强人类活动下伶仃洋河口湾沉积地貌格局演化规律

莫思濠, 梁泓樾, 王璞, 缪言, 张恺云, 刘锋. 强人类活动下伶仃洋河口湾沉积地貌格局演化规律[J]. 海洋地质与第四纪地质, 2024, 44(5): 85-94. doi: 10.16562/j.cnki.0256-1492.2024090902
引用本文: 莫思濠, 梁泓樾, 王璞, 缪言, 张恺云, 刘锋. 强人类活动下伶仃洋河口湾沉积地貌格局演化规律[J]. 海洋地质与第四纪地质, 2024, 44(5): 85-94. doi: 10.16562/j.cnki.0256-1492.2024090902
MO Sihao, LIANG Hongyue, WANG Pu, MIAO Yan, ZHANG Kaiyun, LIU Feng. Evolution of sedimentology and geomorphology in the Lingding Bay under anthropogenic impact[J]. Marine Geology & Quaternary Geology, 2024, 44(5): 85-94. doi: 10.16562/j.cnki.0256-1492.2024090902
Citation: MO Sihao, LIANG Hongyue, WANG Pu, MIAO Yan, ZHANG Kaiyun, LIU Feng. Evolution of sedimentology and geomorphology in the Lingding Bay under anthropogenic impact[J]. Marine Geology & Quaternary Geology, 2024, 44(5): 85-94. doi: 10.16562/j.cnki.0256-1492.2024090902

强人类活动下伶仃洋河口湾沉积地貌格局演化规律

  • 基金项目: 自然资源部海岸带科学与综合管理重点实验室开放基金项目(2021COSIMZ002)
详细信息
    作者简介: 莫思濠(1999—),男,博士研究生,物理海洋专业,E-mail:mosh@mail2.sysu.edu.cn
    通讯作者: 刘锋(1986—),男,副教授,博士生导师,从事海岸工程与海洋智能监测研究,E-mail:liuf53@mail.sysu.edu.cn
  • 中图分类号: P736

Evolution of sedimentology and geomorphology in the Lingding Bay under anthropogenic impact

More Information
  • 基于伶仃洋河口湾1965—2016年不同年代水深数据,结合不同年代沉积物数据,分析了伶仃洋沉积地貌格局的演化规律,讨论了人类活动对伶仃洋沉积地貌格局的影响作用。结果表明:(1)过去40年,伶仃洋地形边界主要受围垦影响而大幅度变窄,河口湾滩槽格局整体受到挤压并向东偏移;在航道开挖、浚深以及河口采砂等人类活动的叠加影响下,水域面积减小、水体容积增加,地貌形态向窄深化发展;(2)从不同年代表层沉积物空间分布来看,1975年和2003—2004年沉积物由北往南呈粗-细-粗的分布规律,粒度参数整体呈条带状分布。2016年沉积物在南北方向上的分布规律不显著,细颗粒沉积物主要沿西滩、东滩分布,粗颗粒的陆源沉积物主要以斑块状分布于中滩、东槽的采砂坑以及外伶仃洋的深槽末段;粒度参数的空间分布由条带状转变为斑块状,整体沉积环境由单一向复杂转变。(3)新格局下河口湾存在3个沉积中心,即中滩北部的内伶仃洋沉积中心,外伶仃洋西侧、淇澳岛以南的西滩沉积中心以及伶仃航道末段的外伶仃洋沉积中心;它们与各区域的冲淤格局相对应。由此可见,过去40年,人类活动显著地影响了珠江伶仃洋河口湾的沉积地貌格局,本研究有助于揭示伶仃洋河口湾地貌演变趋势,对珠江河口综合治理、水资源高效利用管理与开发具有重要的实践意义。

  • 加载中
  • 图 1  研究区域示意图

    Figure 1. 

    图 2  1964—2016年伶仃洋河口湾陆地边界演变及主要人类活动区域示意图[8]

    Figure 2. 

    图 3  1965—2016年伶仃洋河口湾水下地形演变

    Figure 3. 

    图 4  伶仃洋河口湾各年代5 m等深线变化(a)及1965—2016年冲淤厚度图(b)

    Figure 4. 

    图 5  伶仃洋不同水深单元面积(a)及容积百分比(b)

    Figure 5. 

    图 6  伶仃洋表层沉积物粒级组分空间分布

    Figure 6. 

    图 7  伶仃洋表层沉积物粒度参数

    Figure 7. 

    图 8  2007—2016年伶仃洋冲淤变化与沉积物输移趋势矢量

    Figure 8. 

    表 1  伶仃洋河口湾各年份不同水深单元的面积与容积统计

    Table 1.  Statistical data of the area and volume of each depth unit in the Lingding Bay in different years

    水深/m 1965年 1998年 2007年 2016年
    面积/km2 体积/km3 面积/km2 体积/km3 面积/km2 体积/km3 面积/km2 体积/km3
    0~5 747.41 1.87 723.47 2.11 649.81 1.42 613.46 1.26
    5~10 815.69 6.36 695.8 6.18 625.37 5.39 545.82 4.98
    >10 146.93 23.73 141.13 28.75 157.91 34.29 259.99 36.58
    合计 1710.03 31.96 1560.4 37.04 1433.09 41.1 1419.27 42.82
    下载: 导出CSV
  • [1]

    李团结. 伶仃洋地形地貌阶段性演变过程及趋势分析[D]. 中国地质大学博士学位论文, 2017

    LI Tuanjie. Analysis of Lingding bay landform stage evolution and trends[D]. Doctor Dissertation of China University of Geosciences, 2017.]

    [2]

    Hutchings A M, de Vries C S, Hayes N R, et al. Temperature and dissolved oxygen trends in English estuaries over the past 30 years[J]. Estuarine, Coastal and Shelf Science, 2024, 306:108892. doi: 10.1016/j.ecss.2024.108892

    [3]

    吴超羽, 韦惺. 从溺谷湾到三角洲: 现代珠江三角洲形成演变研究辨析[J]. 海洋学报, 2021, 43(1):1-26

    WU Chaoyu, WEI Xing. From drowned valley to delta: discrimination and analysis on issues of the Formation and evolution of the Zhujiang River Delta[J]. Haiyang Xuebao, 2021, 43(1):1-26.]

    [4]

    Biguino B, Antunes C, Dias J M, et al. Long-term trends (1986–2019) in the physicochemical properties of the Sado Estuary (Portugal) driven primarily by changes in river flow and influenced by marine upwelling[J]. Marine Pollution Bulletin, 2024, 207:116806. doi: 10.1016/j.marpolbul.2024.116806

    [5]

    Muñoz-Lopez P, Nadal I, García-Lafuente J, et al. Numerical modeling of tidal propagation and frequency responses in the Guadalquivir estuary (SW, Iberian Peninsula)[J]. Continental Shelf Research, 2024, 279:105275. doi: 10.1016/j.csr.2024.105275

    [6]

    陈吉余, 程和琴, 戴志军. 河口过程中第三驱动力的作用和响应: 以长江河口为例[J]. 自然科学进展, 2008, 18(9):994-1000 doi: 10.3321/j.issn:1002-008X.2008.09.005

    CHEN Jiyu, CHENG Heqin, DAI Zhijun. Function and responses of the third driving force in the estuarine processes: a case study of the Changjiang Estuary[J]. Progress in Natural Science, 2008, 18(9):994-1000.] doi: 10.3321/j.issn:1002-008X.2008.09.005

    [7]

    Wei X, Cai S Q, Zhan W K. Impact of anthropogenic activities on morphological and deposition flux changes in the Pearl River Estuary, China[J]. Scientific Reports, 2021, 11(1):16643. doi: 10.1038/s41598-021-96183-0

    [8]

    赵荻能. 珠江河口三角洲近165年演变及对人类活动响应研究[D]. 浙江大学博士学位论文, 2017

    ZHAO Dineng. Morphological evolution of the Pearl River Delta in the past 165 years and its response to human activities[D]. Doctor Dissertation of Zhejiang University, 2017.]

    [9]

    Gan J P, Li L, Wang D X, et al. Interaction of a river plume with coastal upwelling in the northeastern South China Sea[J]. Continental Shelf Research, 2009, 29(4):728-740. doi: 10.1016/j.csr.2008.12.002

    [10]

    赵焕庭. 珠江河口的水文和泥沙特征[J]. 热带地理, 1989, 9(3):201-212

    ZHAO Huanting. Hydrological and sedimentary characteristics of the Pearl River Estuary[J]. Tropical Geography, 1989, 9(3):201-212.]

    [11]

    职海航. 珠江冲淡水锋面时空变化规律及动力机制[D]. 华东师范大学硕士学位论文, 2022

    ZHI Haihang. Spatiotemporal variability and underlying dynamics of the Pearl River plume front[D]. Master Dissertation of East China Normal University, 2022.]

    [12]

    周清. 流域水文模型及气候变化下的径流响应研究[D]. 华中科技大学硕士学位论文, 2019

    ZHOU Qing. Study on hydrological model of Basin and runoff response under climate change[D]. Master Dissertation of Huazhong University of Science & Technology, 2019.]

    [13]

    王光宇. 珠江口海域潮流及物质输运特征研究[D]. 华南理工大学硕士学位论文, 2020

    WANG Guangyu. Study on the characteristics of tidal current and material transportation in the Pearl River Estuary[D]. Master Dissertation of South China University of Technology, 2020.]

    [14]

    Folk R L, Ward W C. Brazos river bar: a study in the significance of grain size parameters[J]. Journal of Sedimentary Research, 1957, 27(1):3-26. doi: 10.1306/74D70646-2B21-11D7-8648000102C1865D

    [15]

    Gao S, Collins M. Net sediment transport patterns inferred from grain-size trends, based upon definition of “transport vectors”[J]. Sedimentary Geology, 1992, 81(1-2):47-60. doi: 10.1016/0037-0738(92)90055-V

    [16]

    Gao S, Collins M B. Analysis of grain size trends, for defining sediment transport pathways in marine environments[J]. Journal of Coastal Research, 1994, 10(1):70-78.

    [17]

    Wu Z Y, Saito Y, Zhao D N, et al. Impact of human activities on subaqueous topographic change in Lingding Bay of the Pearl River estuary, China, during 1955–2013[J]. Scientific Reports, 2016, 6(1):37742. doi: 10.1038/srep37742

    [18]

    刘沛然, 闻平, 周作付, 等. 珠江口伶仃洋滩槽发育演变影响因素的分析[J]. 台湾海峡, 2000, 19(1):119-124

    LIU Peiran, WEN Ping, ZHOU Zuofu, et al. Analysis of influencing factor on shoal and though development of Lingdingyang Bay at Zhujiang Estuary[J]. Journal of Oceanography in Taiwan Strait, 2000, 19(1):119-124.]

    [19]

    唐诚, 赵艳, 张华, 等. 珠江口近30年海底表层沉积物粒度分布及其环境变化[J]. 海洋科学, 2013, 37(5):61-70

    TANG Cheng, ZHAO Yan, ZHANG Hua, et al. The changes of sea surface grain size distribution and its sedimentary environment during the last 30 years in the Zhujiang River Estuary[J]. Marine Sciences, 2013, 37(5):61-70.]

    [20]

    张涛, 牛丽霞, 何方婷, 等. 人类活动影响下伶仃洋沉积格局演变特征[J]. 沉积学报, 2022, 40(3):753-764

    ZHANG Tao, NIU Lixia, HE Fangting, et al. Anthropogenic impact on evolution of Lingding bay sedimentary framework[J]. Acta Sedimentologica Sinica, 2022, 40(3):753-764.]

    [21]

    时翠, 甘华阳, 夏真, 等. 珠江口内伶仃洋表层沉积物粒度特征及其运移趋势[J]. 海洋地质与第四纪地质, 2015, 35(1):13-20

    SHI Cui, GAN Huayang, XIA Zhen, et al. Characteristics and transport trend of surface sediments in inner Lingdingyang firth of the Pearl River estuary[J]. Marine Geology & Quaternary Geology, 2015, 35(1):13-20.]

    [22]

    Brown J M, Davies A G. Flood/ebb tidal asymmetry in a shallow sandy estuary and the impact on net sand transport[J]. Geomorphology, 2010, 114(3):431-439. doi: 10.1016/j.geomorph.2009.08.006

    [23]

    Chu A, Wang Z B, de Vriend H J. Analysis on residual coarse sediment transport in estuaries[J]. Estuarine, Coastal and Shelf Science, 2015, 163:194-205. doi: 10.1016/j.ecss.2015.06.003

    [24]

    Liu X P, Shen L, Li Z H, et al. Grain size characteristics of surface sediments in Yangtze Estuary Deepwater Channel and the possibility to restore the adjacent shoals[J]. Regional Studies in Marine Science, 2024, 77:103701. doi: 10.1016/j.rsma.2024.103701

    [25]

    金秉福. 粒度分析中偏度系数的影响因素及其意义[J]. 海洋科学, 2012, 36(2):129-135

    JIN Bingfu. Influencing factors and significance of the skewness coefficient in grain size analysis[J]. Marine Sciences, 2012, 36(2):129-135.]

    [26]

    潘俊, 陈小霞, 张敏, 等. 广东省茂名市典型河流沉积物粒度特征及分布规律[J]. 中国农村水利水电, 2024(8):25-32,40

    PAN Jun, CHEN Xiaoxia, ZHANG Min, et al. Grain size characteristics and distribution of typical fluvial sediments in Maoming City, Guangdong Province[J]. China Rural Water and Hydropower, 2024(8):25-32,40.]

    [27]

    卢连战, 史正涛. 沉积物粒度参数内涵及计算方法的解析[J]. 环境科学与管理, 2010, 35(6):54-60

    LU Lianzhan, SHI Zhengtao. Analysis for sediment grain size parameters of connotations and calculation method[J]. Environmental Science and Management, 2010, 35(6):54-60.]

    [28]

    Wu Z Y, Milliman J D, Zhao D N, et al. Geomorphologic changes in the Lower Pearl River Delta, 1850–2015, largely due to human activity[J]. Geomorphology, 2018, 314:42-54. doi: 10.1016/j.geomorph.2018.05.001

    [29]

    Yang L Z, Liu F, Gong W P, et al. Morphological response of Lingding Bay in the Pearl River Estuary to human intervention in recent decades[J]. Ocean & Coastal Management, 2019, 176:1-10.

    [30]

    Chu N Y, Yang Q S, Liu F, et al. Distribution of magnetic properties of surface sediment and its implications on sediment provenance and transport in Pearl River Estuary[J]. Marine Geology, 2020, 424:106162. doi: 10.1016/j.margeo.2020.106162

    [31]

    Chen K L, Lin Y T, Liu J, et al. Combined effects of massive reclamation and dredging on the variations in hydrodynamic and sediment transport in Lingdingyang Estuary, China[J]. Frontiers of Earth Science, 2024, 18(1):127-147. doi: 10.1007/s11707-022-1050-x

  • 加载中

(8)

(1)

计量
  • 文章访问数:  750
  • PDF下载数:  45
  • 施引文献:  0
出版历程
收稿日期:  2024-09-09
修回日期:  2024-10-12
录用日期:  2024-10-12
刊出日期:  2024-10-28

目录