:32-43. doi: 10.1016/j.csr.2012.07.017
[90] Pradhan U K, Wu Y, Wang X N, et al. Signals of typhoon induced hydrologic alteration in particulate organic matter from largest tropical river system of Hainan Island, South China Sea[J]. Journal of Hydrology, 2016, 534:553-566. doi: 10.1016/j.jhydrol.2016.01.046
[91] Galy V V, Eglinton T I. Protracted storage of biospheric carbon in the Ganges-Brahmaputra basin[J]. Nature Geoscience, 2011, 4(12):843-847. doi: 10.1038/ngeo1293
[92] Keller P S, Marcé R, Obrador B, et al. Global carbon budget of reservoirs is overturned by the quantification of drawdown areas[J]. Nature Geoscience, 2021, 14(6):402-408. doi: 10.1038/s41561-021-00734-z
[93] Maavara T, Lauerwald R, Regnier P, et al. Global perturbation of organic carbon cycling by river damming[J]. Nature Communications, 2017, 8(1):15347. doi: 10.1038/ncomms15347
[94] Schädel C, Schuur E A G, Bracho R, et al. Circumpolar assessment of permafrost C quality and its vulnerability over time using long-term incubation data[J]. Global Change Biology, 2014, 20(2):641-652. doi: 10.1111/gcb.12417
[95] Cotrufo M F, Soong J L, Horton A J, et al. Formation of soil organic matter via biochemical and physical pathways of litter mass loss[J]. Nature Geoscience, 2015, 8(10):776-779. doi: 10.1038/ngeo2520
[96] Syvitski J P M, Vörösmarty C J, Kettner A J, et al. Impact of humans on the flux of terrestrial sediment to the global coastal ocean[J]. Science, 2005, 308(5720):376-380. doi: 10.1126/science.1109454
[97] Bianchi T S, Cui X Q, Blair N E, et al. Centers of organic carbon burial and oxidation at the land-ocean interface[J]. Organic Geochemistry, 2018, 115:138-155. doi: 10.1016/j.orggeochem.2017.09.008
[98] Scavia D, Field J C, Boesch D F, et al. Climate change impacts on U. S. coastal and marine ecosystems[J]. Estuaries, 2002, 25(2):149-164. doi: 10.1007/BF02691304
-