黄河三角洲浅地层扰动的空间差异及其主控机制

孙超, 巴旗, 时义睿, 丛帅, 祝嵘祺, 陈颖, 王盼盼, 吴晓, 王厚杰, 毕乃双. 黄河三角洲浅地层扰动的空间差异及其主控机制[J]. 海洋地质与第四纪地质, 2024, 44(5): 70-84. doi: 10.16562/j.cnki.0256-1492.2024080101
引用本文: 孙超, 巴旗, 时义睿, 丛帅, 祝嵘祺, 陈颖, 王盼盼, 吴晓, 王厚杰, 毕乃双. 黄河三角洲浅地层扰动的空间差异及其主控机制[J]. 海洋地质与第四纪地质, 2024, 44(5): 70-84. doi: 10.16562/j.cnki.0256-1492.2024080101
SUN Chao, BA Qi, SHI Yirui, CONG Shuai, ZHU Rongqi, CHEN Ying, WANG Panpan, WU Xiao, WANG Houjie, BI Naishuang. Spatial variations in the disturbances of shallow strata and the controlling factors in the Huanghe (Yellow) River delta[J]. Marine Geology & Quaternary Geology, 2024, 44(5): 70-84. doi: 10.16562/j.cnki.0256-1492.2024080101
Citation: SUN Chao, BA Qi, SHI Yirui, CONG Shuai, ZHU Rongqi, CHEN Ying, WANG Panpan, WU Xiao, WANG Houjie, BI Naishuang. Spatial variations in the disturbances of shallow strata and the controlling factors in the Huanghe (Yellow) River delta[J]. Marine Geology & Quaternary Geology, 2024, 44(5): 70-84. doi: 10.16562/j.cnki.0256-1492.2024080101

黄河三角洲浅地层扰动的空间差异及其主控机制

  • 基金项目: 国家自然科学基金“调水调沙影响下黄河口冲淤格局转变的动力机制研究”(42076175)
详细信息
    作者简介: 孙超(1995—),男,硕士研究生,资源与环境专业,E-mail:593403661@qq.com
    通讯作者: 毕乃双(1981—),男,教授,主要从事河口沉积动力学、地貌学研究,E-mail:binaishuang@ouc.edu.cn
  • 中图分类号: P736

Spatial variations in the disturbances of shallow strata and the controlling factors in the Huanghe (Yellow) River delta

More Information
  • 现代黄河水下三角洲是油气开采、海底管道铺设等基础设施建设的重要地区,随着黄河经历多次改道,不同河口海域的泥沙供应、海洋动力以及人类活动等条件发生显著变化,黄河三角洲不同河口地区沉积演化出现明显差异,其地层结构的变化备受工程人员及研究学者的关注。本文基于2023年浅地层剖面数据,以整个现代黄河三角洲及其分区(刁口-神仙沟河口、现行河口、清水沟河口)为研究对象,研究黄河三角洲浅地层扰动空间分布特征,对比3个河口区浅地层扰动的差异性,结合不同河口区的泥沙供应、海洋动力等资料,揭示地层扰动差异性的主控机制。研究结果表明:(1)从典型地层扰动区的基本特征来看,黄河三角洲地区的扰动地层的总体分布呈现出随水深的增加而逐渐减少的规律。不同河口区扰动地层差异显著,其中刁口-神仙沟河口的扰动地层主要表现为数量多、埋藏深度浅的特征;清水沟河口的扰动地层以聚集分布、埋藏浅、发育规模大等为特征;而现行河口海域扰动地层以埋藏深、数量少为主要特征;(2)黄河三角洲不同区域的地层结构受入海泥沙和海洋动力等因素的影响,具有明显的空间差异性。波浪的高底剪切应力分布与地层扰动高密度区分布高度一致,波致底剪切应力是影响3个河口区域以及不同水深地层结构差异的主要动力因素,而入海泥沙供应则导致不同河口区扰动地层埋深有所差异。

  • 加载中
  • 图 1  研究区概况及测线布设

    Figure 1. 

    图 2  基于浅地层剖面图像的地层扰动属性示意图

    Figure 2. 

    图 3  刁口-神仙沟扰动地层

    Figure 3. 

    图 4  刁口-神仙沟扰动地层基本特征

    Figure 4. 

    图 5  现行河口地层结构特征

    Figure 5. 

    图 6  现行河口海域扰动地层基本特征

    Figure 6. 

    图 7  清水沟河口地层结构

    Figure 7. 

    图 8  清水沟河口海域扰动地层基本特征

    Figure 8. 

    图 9  黄河三角洲不同河口海域扰动特征对比

    Figure 9. 

    图 10  扰动地层发育过程

    Figure 10. 

    图 11  黄河三角洲不同河口海域扰动特征对比

    Figure 11. 

    图 12  黄河三角洲11月平均海洋动力图

    Figure 12. 

    图 13  插拔桩坑

    Figure 13. 

  • [1]

    Milliman J D, Meade R H. World-wide delivery of river sediment to the oceans[J]. The Journal of Geology, 1983, 91(1):1-21. doi: 10.1086/628741

    [2]

    Wright L D. Sediment transport and deposition at river mouths: a synthesis[J]. GSA Bulletin, 1977, 88(6):857-868. doi: 10.1130/0016-7606(1977)88<857:STADAR>2.0.CO;2

    [3]

    Buatois L A, Santiago N, Herrera M, et al. Sedimentological and ichnological signatures of changes in wave, river and tidal influence along a Neogene tropical deltaic shoreline[J]. Sedimentology, 2012, 59(5):1568-1612. doi: 10.1111/j.1365-3091.2011.01317.x

    [4]

    Giosan L, Syvitski J, Constantinescu S, et al. Climate change: protect the world’s deltas[J]. Nature, 2014, 516(7529):31-33. doi: 10.1038/516031a

    [5]

    Edmonds D A, Caldwell R L, Brondizio E S, et al. Coastal flooding will disproportionately impact people on river deltas[J]. Nature Communications, 2020, 11(1):4741. doi: 10.1038/s41467-020-18531-4

    [6]

    Tessler Z D, Vörösmarty C J, Grossberg M, et al. Profiling risk and sustainability in coastal deltas of the world[J]. Science, 2015, 349(6248):638-643. doi: 10.1126/science.aab3574

    [7]

    Dethier E N, Renshaw C E, Magilligan F J. Rapid changes to global river suspended sediment flux by humans[J]. Science, 2022, 376(6600):1447-1452. doi: 10.1126/science.abn7980

    [8]

    Syvitski J, Anthony E, Saito Y, et al. Large deltas, small deltas: toward a more rigorous understanding of coastal marine deltas[J]. Global and Planetary Change, 2022, 218:103958. doi: 10.1016/j.gloplacha.2022.103958

    [9]

    Paszkowski A, Goodbred Jr S, Borgomeo E, et al. Geomorphic change in the Ganges–Brahmaputra–Meghna delta[J]. Nature Reviews Earth & Environment, 2021, 2(11):763-780.

    [10]

    Walling D E. Human impact on land–ocean sediment transfer by the world’s rivers[J]. Geomorphology, 2006, 79(3-4):192-216. doi: 10.1016/j.geomorph.2006.06.019

    [11]

    Giosan L, Constantinescu S, Clift P D, et al. Recent morphodynamics of the Indus delta shore and shelf[J]. Continental Shelf Research, 2006, 26(14):1668-1684. doi: 10.1016/j.csr.2006.05.009

    [12]

    Yang H F, Yang S L, Xu K H, et al. Erosion potential of the Yangtze Delta under sediment starvation and climate change[J]. Scientific Reports, 2017, 7(1):10535. doi: 10.1038/s41598-017-10958-y

    [13]

    Woodroffe C D, Nicholls R J, Saito Y, et al. Landscape variability and the response of Asian megadeltas to environmental change[M]//Harvey N. Global Change and Integrated Coastal Management: The Asia-Pacific Region. Dordrecht: Springer, 2006: 277-314.

    [14]

    Wiktor J, Tatarek A, Węsławski J M, et al. Colonies of Gyrosigma eximium: a new phenomenon in Arctic tidal flats[J]. Oceanologia, 2016, 58(4):336-340. doi: 10.1016/j.oceano.2016.04.007

    [15]

    Nienhuis J H, Ashton A D, Edmonds D A, et al. Global-scale human impact on delta morphology has led to net land area gain[J]. Nature, 2020, 577(7791):514-518. doi: 10.1038/s41586-019-1905-9

    [16]

    Wang H J, Yang Z S, Saito Y, et al. Stepwise decreases of the Huanghe (Yellow River) sediment load (1950-2005): impacts of climate change and human activities[J]. Global and Planetary Change, 2007, 57(3-4):331-354. doi: 10.1016/j.gloplacha.2007.01.003

    [17]

    Chu Z X, Sun X G, Zhai S K, et al. Changing pattern of accretion/erosion of the modern Yellow River (Huanghe) subaerial delta, China: based on remote sensing images[J]. Marine Geology, 2006, 227(1-2):13-30. doi: 10.1016/j.margeo.2005.11.013

    [18]

    Peng J, Chen S L. Response of delta sedimentary system to variation of water and sediment in the Yellow River over past six decades[J]. Journal of Geographical Sciences, 2010, 20(4):613-627. doi: 10.1007/s11442-010-0613-z

    [19]

    Xue C T. Historical changes in the Yellow River Delta, China[J]. Marine Geology, 1993, 113(3-4):321-330. doi: 10.1016/0025-3227(93)90025-Q

    [20]

    成国栋, 薛春汀. 黄河三角洲沉积地质学[M]. 北京: 地质出版社, 1997

    CHENG Guodong, XUE Chunting. Sedimentary Geology of the Yellow River Delta[M]. Beijing: Geology Press, 1997.]

    [21]

    薛春汀. 现代黄河三角洲叶瓣的划分和识别[J]. 地理研究, 1994, 13(2):59-66

    XUE Chunting. Division and recorgnition of modern Yellow River delta lobes[J]. Geographical Research, 1994, 13(2):59-66.]

    [22]

    Jiang C, Pan S Q, Chen S L. Recent morphological changes of the Yellow River (Huanghe) submerged delta: causes and environmental implications[J]. Geomorphology, 2017, 293:93-107. doi: 10.1016/j.geomorph.2017.04.036

    [23]

    Wang J J, Shi B, Yuan Q Y, et al. Hydro-geomorphological regime of the lower Yellow river and delta in response to the water–sediment regulation scheme: process, mechanism and implication[J]. CATENA, 2022, 219:106646. doi: 10.1016/j.catena.2022.106646

    [24]

    Wu X, Bi N S, Yuan P, et al. Sediment dispersal and accumulation off the present Huanghe (Yellow River) delta as impacted by the Water-Sediment Regulation Scheme[J]. Continental Shelf Research, 2015, 111:126-138. doi: 10.1016/j.csr.2015.11.003

    [25]

    Bi N S, Wang H J, Wu X, et al. Phase change in evolution of the modern Huanghe (Yellow River) Delta: process, pattern, and mechanisms[J]. Marine Geology, 2021, 437:106516. doi: 10.1016/j.margeo.2021.106516

    [26]

    Masson D G, Harbitz C B, Wynn R B, et al. Submarine landslides: processes, triggers and hazard prediction[J]. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, 2006, 364(1845):2009-2039. doi: 10.1098/rsta.2006.1810

    [27]

    Henkel D J. The role of waves in causing submarine landslides[J]. Géotechnique, 1970, 20(1):75-80.

    [28]

    Wang H, Liu H J. Evaluation of storm wave-induced silty seabed instability and geo-hazards: a case study in the Yellow River delta[J]. Applied Ocean Research, 2016, 58:135-145. doi: 10.1016/j.apor.2016.03.013

    [29]

    Prior D B, Yang Z S, Bornhold B D, et al. The subaqueous delta of the modern Huanghe (Yellow River)[J]. Geo-Marine Letters, 1986, 6(2):67-75. doi: 10.1007/BF02281642

    [30]

    Bornhold B D, Yang Z S, Keller G H, et al. Sedimentary framework of the modern Huanghe (Yellow River) delta[J]. Geo-Marine Letters, 1986, 6(2):77-83. doi: 10.1007/BF02281643

    [31]

    周良勇, 刘健, 刘锡清, 等. 现代黄河三角洲滨浅海区的灾害地质[J]. 海洋地质与第四纪地质, 2004, 24(3):19-27

    ZHOU Liangyong, LIU Jian, LIU Xiqing, et al. Coastal and marine geo-hazards in the modern Yellow River delta[J]. Marine Geology & Quaternary Geology, 2004, 24(3):19-27.]

    [32]

    杨作升, 王涛. 埕岛油田勘探开发海洋环境[M]. 青岛: 青岛海洋大学出版社, 1993

    YANG Zuosheng, WANG Tao. Marine Environment of Chengdao Offshore Oil Exploration and Development[M]. Qingdao: Qingdao Ocean University Press, 1933.]

    [33]

    常瑞芳, 陈樟榕, 陈卫民, 等. 老黄河口水下三角洲前缘底坡不稳定地形的近期演变及控制因素[J]. 青岛海洋大学学报, 2000, 30(1):159-164

    CHANG Ruifang, CHEN Zhangrong, CHEN Weimin, et al. The recent evolution and controling factors of unstable seabed topography of the old Yellow River subaqueus delta[J]. Journal of Ocean University of Qingdao, 2000, 30(1):159-164.]

    [34]

    Keller G H, Zhen J, Yang Z S, et al. Mass physical properties of Huanghe delta and southern Bohai Sea near‐surface deposits, China[J]. Marine Geotechnology, 1990, 9(3):207-225. doi: 10.1080/10641199009388240

    [35]

    郑继民, 沈谓铨, 陆念祖, 等. 黄河口及渤海中南部沉积物工程特性及其机理[J]. 青岛海洋大学学报, 1994, 24(2):231-238

    ZHENG Jimin, SHEN Weiquan, LU Nianzu, et al. Geotechnical properties of sediments from the Huanghe estuary and south-middle Bohai gulf and their mechanism of origin[J]. Journal of Ocean University of Qingdao, 1994, 24(2):231-238.]

    [36]

    张少同, 贾永刚, 刘晓磊, 等. 现代黄河三角洲沉积物动态变化过程的特征与机理[J]. 海洋地质与第四纪地质, 2016, 36(6):33-44

    ZHANG Shaotong, JIA Yonggang, LIU Xiaolei, et al. Feature and mechanism of sediment dynamic changing processes in the modern Yellow River delta[J]. Marine Geology & Quaternary Geology, 2016, 36(6):33-44.]

    [37]

    孙永福, 董立峰, 宋玉鹏. 黄河水下三角洲粉质土扰动土层特征及成因探析[J]. 岩土力学, 2008, 29(6):1494-1499

    SUN Yongfu, DONG Lifeng, SONG Yupeng. Analysis of characteristics and formation of disturbed soil on subaqueous delta of Yellow River[J]. Rock and Soil Mechanics, 2008, 29(6):1494-1499.]

    [38]

    许国辉, 卫聪聪, 孙永福, 等. 黄河水下三角洲浅表局部扰动地层工程特性与成因[J]. 海洋地质与第四纪地质, 2008, 28(6):19-25

    XU Guohui, WEI Congcong, SUN Yongfu, et al. The engineering characteristics of shallow disturbed strata and analysis of their formation on the subaqueous Yellow River delta[J]. Marine Geology & Quaternary Geology, 2008, 28(6):19-25.]

    [39]

    Foda M A, Tzang S Y. Resonant fluidization of silty soil by water waves[J]. Journal of Geophysical Research: Oceans, 1994, 99(C10):20463-20475. doi: 10.1029/94JC02040

    [40]

    庞家珍, 姜明星. 黄河河口演变(Ⅱ): (二)1855年以来黄河三角洲流路变迁及海岸线变化及其他[J]. 海洋湖沼通报, 2003(4):1-13

    PANG Jiazhen, JIANG Mingxing. On the evolution of the Yellow River estuary (part Ⅱ)[J]. Transactions of Oceanology and Limnology, 2003(4):1-13.]

    [41]

    Xu X G, Chen Z X, Feng Z. From natural driving to artificial intervention: changes of the Yellow River estuary and delta development[J]. Ocean & Coastal Management, 2019, 174:63-70.

    [42]

    刘杰. 现代黄河三角洲固结沉降及其对三角洲地形变化的贡献研究[D]. 中国海洋大学博士学位论文, 2014

    LIU Jie. Analysis of consolidation settlement and its contribution to topographical change in the modern Yellow River subaqueous delta[D]. Doctor Dissertation of Ocean of University of China, 2014.]

    [43]

    陈沈良, 张国安, 谷国传. 黄河三角洲海岸强侵蚀机理及治理对策[J]. 水利学报, 2004(7):1-6,13

    CHEN Shenliang, ZHANG Guoan, GU Guochuan. Mechanism of heavy coastal erosion on Yellow River delta and its countermeasures[J]. Journal of Hydraulic Engineering, 2004(7):1-6,13.]

    [44]

    刘文洁, 许国辉, 于月倩, 等. 波致土体液化下水体含沙量垂向分布试验研究[J]. 中国海洋大学学报, 2011, 41(S1):386-390

    LIU Wenjie, XU Guohui, YU Yueqian, et al. Research on wave induced vertical distribution of suspended sediment concentration above liquefaction seabed[J]. Periodical of Ocean University of China, 2011, 41(S1):386-390.]

    [45]

    孙永福, 董立峰, 蒲高军, 等. 风暴潮作用下黄河水下三角洲斜坡稳定性研究[J]. 工程地质学报, 2006, 14(5):582-587

    SUN Yongfu, DONG Lifeng, PU Gaojun, et al. Stability analysis of slopes in the subaqueous delta of the Yellow River under storm wave loading[J]. Journal of Engineering Geology, 2006, 14(5):582-587.]

    [46]

    许国辉. 波浪导致粉质土缓坡海底滑动的研究: 以黄河水下三角洲为例[D]. 中国海洋大学硕士学位论文, 2006

    XU Guohui. Study on the landslide of gentle-slope silty seabed under waves: a case of Yellow River subaqueous delta[D]. Master Dissertation of Ocean of University of China, 2006.]

    [47]

    Ren Y P, Xu G H, Xu X B, et al. The initial wave induced failure of silty seabed: liquefaction or shear failure[J]. Ocean Engineering, 2020, 200:106990. doi: 10.1016/j.oceaneng.2020.106990

    [48]

    Wang Z H, Sun Y F, Jia Y G, et al. Wave-induced seafloor instabilities in the subaqueous Yellow River Delta: initiation and process of sediment failure[J]. Landslides, 2020, 17(8):1849-1862. doi: 10.1007/s10346-020-01399-2

    [49]

    王厚杰, 原晓军, 王燕, 等. 现代黄河三角洲废弃神仙沟-钓口叶瓣的演化及其动力机制[J]. 泥沙研究, 2010(4):51-60

    WANG Houjie, YUAN Xiaojun, WANG Yan, et al. Evolution of the abandoned Shenxiangou-Diaokou delta lobe: processes and mechanism[J]. Journal of Sediment Research, 2010(4):51-60.]

    [50]

    曹成林. 波浪作用下埕岛海域海底冲刷预测评价[D]. 国家海洋局第一海洋研究所硕士学位论文, 2010

    CAO Chenglin. Prediction and evaluation of seabed erosion in Chengdao sea area under wave action[D]. Master Dissertation of First Institute of Oceanography, 2010.]

    [51]

    许国辉, 尹晓慧, 王秀海, 等. 浅表土体强度对黄河水下三角洲微地貌形成的控制作用[J]. 中国海洋大学学报, 2007, 37(4):657-662

    XU Guohui, YIN Xiaohui, WANG Xiuhai, et al. Control actions of non-uniformity of superficial stratum on the development of micro-geomorphy of the subaqueous Yellow River Delta[J]. Periodical of Ocean University of China, 2007, 37(4):657-662.]

    [52]

    Wang H J, Yang Z S, Li G X, et al. Wave climate modeling on the abandoned Huanghe (Yellow River) delta lobe and related deltaic erosion[J]. Journal of Coastal Research, 2006, 22(4):906-918.

    [53]

    黄波. 黄河三角洲刁口河海岸侵蚀过程时空演变与防护对策研究[D]. 北京林业大学博士学位论文, 2015

    HUANG Bo. Spatial-temporal evolution of erosion process and protective countermeasures research for Diaokou River Coastline in Yellow River Delta[D]. Doctor Dissertation of Beijing Forestry University, 2015.]

    [54]

    Bi N S, Yang Z S, Wang H J, et al. Seasonal variation of suspended-sediment transport through the southern Bohai Strait[J]. Estuarine, Coastal and Shelf Science, 2011, 93(3):239-247. doi: 10.1016/j.ecss.2011.03.007

    [55]

    Wang A M, Ralston D K, Bi N S, et al. Sediment resuspension and transport due to synoptic winter winds in the Bohai Sea[J]. Geomorphology, 2024, 456:109211. doi: 10.1016/j.geomorph.2024.109211

    [56]

    刘猛, 毕乃双, 纪金龙, 等. 现行黄河三角洲叶瓣蚀积演化对动力环境的影响[J]. 海洋地质前沿, 2018, 34(6):8-18

    LIU Meng, BI Naishuang, JI Jinlong, et al. Evolution of the active deltaic lobe of Huanghe River and its response to hydrodynamics[J]. Marine Geology Frontiers, 2018, 34(6):8-18.]

    [57]

    王世雄, 范勇勇, 刘猛, 等. 黄河清水沟废弃河口冲淤时空变化特征[J]. 海洋地质前沿, 2022, 38(5):1-11

    WANG Shixiong, FAN Yongyong, LIU Meng, et al. Temporal and spatial variations of erosion and accumulation off the Qingshuigou mouth of the Yellow River[J]. Marine Geology Frontiers, 2022, 38(5):1-11.]

    [58]

    荆少东, 梁晓勇, 徐帅陵, 等. 埕岛油田海上自升式平台反复插拔桩对地层的影响[J]. 油气田地面工程, 2021, 40(4):21-26

    JING Shaodong, LIANG Xiaoyong, XU Shuailing, et al. Experimental study on the effect of repeated insertion and pullout of piles on offshore jack-up platform of Chengdao oilfield[J]. Oil-Gas Field Surface Engineering, 2021, 40(4):21-26.]

    [59]

    安涛, 林增勇, 张达. 埕岛油田反复插拔桩区域就位风险及预防措施[J]. 上海交通大学学报, 2023, 57(S1):25-29

    AN Tao, LIN Zengyong, ZHANG Da. Risk and preventive measures of pile placement in Chengdao oilfield[J]. Journal of Shanghai Jiao Tong University, 2023, 57(S1):25-29.]

    [60]

    徐永臣. 黄河废弃水下三角洲地基土对平台插拔桩的响应[D]. 中国海洋大学博士学位论文, 2014

    XU Yongchen. Response to platform pile insertion and pullout of Yellow River abandoned underwater delta foundation soil[D]. Doctor Dissertation of Ocean University of China, 2014.]

  • 加载中

(13)

计量
  • 文章访问数:  549
  • PDF下载数:  24
  • 施引文献:  0
出版历程
收稿日期:  2024-08-01
修回日期:  2024-09-12
录用日期:  2024-09-12
刊出日期:  2024-10-28

目录