台风“莫拉克”(2009)对浙闽沿岸泥质中心沉积有机质组成与分布的影响

李云海, 林云鹏, 王亮, 龙邹霞, 郑斌鑫. 台风“莫拉克”(2009)对浙闽沿岸泥质中心沉积有机质组成与分布的影响[J]. 海洋地质与第四纪地质, 2024, 44(5): 27-37. doi: 10.16562/j.cnki.0256-1492.2024071001
引用本文: 李云海, 林云鹏, 王亮, 龙邹霞, 郑斌鑫. 台风“莫拉克”(2009)对浙闽沿岸泥质中心沉积有机质组成与分布的影响[J]. 海洋地质与第四纪地质, 2024, 44(5): 27-37. doi: 10.16562/j.cnki.0256-1492.2024071001
LI Yunhai, LIN Yunpeng, WANG Liang, LONG Zouxia, ZHENG Binxin. Impact of Typhoon Morakot (2009) on the compositions and distributions of sedimentary organic matter in the Mud Depo-center of Zhejiang-Fujian Coast[J]. Marine Geology & Quaternary Geology, 2024, 44(5): 27-37. doi: 10.16562/j.cnki.0256-1492.2024071001
Citation: LI Yunhai, LIN Yunpeng, WANG Liang, LONG Zouxia, ZHENG Binxin. Impact of Typhoon Morakot (2009) on the compositions and distributions of sedimentary organic matter in the Mud Depo-center of Zhejiang-Fujian Coast[J]. Marine Geology & Quaternary Geology, 2024, 44(5): 27-37. doi: 10.16562/j.cnki.0256-1492.2024071001

台风“莫拉克”(2009)对浙闽沿岸泥质中心沉积有机质组成与分布的影响

  • 基金项目: 国家自然科学基金面上项目“厦门湾海洋微塑料污染演变及其物源耦合”(42176220), “台风对泉州湾入海污染物“从源到汇”过程的影响研究”(41976050)
详细信息
    作者简介: 李云海(1980—),男,博士,研究员,从事现代海洋沉积过程研究,E-mail:liyunhai@tio.org.cn
  • 中图分类号: P736

Impact of Typhoon Morakot (2009) on the compositions and distributions of sedimentary organic matter in the Mud Depo-center of Zhejiang-Fujian Coast

  • 台风是天气尺度上对海洋环境影响最大的海气相互作用过程之一,在短时间内会对影响海域的海洋环境(包括沉积有机质等)产生巨大的影响。本文基于夏季台风前、后采集的浙闽沿岸泥质中心沉积物的粒度、总有机碳(TOC)、总氮(TN)以及碳同位素组成(δ13C)的测试结果,分析了台风“莫拉克”(2009)对研究区沉积有机质来源及分布的影响,对比了台风“莫拉克”与其他不同路径的台风对沉积有机质分布影响的差异,探讨了影响差异的机制。结果显示,台风“莫拉克”(2009)对浙闽沿岸泥质区沉积物中TOC的来源和分布产生了显著影响。端元分析结果表明,浙闽沿岸泥质中心沉积物中有机碳主要来源于长江三角洲沉积物以及海洋自生有机质,在台风的影响下,浙闽沿岸泥质中心的初级生产力升高,进而增加了沉积物中海源有机碳的比例。同时,在台风的动力作用下,近岸沉积物发生了明显的侵蚀与再搬运,导致近岸沉积物中TOC的含量显著降低。受控于台风不对称风场造成的沉积动力差异,不同路径的台风会对研究区的物源输入、海洋生物地球化学以及沉积物的搬运改造等产生不同的影响,进而影响到沉积有机质的组成和分布。研究结果为全面认识极端海况影响下近岸陆架“碳埋藏”提供了科学依据。

  • 加载中
  • 图 1  研究区(a)与采样站位分布(b)

    Figure 1. 

    图 2  野外调查期间的气象条件

    Figure 2. 

    图 3  台风前后浙闽泥质沉积中心沉积物的黏土(第一列)、粉砂(第二列)和砂(第三列)的百分含量以及中值粒径Md(最后一列)的空间分布特征

    Figure 3. 

    图 4  不同时期浙闽沿岸泥质沉积中心沉积物中TOC含量(第一列)、TN含量(第二列)、C/N(第三列)以及δ13C(最后一列)的空间分布特征

    Figure 4. 

    图 5  TOC与TN之间的线性关系图

    Figure 5. 

    图 6  不同来源有机碳对研究区沉积有机碳的贡献比例特征

    Figure 6. 

    图 7  研究区不同来源有机碳绝对含量的分布特征

    Figure 7. 

    表 1  三端元混合模型中使用的端元值[32]

    Table 1.  The end-member values used in the three end-member mixing model[32]

     河流端元三角洲端元海洋端元
    δ13C−8.70‰ ± 1.0‰−22.1‰ ± 1.5‰−20‰ ± 1.0‰
    N/C0.080 ± 0.0190.057 ± 0.0070.154 ± 0.053
    下载: 导出CSV

    表 2  浙闽泥质沉积中心沉积物的粒度组成和有机元素特征结果统计

    Table 2.  Statistics of grain-size and organic element characteristics of the sediments in the Mud Depo-center of Zhejiang-Fujian Coast

      砂/% 粉砂/% 黏土/% Md/μm TOC/% TN/% C/N δ13C/‰
    台风过境前 最大值 7.15 81.84 26.26 12.09 0.75 0.098 13.52 −21.8
    最小值 0.01 72.69 15.90 7.78 0.47 0.040 9.14 −22.3
    平均值 2.63 76.22 21.16 9.27 0.60 0.064 11.15 −22.0
    台风过境后 最大值 8.54 83.48 25.84 16.15 0.75 0.083 11.90 −21.9
    最小值 0.37 73.00 13.16 7.87 0.37 0.029 9.60 −23.1
    平均值 3.17 78.01 18.82 10.73 0.58 0.061 10.65 −22.1
    下载: 导出CSV

    表 3  沉积物中不同端元的有机碳贡献比例

    Table 3.  Different endmember contributions to sedimentary organic carbon contents

      河流源 三角洲源 海源
    台风过境前 平均值 14.8% 51.4% 33.8%
    最小值 12.5% 37.5% 20.1%
    最大值 17.3% 67.2% 46.2%
    台风过境后 平均值 15.6% 47.8% 36.6%
    最小值 13.9% 40.9% 29.1%
    最大值 25.4% 56.6% 43.5%
    下载: 导出CSV
  • [1]

    焦念志, 梁彦韬, 张永雨, 等. 中国海及邻近区域碳库与通量综合分析[J]. 中国科学: 地球科学, 2018, 48(11): 1393-1421

    JIAO Nianzhi, LIANG Yantao, ZHANG Yongyu, et al. Carbon pools and fluxes in the China Seas and adjacent oceans[J]. Science China Earth Sciences, 2018, 61(11): 1535-1563.]

    [2]

    Hedges J I, Keil R G. Sedimentary organic matter preservation: an assessment and speculative synthesis[J]. Marine Chemistry, 1995, 49(2-3):81-115. doi: 10.1016/0304-4203(95)00008-F

    [3]

    Burdige D J. Burial of terrestrial organic matter in marine sediments: a re-assessment[J]. Global Biogeochemical Cycles, 2005, 19(4):GB4011.

    [4]

    姚鹏, 于志刚, 郭志刚. 大河影响下的边缘海沉积有机碳输运与埋藏及再矿化研究进展[J]. 海洋地质与第四纪地质, 2013, 33(1):153-160

    YAO Peng, YU Zhigang, GUO Zhigang. Research progress in transport, burial and remineralization of organic carbon at large river dominated ocean margins[J]. Marine Geology & Quaternary Geology, 2013, 33(1):153-160.]

    [5]

    Tao S Q, Eglinton T I, Montluçon D B, et al. Diverse origins and pre-depositional histories of organic matter in contemporary Chinese marginal sea sediments[J]. Geochimica et Cosmochimica Acta, 2016, 191:70-88. doi: 10.1016/j.gca.2016.07.019

    [6]

    高抒. 河流三角洲沉积体系再析[J]. 海洋地质与第四纪地质, 2023, 43(3):1-13

    GAO Shu. Revisiting the concept of river delta sedimentary systems[J]. Marine Geology & Quaternary Geology, 2023, 43(3):1-13.]

    [7]

    李安春, 张凯棣. 东海内陆架泥质沉积体研究进展[J]. 海洋与湖沼, 2020, 51(4):705-727 doi: 10.11693/hyhz20200500145

    LI Anchun, ZHANG Kaidi. Research progress of mud wedge in the inner continental shelf of the East China Sea[J]. Oceanologia et Limnologia Sinica, 2020, 51(4):705-727.] doi: 10.11693/hyhz20200500145

    [8]

    Liu X T, Li A C, Dong J, et al. Provenance discrimination of sediments in the Zhejiang-Fujian mud belt, East China Sea: implications for the development of the mud depocenter[J]. Journal of Asian Earth Sciences, 2018, 151:1-15. doi: 10.1016/j.jseaes.2017.10.017

    [9]

    薛成凤, 贾建军, 高抒, 等. 中小河流对长江水下三角洲远端泥沉积的贡献: 以椒江和瓯江为例[J]. 海洋学报, 2018, 40(5):75-89 doi: 10.3969/j.issn.0253-4193.2018.05.007

    XUE Chengfeng, JIA Jianjun, GAO Shu, et al. The contribution of middle and small rivers to the distal mud of subaqueous Changjiang Delta: results from Jiaojiang River and Oujiang River[J]. Haiyang Xuebao, 2018, 40(5):75-89.] doi: 10.3969/j.issn.0253-4193.2018.05.007

    [10]

    Liu J P, Li A C, Xu K H, et al. Sedimentary features of the Yangtze River-derived along-shelf clinoform deposit in the East China Sea[J]. Continental Shelf Research, 2006, 26(17-18):2141-2156. doi: 10.1016/j.csr.2006.07.013

    [11]

    Qiao S Q, Shi X F, Wang G Q, et al. Sediment accumulation and budget in the Bohai Sea, Yellow Sea and East China Sea[J]. Marine Geology, 2017, 390:270-281. doi: 10.1016/j.margeo.2017.06.004

    [12]

    Li Y X, Yang D Z, Xu L J, et al. Three types of typhoon‐induced upwellings enhance coastal algal blooms: a case study[J]. Journal of Geophysical Research: Oceans, 2022, 127(5):e2022JC018448. doi: 10.1029/2022JC018448

    [13]

    Shiah F K, Chung S W, Kao S J, et al. Biological and hydrographical responses to tropical cyclones (typhoons) in the continental shelf of the Taiwan Strait[J]. Continental Shelf Research, 2000, 20(15):2029-2044. doi: 10.1016/S0278-4343(00)00055-8

    [14]

    Rao A D, Joshi M, Jain I, et al. Response of subsurface waters in the eastern Arabian Sea to tropical cyclones[J]. Estuarine, Coastal and Shelf Science, 2010, 89(4):267-276. doi: 10.1016/j.ecss.2010.07.011

    [15]

    Lin Y P, Li Y H, Zheng B X, et al. Evolution of sedimentary organic matter in a small river estuary after the typhoon process: a case study of Quanzhou Bay[J]. Science of the Total Environment, 2019, 686:290-300. doi: 10.1016/j.scitotenv.2019.05.452

    [16]

    Lin Y P, Li Y H, Liu M, et al. Typhoon Chan-Hom (2015) induced sediment cross-shore transport in the mud depo-center of the East China Sea inner shelf[J]. Marine Geology, 2024, 469:107223. doi: 10.1016/j.margeo.2024.107223

    [17]

    Lin Y P, Li Y H, Cong S, et al. Downcoast redistribution of Changjiang diluted water due to typhoon Chan‐Hom (2015)[J]. Journal of Geophysical Research: Oceans, 2023, 128(4):e2023JC019791. doi: 10.1029/2023JC019791

    [18]

    Wang B, Chen J F, Jin H Y, et al. Diatom bloom-derived bottom water hypoxia off the Changjiang estuary, with and without typhoon influence[J]. Limnology and Oceanography, 2017, 62(4):1552-1569. doi: 10.1002/lno.10517

    [19]

    Lin I, Liu W T, Wu C C, et al. New evidence for enhanced ocean primary production triggered by tropical cyclone[J]. Geophysical Research Letters, 2003, 30(13):1718.

    [20]

    Li W J, Wang Z Y, Lee G H, et al. Ecological and sediment dynamics response to typhoons passing from the east and west sides of the Changjiang (Yangtze River) Estuary and its adjacent sea area[J]. Marine Geology, 2024, 467:107188. doi: 10.1016/j.margeo.2023.107188

    [21]

    Jan S, Wang J, Chern C S, et al. Seasonal variation of the circulation in the Taiwan Strait[J]. Journal of Marine Systems, 2002, 35(3-4):249-268. doi: 10.1016/S0924-7963(02)00130-6

    [22]

    Wu H, Deng B, Yuan R, et al. Detiding measurement on transport of the Changjiang-derived buoyant coastal current[J]. Journal of Physical Oceanography, 2013, 43(11):2388-2399. doi: 10.1175/JPO-D-12-0158.1

    [23]

    Zhu J R, Chen C S, Ding P X, et al. Does the Taiwan warm current exist in winter?[J]. Geophysical Research Letters, 2004, 31(12):L12302.

    [24]

    Hickox R, Belkin I, Cornillon P, et al. Climatology and seasonal variability of ocean fronts in the East China, Yellow and Bohai seas from satellite SST data[J]. Geophysical Research Letters, 2000, 27(18):2945-2948. doi: 10.1029/1999GL011223

    [25]

    He S Y, Huang D J, Zeng D Y. Double SST fronts observed from MODIS data in the East China Sea off the Zhejiang-Fujian coast, China[J]. Journal of Marine Systems, 2016, 154:93-102. doi: 10.1016/j.jmarsys.2015.02.009

    [26]

    杨守业, 印萍. 自然环境变化与人类活动影响下的中小河流沉积物源汇过程[J]. 海洋地质与第四纪地质, 2018, 38(1):1-10

    YANG Shouye, YIN Ping. Sediment source-to-sink processes of small mountainous rivers under the impacts of natural environmental changes and human activities[J]. Marine Geology & Quaternary Geology, 2018, 38(1):1-10.]

    [27]

    Li Y H, Wang A J, Qiao L, et al. The impact of typhoon Morakot on the modern sedimentary environment of the mud deposition center off the Zhejiang-Fujian coast, China[J]. Continental Shelf Research, 2012, 37:92-100. doi: 10.1016/j.csr.2012.02.020

    [28]

    Li Y H, Ye X, Wang A J, et al. Impact of Typhoon Morakot on chlorophyll a distribution on the inner shelf of the East China Sea[J]. Marine Ecology Progress Series, 2013, 483:19-29. doi: 10.3354/meps10223

    [29]

    Li Y H, Li D Y, Fang J Y, et al. Impact of Typhoon Morakot on suspended matter size distributions on the East China Sea inner shelf[J]. Continental Shelf Research, 2015, 101:47-58. doi: 10.1016/j.csr.2015.04.007

    [30]

    Li Y H, Lin Y P, Wang L. Distribution of heavy metals in seafloor sediments on the East China Sea inner shelf: seasonal variations and typhoon impact[J]. Marine Pollution Bulletin, 2018, 129(2):534-544. doi: 10.1016/j.marpolbul.2017.10.027

    [31]

    Li Y H, Wang L, Fan D J, et al. Distribution of biogenic silica in seafloor sediments on the East China Sea inner shelf: seasonal variations and typhoon impact[J]. Estuarine, Coastal and Shelf Science, 2018, 212:353-364. doi: 10.1016/j.ecss.2018.07.023

    [32]

    Zhang J, Wu Y, Jennerjahn T C, et al. Distribution of organic matter in the Changjiang (Yangtze River) Estuary and their stable carbon and nitrogen isotopic ratios: implications for source discrimination and sedimentary dynamics[J]. Marine Chemistry, 2007, 106(1-2):111-126. doi: 10.1016/j.marchem.2007.02.003

    [33]

    Li X X, Bianchi T S, Allison M A, et al. Composition, abundance and age of total organic carbon in surface sediments from the inner shelf of the East China Sea[J]. Marine Chemistry, 2012, 145-147:37-52. doi: 10.1016/j.marchem.2012.10.001

    [34]

    Cifuentes L A, Eldridge P M. A mass- and isotope-balance model of DOC mixing in estuaries[J]. Limnology and Oceanography, 1998, 43(8):1872-1882. doi: 10.4319/lo.1998.43.8.1872

    [35]

    Milliman J D, Xie Q C, Yang Z S. Transfer of particulate organic carbon and nitrogen from the Yangtze River to the ocean[J]. American Journal of Science, 1984, 284(7):824-834. doi: 10.2475/ajs.284.7.824

    [36]

    Meyers P A. Preservation of elemental and isotopic source identification of sedimentary organic matter[J]. Chemical Geology, 1994, 114(3-4):289-302. doi: 10.1016/0009-2541(94)90059-0

    [37]

    杨作升, 郭志刚, 王兆祥, 等. 黄东海陆架悬浮体向其东部深海区输送的宏观格局[J]. 海洋学报, 1992, 14(2):81-90

    YANG Zuosheng, GUO Zhigang, WANG Zhaoxiang, et al. Macro-patterns of suspended matters transported from the Yellow Sea and East China Sea Shelf to its eastern deep sea[J]. Acta Oceanologica Sinica, 1992, 14(2):81-90.]

    [38]

    Cong S, Wu X, Ge J Z, et al. Impact of Typhoon Chan-hom on sediment dynamics and morphological changes on the East China Sea inner shelf[J]. Marine Geology, 2021, 440:106578. doi: 10.1016/j.margeo.2021.106578

    [39]

    Zhang W Y, Cui Y S, Santos A I, et al. Storm‐driven bottom sediment transport on a high‐energy narrow shelf (NW Iberia) and development of mud depocenters[J]. Journal of Geophysical Research: Oceans, 2016, 121(8):5751-5772. doi: 10.1002/2015JC011526

    [40]

    Zhang W Z, Hong H S, Shang S P, et al. Strong southward transport events due to typhoons in the Taiwan Strait[J]. Journal of Geophysical Research: Oceans, 2009, 114(C11):C11013.

    [41]

    Huang Y G, Yang H F, Wang Y P, et al. Swell-driven sediment resuspension in the Yangtze Estuary during tropical cyclone events[J]. Estuarine, Coastal and Shelf Science, 2022, 267:107765. doi: 10.1016/j.ecss.2022.107765

    [42]

    王浩斌, 杨世伦, 杨海飞. 台风对长江口表层悬沙浓度的影响[J]. 华东师范大学学报: 自然科学版, 2019(2):195-208

    WANG Haobin, YANG Shilun, YANG Haifei. A study of the surficial suspended sediment concentration in response to typhoons in the Yangtze Estuary[J]. Journal of East China Normal University: Natural Science, 2019(2):195-208.]

    [43]

    Zang Z C, Xue Z G, Bao S W, et al. Numerical study of sediment dynamics during hurricane Gustav[J]. Ocean Modelling, 2018, 126:29-42. doi: 10.1016/j.ocemod.2018.04.002

    [44]

    Luo Z F, Zhu J R, Wu H, et al. Dynamics of the sediment plume over the Yangtze Bank in the Yellow and East China Seas[J]. Journal of Geophysical Research: Oceans, 2017, 122(12):10073-10090. doi: 10.1002/2017JC013215

    [45]

    Choi S M, Seo J Y, Ha H K. Contribution of local erosion enhanced by winds to sediment transport in intertidal flat[J]. Marine Geology, 2023, 465:107171. doi: 10.1016/j.margeo.2023.107171

    [46]

    Lu J, Jiang J B, Li A C, et al. Impact of Typhoon Chan-hom on the marine environment and sediment dynamics on the inner shelf of the East China Sea: in-situ seafloor observations[J]. Marine Geology, 2018, 406:72-83. doi: 10.1016/j.margeo.2018.09.009

    [47]

    Pope E L, Talling P J, Carter L, et al. Damaging sediment density flows triggered by tropical cyclones[J]. Earth and Planetary Science Letters, 2017, 458:161-169. doi: 10.1016/j.jpgl.2016.10.046

    [48]

    Porcile G, Bolla Pittaluga M, Frascati A, et al. Typhoon-induced megarips as triggers of turbidity currents offshore tropical river deltas[J]. Communications Earth & Environment, 2020, 1:2.

    [49]

    Gavey R, Carter L, Liu J T, et al. Frequent sediment density flows during 2006 to 2015, triggered by competing seismic and weather events: observations from subsea cable breaks off southern Taiwan[J]. Marine Geology, 2017, 384:147-158. doi: 10.1016/j.margeo.2016.06.001

    [50]

    Xu K H, Mickey R C, Chen Q, et al. Shelf sediment transport during hurricanes Katrina and Rita[J]. Computers & Geosciences, 2016, 90:24-39.

    [51]

    Chen M, Li Y H, Qi H S, et al. The influence of season and Typhoon Morakot on the distribution of diatoms in surface sediments on the inner shelf of the East China Sea[J]. Marine Micropaleontology, 2019, 146:59-74. doi: 10.1016/j.marmicro.2019.01.003

  • 加载中

(7)

(3)

计量
  • 文章访问数:  450
  • PDF下载数:  47
  • 施引文献:  0
出版历程
收稿日期:  2024-07-10
修回日期:  2024-08-16
录用日期:  2024-08-16
刊出日期:  2024-10-28

目录