黄河现行流路与启用刁口流路不同情景下调水调沙期间入海水沙扩散特征与影响因素

宋怡菲, 林新怡, 罗佳贝, 刘舒, 徐金亚, 毕乃双, 王厚杰, 吴晓. 黄河现行流路与启用刁口流路不同情景下调水调沙期间入海水沙扩散特征与影响因素[J]. 海洋地质与第四纪地质, 2024, 44(5): 15-26. doi: 10.16562/j.cnki.0256-1492.2024082501
引用本文: 宋怡菲, 林新怡, 罗佳贝, 刘舒, 徐金亚, 毕乃双, 王厚杰, 吴晓. 黄河现行流路与启用刁口流路不同情景下调水调沙期间入海水沙扩散特征与影响因素[J]. 海洋地质与第四纪地质, 2024, 44(5): 15-26. doi: 10.16562/j.cnki.0256-1492.2024082501
SONG Yifei, LIN Xinyi, LUO Jiabei, LIU Shu, XU Jinya, BI Naishuang, WANG Houjie, WU Xiao. Dispersal of water and sediment off the Yellow River mouth during Water-Sediment Regulation Scheme in present and Diaokou Channel scenarios[J]. Marine Geology & Quaternary Geology, 2024, 44(5): 15-26. doi: 10.16562/j.cnki.0256-1492.2024082501
Citation: SONG Yifei, LIN Xinyi, LUO Jiabei, LIU Shu, XU Jinya, BI Naishuang, WANG Houjie, WU Xiao. Dispersal of water and sediment off the Yellow River mouth during Water-Sediment Regulation Scheme in present and Diaokou Channel scenarios[J]. Marine Geology & Quaternary Geology, 2024, 44(5): 15-26. doi: 10.16562/j.cnki.0256-1492.2024082501

黄河现行流路与启用刁口流路不同情景下调水调沙期间入海水沙扩散特征与影响因素

  • 基金项目: 国家自然科学基金“黄河口关键过程及物质输运协同效应重大科学考察实验研究”(42149301),“水库调控影响下黄河河流-河口连续体陆源颗粒有机碳输运的多界面耦合过程及其动力约束机制”(42330407),“黄河流域生态系统变化与生态屏障效应”(42041005);山东省泰山学者项目(TS20190913, TSQN202211054);山东省高等学校“青创团队计划”团队项目(2022KJ045);东营市市校合作重点项目“黄河三角洲海岸非均衡演化及应对策略”(SXHZ-2022-02-15);中央高校基本科研业务费专项“人新世河口海岸”(202241007)
详细信息
    作者简介: 宋怡菲(2004—),女,本科生,地球信息科学与技术专业,E-mail:2715196534@qq.com
    通讯作者: 吴晓(1989—),男,副教授,主要从事河口海岸学研究,E-mail:wuxiao@ouc.edu.cn
  • 中图分类号: P736

Dispersal of water and sediment off the Yellow River mouth during Water-Sediment Regulation Scheme in present and Diaokou Channel scenarios

More Information
  • 《黄河流域综合规划(2012—2030年)》中指出,规划期内仍主要利用清水沟流路行河,保持流路相对稳定,清水沟流路使用结束后,优先启用刁口备用流路。为探究黄河启用刁口流路后入海水沙扩散特征及其与现行流路的差异,本研究选取黄河水沙入海的主要时期——调水调沙期,通过FVCOM三维数值模式,模拟研究了黄河调水调沙期间经两条流路入海情况下的盐度、悬沙浓度及河口动力特征,对比发现(1)两条流路沿岸流系总体变化趋势一致,入海径流受地转偏向力影响整体向东偏转,局部流场存在差异,刁口流路入海时无明显环流;(2)两种流路下羽流和悬沙的扩散特征对调水调沙不同阶段的水沙变化存在一致性的响应;然而,受河口地形和岸线的影响,刁口流路情景下羽流和悬沙的扩散范围显著大于现行流路;(3)伴随着流路变化,三角洲不同区域的演化特征将产生快速响应:刁口流路启用后,现行河口三角洲将进入蚀退期,刁口三角洲叶瓣进入快速造陆期。此外,模型结果显示,由于刁口外较浅的水深和平缓的地貌特征,相同条件下刁口流路情景下三角洲的造陆速率在短期内可能高于现行流路。

  • 加载中
  • 图 1  黄河三角洲区域概况图

    Figure 1. 

    图 2  模型验证图

    Figure 2. 

    图 3  不同情境下黄河口盐度分布图

    Figure 3. 

    图 4  沿断面流场、盐度和悬沙分布图

    Figure 4. 

    图 5  现行流路和刁口流路情景下调水调沙不同阶段的悬沙扩散特征

    Figure 5. 

    图 6  现行流路和刁口流路情景下调水调沙不同阶段的内落外涨型(IEOF)和内涨外落型(IFOE)切变锋的分布和剪切强度

    Figure 6. 

    图 7  河口断面悬沙、盐度和速度梯度时序变化图

    Figure 7. 

    图 8  现行流路和刁口流路情景下沿河口断面的底拖曳系数(a)、底切应力(b)、最大潮流流速(c)和速度梯度变化(d)

    Figure 8. 

    图 9  现行流路(a)和刁口流路(b)情景下调水调沙前至调水调沙结束为期40天的三角洲侵蚀淤积情况及切变锋位置(红色虚线)

    Figure 9. 

  • [1]

    Milliman J D, Meade R H. World-wide delivery of river sediment to the oceans[J]. The Journal of Geology, 1983, 91(1):1-21. doi: 10.1086/628741

    [2]

    Meade R H. River-sediment inputs to major deltas[M]//Milliman J D, Haq B U. Sea-Level Rise and Coastal Subsidence: Causes, Consequences, and Strategies. Dordrecht: Springer, 1996: 63-85.

    [3]

    Milliman J D, Farnsworth K L. Runoff, erosion, and delivery to the coastal ocean[M]//Milliman J D, Farnsworth K L. River Discharge to the Coastal Ocean. Cambridge: Cambridge University Press, 2011: 13-69.

    [4]

    Damme S V, Struyf E, Maris T, et al. Spatial and temporal patterns of water quality along the estuarine salinity gradient of the Scheldt estuary (Belgium and The Netherlands): results of an integrated monitoring approach[J]. Hydrobiologia, 2005, 540(1-3):29-45. doi: 10.1007/s10750-004-7102-2

    [5]

    Feyrer F, Cloern J E, Brown L R, et al. Estuarine fish communities respond to climate variability over both river and ocean basins[J]. Global Change Biology, 2015, 21(10):3608-3619. doi: 10.1111/gcb.12969

    [6]

    Wang H J, Wu X, Bi N H, et al. Impacts of the dam-orientated water-sediment regulation scheme on the lower reaches and delta of the Yellow River (Huanghe): A review[J]. Global and Planetary Change, 2017, 157:93-113. doi: 10.1016/j.gloplacha.2017.08.005

    [7]

    Raimonet M, Cloern J E. Estuary–ocean connectivity: Fast physics, slow biology[J]. Global Change Biology, 2017, 23(6):2345-2357. doi: 10.1111/gcb.13546

    [8]

    Wu X, Bi N S, Syvitski J, et al. Can reservoir regulation along the Yellow River be a sustainable way to save a sinking delta?[J]. Earth's Future, 2020, 8(11):e2020EF001587. doi: 10.1029/2020EF001587

    [9]

    Wu X, Wang H J, Fan Y Y, et al. Boosting spring runoff into the sea by reservoir regulation and its potential for estuarine fishery recovery[J]. Science China Earth Sciences, 2024, 67(5):1519-1603.

    [10]

    Milliman J D. Blessed dams or damned dams?[J]. Nature, 1997, 386(6623):325-327. doi: 10.1038/386325a0

    [11]

    Syvitski J, Restrepo-Angel J D, Saito Y, et al. Earth’s sediment cycle during the Anthropocene[J]. Nature Reviews Earth & Environment, 2022, 3(3):1-18.

    [12]

    Liu S M, Liang W, Guo X Y, et al. Biogeochemistry-ecosystem-social interactions on the Chinese continental margins[J]. Oceanologia, 2023, 65(1):278-296. doi: 10.1016/j.oceano.2022.12.001

    [13]

    Qiao S W, Yang Y Y, Xu B C, et al. How the water-sediment regulation scheme in the yellow river affected the estuary ecosystem in the last 10 years?[J]. Science of the Total Environment, 2024, 927:172002. doi: 10.1016/j.scitotenv.2024.172002

    [14]

    王开荣, 李岩, 于守兵, 等. 黄河刁口河备用流路现状及保护工程措施探讨[J]. 中国水利, 2017(1):15-19 doi: 10.3969/j.issn.1000-1123.2017.01.005

    WANG Kairong, LI Yan, YU Shoubing, et al. Functions of backup flow route of Diaokouhe River in Yellow River Estuary and its protection works[J]. China Water Resources, 2017(1):15-19.] doi: 10.3969/j.issn.1000-1123.2017.01.005

    [15]

    Wu X, Bi N S, Xu J P, et al. Stepwise morphological evolution of the active Yellow River (Huanghe) delta lobe (1976-2013): Dominant roles of riverine discharge and sediment grain size[J]. Geomorphology, 2017, 292:115-127. doi: 10.1016/j.geomorph.2017.04.042

    [16]

    Bi N S, Wang H J, Wu X, et al. Phase change in evolution of the modern Huanghe (Yellow River) Delta: Process, pattern, and mechanisms[J]. Marine Geology, 2021, 437:106516. doi: 10.1016/j.margeo.2021.106516

    [17]

    Liu L, Wang H J, Yang Z S, et al. Coarsening of sediments from the Huanghe (Yellow River) delta-coast and its environmental implications[J]. Geomorphology, 2022, 401:108105. doi: 10.1016/j.geomorph.2021.108105

    [18]

    Cheng X Y, Zhu J R, Chen S L. Extensions of the river plume under various Yellow River courses into the Bohai Sea at different times[J]. Estuarine, Coastal and Shelf Science, 2021, 249:107092. doi: 10.1016/j.ecss.2020.107092

    [19]

    庞家珍, 司书亨. 黄河河口演变: Ⅰ. 近代历史变迁[J]. 海洋与湖沼, 1979, 10(2): 136-141

    PANG Jiazhen, SI Shuheng. The estuary changes of Huanghe River: Ⅰ. Changes in modern time[J]. Oceanologia et Limnologia Sinica, 1979, 10(2); 136-141.]

    [20]

    Bi N S, Wang H J, Yang Z S. Recent changes in the erosion–accretion patterns of the active Huanghe (Yellow River) delta lobe caused by human activities[J]. Continental Shelf Research, 2014, 90:70-78. doi: 10.1016/j.csr.2014.02.014

    [21]

    程心悦. 黄河口不同流路入海水沙输运扩散研究[D]. 华东师范大学博士学位论文, 2022

    CHENG Xinyue. Transport of river plume and sediments off the Yellow River mouth under changing estuarine outlets[D]. Doctor Dissertation of East China Normal University, 2022.]

    [22]

    Alber M. A conceptual model of estuarine freshwater inflow management[J]. Estuaries, 2002, 25(6):1246-1261. doi: 10.1007/BF02692222

    [23]

    王学芹. 黄河三角洲现代生物遗迹的组成与分布特征[D]. 河南理工大学硕士学位论文, 2019

    WANG Xueqin. The composition and distribution characteristics of the biogenic sedimentary structures in Yellow River delta[D]. Master Dissertation of Henan Polytechnic University, 2019.]

    [24]

    王世雄, 范勇勇, 刘猛, 等. 黄河清水沟废弃河口冲淤时空变化特征[J]. 海洋地质前沿, 2022, 38(5):1-11

    WANG Shixiong, FAN Yongyong, LIU Meng, et al. Temporal and spatial variations of erosion and accumulation off the Qingshuigou mouth of the Yellow River[J]. Marine Geology Frontiers, 2022, 38(5):1-11.]

    [25]

    卢昱岑, 沈永明, 张明. 地形演变对黄河口切变锋位置及盐度分布的影响[J]. 水动力学研究与进展, 2012, 27(3): 348-358

    LU Yucen, SHEN Yongming, ZHANG Ming. Influence of topography evolution on position of tidal shear front and distribution of salinity around Yellow River estuary[J]. Chinese Journal of Hydrodynamics, 2012, 27(3): 348-358.]

    [26]

    Chen C S, Liu H D, Beardsley R C. An unstructured grid, finite-volume, three-dimensional, primitive equations ocean model: Application to coastal ocean and estuaries[J]. Journal of Atmospheric and Oceanic Technology, 2003, 20(1):159-186. doi: 10.1175/1520-0426(2003)020<0159:AUGFVT>2.0.CO;2

    [27]

    Chen C S, Beardsley R C, Cowles G. An unstructured grid, finite-volume coastal ocean model (FVCOM) system[J]. Oceanography, 2006, 19(1):78-89. doi: 10.5670/oceanog.2006.92

    [28]

    Ji H Y, Pan S Q, Chen S L. Impact of river discharge on hydrodynamics and sedimentary processes at Yellow River Delta[J]. Marine Geology, 2020, 425:106210. doi: 10.1016/j.margeo.2020.106210

    [29]

    Zhu Q G, Xing F, Wang Y P, et al. Hidden delta degradation due to fluvial sediment decline and intensified marine storms[J]. Science Advances, 2024, 10(18):eadk1698. doi: 10.1126/sciadv.adk1698

    [30]

    Wang H J, Yang Z S, Li Y H, et al. Dispersal pattern of suspended sediment in the shear frontal zone off the Huanghe (Yellow River) mouth[J]. Continental Shelf Research, 2007, 27(6):854-871. doi: 10.1016/j.csr.2006.12.002

    [31]

    Wang N, Li K, Song D H, et al. Impact of tidal shear fronts on terrigenous sediment transport in the Yellow River Mouth: Observations and a synthesis[J]. Marine Geology, 2024, 469:107222. doi: 10.1016/j.margeo.2024.107222

    [32]

    Wang N, Li G X, Qiao L L, et al. Long-term evolution in the location, propagation, and magnitude of the tidal shear front off the Yellow River Mouth[J]. Continental Shelf Research, 2017, 137:1-12. doi: 10.1016/j.csr.2017.01.020

    [33]

    Wu X, Wang H J, Bi N S, et al. Impact of artificial floods on the quantity and grain size of River‐Borne sediment: A case study of a dam regulation scheme in the Yellow River catchment[J]. Water Resources Research, 2021, 57(5):e2021WR029581. doi: 10.1029/2021WR029581

    [34]

    Wu X, Wang H J, Saito Y, et al. Boosting riverine sediment by artificial flood in the Yellow River and the implication for delta restoration[J]. Marine Geology, 2022, 448:106816. doi: 10.1016/j.margeo.2022.106816

    [35]

    Bi N S, Yang Z S, Wang H J, et al. Seasonal variation of suspended-sediment transport through the southern Bohai Strait[J]. Estuarine, Coastal and Shelf Science, 2011, 93(3):239-247. doi: 10.1016/j.ecss.2011.03.007

    [36]

    Yang Z S, Ji Y J, Bi N S, et al. Sediment transport off the Huanghe (Yellow River) delta and in the adjacent Bohai Sea in winter and seasonal comparison[J]. Estuarine, Coastal and Shelf Science, 2011, 93(3):173-181. doi: 10.1016/j.ecss.2010.06.005

    [37]

    张航飞, 曾维特, 吴多誉, 等. 海口湾人工填海前后冲淤演变数值模拟[J]. 海岸工程, 2019, 38(2):105-114 doi: 10.3969/j.issn.1002-3682.2019.02.003

    ZHANG Hangfei, ZENG Weite, WU Duoyu, et al. Numerical simulation of scouring and silting evolution in the Haikou Bay before and after artificial reclamations[J]. Coastal Engineering, 2019, 38(2):105-114.] doi: 10.3969/j.issn.1002-3682.2019.02.003

  • 加载中

(9)

计量
  • 文章访问数:  378
  • PDF下载数:  68
  • 施引文献:  0
出版历程
收稿日期:  2024-08-25
修回日期:  2024-09-26
录用日期:  2024-09-26
刊出日期:  2024-10-28

目录