琼东南海域冷泉微地震响应特征初探

胡广, 黄建宇, 杨胜雄, 李沅衡, 田冬梅, 曹荆亚, 周军明, 邓雨恬. 琼东南海域冷泉微地震响应特征初探——以“海马”冷泉为例[J]. 海洋地质与第四纪地质, 2024, 44(6): 12-24. doi: 10.16562/j.cnki.0256-1492.2024090903
引用本文: 胡广, 黄建宇, 杨胜雄, 李沅衡, 田冬梅, 曹荆亚, 周军明, 邓雨恬. 琼东南海域冷泉微地震响应特征初探——以“海马”冷泉为例[J]. 海洋地质与第四纪地质, 2024, 44(6): 12-24. doi: 10.16562/j.cnki.0256-1492.2024090903
HU Guang, HUANG Jianyu, YANG Shengxiong, LI Yuanheng, TIAN Dongmei, CAO Jingya, ZHOU Junming, DENG Yutian. Preliminary study on microseismic response characteristics of cold seep in Qiongdongnan sea area: A case study of “Haima” cold seep[J]. Marine Geology & Quaternary Geology, 2024, 44(6): 12-24. doi: 10.16562/j.cnki.0256-1492.2024090903
Citation: HU Guang, HUANG Jianyu, YANG Shengxiong, LI Yuanheng, TIAN Dongmei, CAO Jingya, ZHOU Junming, DENG Yutian. Preliminary study on microseismic response characteristics of cold seep in Qiongdongnan sea area: A case study of “Haima” cold seep[J]. Marine Geology & Quaternary Geology, 2024, 44(6): 12-24. doi: 10.16562/j.cnki.0256-1492.2024090903

琼东南海域冷泉微地震响应特征初探

  • 基金项目: 国家自然科学基金“南海北部高富集天然气水合物储层特征与成藏控制机理研究”(U2244224);广州市基础研究计划与基础应用研究项目“基于深度学习的冷泉羽状流地震资料高分辨率处理方法研究”(2023A04J0917);南方海洋科学与工程广东省实验室(广州)引进高端人才项目(GML2020GD0802)
详细信息
    作者简介: 胡广(1988—),男,博士,主要从事天然气水合物地震响应特征分析研究,E-mail:huguang@gmlab.ac.cn
    通讯作者: 杨胜雄(1964—),男,博士,正高级工程师,主要从事大洋矿产资源调查研究、海洋地质地球物理研究,E-mail:yangsx@gmlab.ac.cn
  • 中图分类号: P736.4

Preliminary study on microseismic response characteristics of cold seep in Qiongdongnan sea area: A case study of “Haima” cold seep

More Information
  • 海底天然气水合物区的冷泉系统中流体在运移过程中会冲击浅部地层,使下部地层中的流体物质发生“固-液-气”转化,其释放的能量导致裂隙坍塌和孔隙破裂,进而产生一系列与冷泉活动相关的微地震信号。这些微地震信号能够直观准确地反映天然气水合物区冷泉系统的生长发育状态及生命周期,揭示其流体逸散活动规律。本文研究了琼东南海域“海马”冷泉区2014和2021年的两次不同时间监测到的地震数据,经过相应的预处理,利用长短时窗能量比方法识别出了大量与冷泉活动相关的微地震事件。通过对这些微地震信号的波形、频谱特征和时间分布特征分析,了解了琼东南海域天然气水合物区冷泉微地震事件的响应特征。初步研究结果表明,“海马”冷泉区的冷泉活动产生的微地震事件包括短扰动信号和典型的冷泉微地震信号;波形尾部呈现类似指数的有规律的衰减,持续时间为0.3~2 s,主频分布在4~26 Hz以内。微地震活动不存在明显的类似潮汐的时间分布规律,多呈现短期集中分布的特点,这可能与冷泉喷口的活动及活动的强弱有关。

  • 加载中
  • 图 1  两个不同时间段的海底地震仪投放位置

    Figure 1. 

    图 2  2014年S12台站和2021年Geopro台站海底地震仪所记录的四分量微地震数据

    Figure 2. 

    图 3  冷泉区微地震数据处理流程及结果

    Figure 3. 

    图 4  S12台站和Geopro台站中STA/LTA方法自动拾取的冷泉微地震事件

    Figure 4. 

    图 5  冷泉活动微地震信号波形特征

    Figure 5. 

    图 6  冷泉活动微地震事件频谱图和时频图

    Figure 6. 

    图 7  两次观测实验中与冷泉活动相关的微地震事件主频分布图

    Figure 7. 

    图 8  S20台站不同时间段内E、N、Z三分量拾取的冷泉微地震事件统计直方图

    Figure 8. 

    图 9  S32台站不同时间段内E、N、Z三分量拾取的冷泉微地震事件统计直方图

    Figure 9. 

    图 10  Geopro台站2021年11月7—18日期间每日拾取最多次冷泉微地震事件的时间段折线图

    Figure 10. 

    表 1  两次投放的海底地震仪采样率、台站编号和记录时长

    Table 1.  The sampling rate, station number, and recording duration of the ocean bottom seismographers in the two deployments

    投放时间 采样率/Hz 台站编号 记录时长
    2014年
    4月18日
    500S1083 760 s
    S1286 160 s
    S1488 140 s
    S1690 660 s
    S1892 400 s
    S2094 500 s
    S2296 660 s
    S2498 160 s
    S26100 560 s
    S28102 840 s
    S30104 280 s
    S32106 260 s
    S34108 300 s
    2021年
    11月6日
    250Geopro台站约14 d
    下载: 导出CSV

    表 2  STA/LTA方法拾取与冷泉活动相关微地震事件参数设置

    Table 2.  The parameter settings of the STA/LTA method for picking up microseismic signals related to cold seep activity

    数据投放
    时间
    STA设置
    时间/s
    LTA设置
    时间/s
    开始
    触发值
    结束
    触发值
    2014-04-18 0.1 2 10 2
    2021-11-06 0.1 1 6 2
    下载: 导出CSV

    表 3  2014年4月18日13台海底地震仪冷泉微地震事件拾取数目统计

    Table 3.  The statistics of cold seep microseismic events recognized by 13 ocean bottom seismographers in 18 April 2014

    台站 各分量上拾取数量/次 拾取总
    量/次
    两个分量
    同时拾取到
    数量/次
    三个分量
    同时拾取到
    数量/次
    E分量 N分量 Z分量
    S10 62 44 54 160 21 28
    S12 6 3 7 16 1 2
    S14 16 11 10 37 2 6
    S16 27 23 101 151 9 15
    S18 11 20 42 73 10 4
    S20 609 298 465 1372 185 249
    S22 82 72 22 176 38 13
    S24 38 40 17 95 15 12
    S26 92 51 41 184 26 15
    S28 21 18 40 79 7 12
    S30 7 11 28 46 3 4
    S32 160 190 461 811 84 105
    S34 15 16 6 37 8 2
    合计 1146 797 1294 3237 409 467
    下载: 导出CSV

    表 4  2021年11月6—18日期间单台海底地震仪冷泉微地震事件拾取数目统计

    Table 4.  The statistics of cold seep microseismic events detected by a single ocean bottom seismographer from November 6-18, 2021

    日期
    (2021年)
    各分量上拾取数量/次 拾取总
    量/次
    两个分
    量同时
    拾取到
    数量/次
    三个分
    量同时
    拾取到
    数量/次
    四个分
    量同时
    拾取到
    数量/次
    E分量 N分量 Z分量 H分量
    11-06 10 40 33 12 95 4 0 0
    11-07 25 1013 98 7 1143 8 3 2
    11-08 22 9 152 3 186 4 0 0
    11-09 25 8 6 14 53 1 1 1
    11-10 14 7 8 6 35 4 0 0
    11-11 23 19 13 10 65 8 0 1
    11-12 22 3 2 5 32 1 0 0
    11-13 24 8 7 4 43 1 1 1
    11-14 11 11 9 25 56 4 0 1
    11-15 22 2 8 18 50 1 0 0
    11-16 29 1 4 7 41 0 0 0
    11-17 20 1 2 7 30 1 0 0
    11-18 23 1 1 10 35 0 0 0
    合计 270 1123 343 128 1864 37 5 6
    下载: 导出CSV
  • [1]

    张金华, 方念乔, 魏伟, 等. 天然气水合物成藏条件与富集控制因素[J]. 中国石油勘探, 2018, 23(3):35-46

    ZHANG Jinghua, FANG Nianqiao, WEI Wei, et al. Accumulation conditions and enrichment controlling factors of natural gas hydrate reservoirs[J]. China Petroleum Exploration, 2018, 23(3):35-46.]

    [2]

    You K, Flemings P B, Malinverno A, et al. Mechanisms of methane hydrate formation in geological systems[J]. Reviews of Geophysics, 2019, 57(4):1146-1196. doi: 10.1029/2018RG000638

    [3]

    万春燕, 张贺恩, 李磊, 等. 海洋天然气水合物降压开采装备现状与技术探讨[J]. 石油机械, 2024, 52(10):83-90

    WAN Chunyan, ZHANG He’en, LI Lei, et al. Current status and techniques of equipment for depressurization exploitation of marine gas hydrate[J]. China Petroleum Machinery, 2024, 52(10):83-90.]

    [4]

    苏丕波, 梁金强, 张伟, 等. 南海北部神狐海域天然气水合物成藏系统[J]. 天然气工业, 2020, 40(8):77-89

    SU Pibo, LIANG Jinqiang, ZHANG Wei, et al. Natural gas hydrate accumulation system in the Shenhu sea area of the northern South China Sea[J]. Natural Gas Industry, 2020, 40(8):77-89.]

    [5]

    梁金强, 宁伏龙, 张如伟, 等. 海域天然气水合物勘查开发进展及研究方向[J]. 地质学报, 2024, 98(9): 2533-2540

    LIANG Jinqiang, NING Fulong, ZHANG Ruwei, et al. Progress and research direction of marine natural gas hydrate exploration and development[J]. Acta Geologica Sinica, 2024, 98(9): 2533-2540. ]]

    [6]

    邸鹏飞, 冯东, 高立宝, 等. 海底冷泉流体渗漏的原位观测技术及冷泉活动特征[J]. 地球物理学进展, 2008, 23(5):1592-1602

    DI Pengfei, FENG Dong, GAO Libao, et al. In situ measurement of fluid flow and signatures of seep activity at marine seep sites[J]. Progress in Geophysics, 2008, 23(5):1592-1602.]

    [7]

    张锟, 宋海斌, 王宏斌, 等. 南海北部琼东南海域活动冷泉流场特征初探[J]. 科学通报, 2020, 65(12):1130-1140 doi: 10.1360/TB-2019-0582

    ZHANG Kun, SONG Haibin, WANG Hongbin, et al. A preliminary study on the active cold seeps flow field in the Qiongdongnan Sea Area, the northern South China Sea[J]. Chinese Science Bulletin, 2020, 65(12):1130-1140.] doi: 10.1360/TB-2019-0582

    [8]

    刘莉萍, 初凤友, 郭磊, 等. 海底天然气水合物及冷泉流体渗漏的原位观测技术[J]. 海洋学研究, 2023, 41(1):26-44

    LIU Liping, CHU Fengyou, GUO Lei, et al. Explorations of marine gas hydrate deposits and the signatures of hydrocarbon venting using in situ techniques[J]. Journal of Marine Sciences, 2023, 41(1):26-44.]

    [9]

    吴能友, 杨胜雄, 王宏斌, 等. 南海北部陆坡神狐海域天然气水合物成藏的流体运移体系[J]. 地球物理学报, 2009, 52(6):1641-1650

    WU Nengyou, YANG Shengxiong, WANG Hongbin, et al. Gas-bearing fluid influx sub-system for gas hydrate geological system in Shenhu Area, Northern South China Sea[J]. Chinese Journal of Geophysics, 2009, 52(6):1641-1650.]

    [10]

    何家雄, 夏斌, 孙东山, 等. 琼东南盆地油气成藏组合、运聚规律与勘探方向分析[J]. 石油勘探与开发, 2006, 33(1):53-58

    HE Jiaxiong, XIA Bin, SUN Dongshan, et al. Hydrocarbon accumulation, migration and play targets in the Qiongdongnan Basin, South China Sea[J]. Petroleum Exploration and Development, 2006, 33(1):53-58.]

    [11]

    张云山, 贾永刚, 尉建功. 海底冷泉原位观测装置研究回顾与展望[J]. 海洋地质与第四纪地质, 2022, 42(2):200-213

    ZHANG Yunshan, JIA Yonggang, WEI Jiangong. A review and prospect of in-situ observation equipment for cold seep[J]. Marine Geology & Quaternary Geology, 2022, 42(2):200-213.]

    [12]

    吕泰衡, 孙治雷, 耿威, 等. 海底冷泉区沉积物-水界面甲烷通量原位观测研究进展[J]. 海洋地质与第四纪地质, 2023, 43(4):167-180

    LV Taiheng, SUN Zhilei, GENG Wei, et al. Progress in in-situ observation of methane flux at sediment-water interface in cold seep[J]. Marine Geology & Quaternary Geology, 2023, 43(4):167-180.]

    [13]

    臧虎临, 侯贺晟, 安美建, 等. 海域天然地震资料采集方法综述[J]. 地球物理学进展, 2022, 37(5):2218-2224

    ZANG Hulin, HOU Hesheng, AN Meijian, et al. Seismological data acquisition methods in marine area[J]. Progress in Geophysics, 2022, 37(5):2218-2224.]

    [14]

    魏垚, 牛雄伟, 虞嘉辉, 等. 利用海底地震仪探测碳泄漏的研究进展[J]. 地震学报, 2023, 45(3):392-410

    WEI Yao, NIU Xiongwei, YU Jiahui, et al. Research progress on detection of carbon leakage by ocean bottom seismometer[J]. Acta Seismologica Sinica, 2023, 45(3):392-410.]

    [15]

    Lepore S, Grad M. Analysis of the primary and secondary microseisms in the wavefield of the ambient noise recorded in northern Poland[J]. Acta Geophysica, 2018, 66(5):915-929. doi: 10.1007/s11600-018-0194-2

    [16]

    Batsi E, Tsang-Hin-Sun E, Klingelhoefer F, et al. Nonseismic signals in the Ocean: indicators of deep sea and seafloor processes on ocean-bottom seismometer data[J]. Geochemistry, Geophysics, Geosystems, 2019, 20(8):3882-3900. doi: 10.1029/2019GC008349

    [17]

    Wang Y Z, Yang T, Wu Y C, et al. A new broad-band ocean bottom seismograph and characteristics of the seismic ambient noise on the South China Sea seafloor based on its recordings[J]. Geophysical Journal International, 2022, 230(1):684-695. doi: 10.1093/gji/ggac092

    [18]

    Ardhuin F, Gualtieri L, Stutzmann E. How ocean waves rock the Earth: two mechanisms explain microseisms with periods 3 to 300 s[J]. Geophysical Research Letters, 2015, 42(3):765-772. doi: 10.1002/2014GL062782

    [19]

    刘亚楠, 刘保华, 刘晨光, 等. 南海东部次海盆地震背景噪声分析[J]. 海洋地质与第四纪地质, 2021, 41(2):109-117

    LIU Ya’nan, LIU Baohua, LIU Chenguang, et al. Research on seismic background noise in the Eastern Subbasin of the South China Sea[J]. Marine Geology & Quaternary Geology, 2021, 41(2):109-117.]

    [20]

    Kuna V M, Nábělek J L. Seismic crustal imaging using fin whale songs[J]. Science, 2021, 371(6530):731-735. doi: 10.1126/science.abf3962

    [21]

    Dréo R, Bouffaut L, Leroy E, et al. Baleen whale distribution and seasonal occurrence revealed by an ocean bottom seismometer network in the Western Indian Ocean[J]. Deep Sea Research Part II: Topical Studies in Oceanography, 2019, 161:132-144. doi: 10.1016/j.dsr2.2018.04.005

    [22]

    Ugalde A, Gaite B, Ruiz M, et al. Seismicity and noise recorded by passive seismic monitoring of drilling operations offshore the Eastern Canary Islands[J]. Seismological Research Letters, 2019, 90(4):1565-1576.

    [23]

    段旻良, 童思友, 陈江欣, 等. 海底流体逃逸活动的地球物理响应特征[J]. 地球物理学进展, 2019, 34(5):2002-2015

    DUAN Minliang, TONG Siyou, CHEN Jiangxin, et al. Geophysical characteristics of seabed fluid escape[J]. Progress in Geophysics, 2019, 34(5):2002-2015.]

    [24]

    栾锡武, 李晓芸. 流体迁移和海底地形与天然气水合物的形成[J]. 海洋地质与第四纪地质, 2012, 32(2):1-10

    LUAN Xiwu, LI Xiaoyun. Sea floor topography of shallow gas hydrate area: data from okhotsk sea[J]. Marine Geology & Quaternary Geology, 2012, 32(2):1-10.]

    [25]

    Pontoise B, Hello Y. Monochromatic infra-sound waves recorded offshore Ecuador: possible evidence of methane release[J]. Terra Nova, 2002, 14(6):425-435. doi: 10.1046/j.1365-3121.2002.00437.x

    [26]

    Tary J B, Géli L, Guennou C, et al. Microevents produced by gas migration and expulsion at the seabed: a study based on sea bottom recordings from the Sea of Marmara[J]. Geophysical Journal International, 2012, 190(2):993-1007. doi: 10.1111/j.1365-246X.2012.05533.x

    [27]

    Tsang-Hin-Sun E, Batsi E, Klingelhoefer F, et al. Spatial and temporal dynamics of gas-related processes in the Sea of Marmara monitored with ocean bottom seismometers[J]. Geophysical Journal International, 2019, 216(3):1989-2003. doi: 10.1093/gji/ggy535

    [28]

    Sultan N, Riboulot V, Ker S, et al. Dynamics of fault-fluid-hydrate system around a shale-cored anticline in deepwater Nigeria[J]. Journal of Geophysical Research: Solid Earth, 2011, 116(B12):B12110. doi: 10.1029/2011JB008218

    [29]

    Franek P, Plaza-Faverola A, Mienert J, et al. Microseismicity linked to gas migration and leakage on the western Svalbard shelf[J]. Geochemistry, Geophysics, Geosystems, 2017, 18(12):4623-4645. doi: 10.1002/2017GC007107

    [30]

    朱俊江, 李三忠, 陆敬安, 等. 南海北部神狐海域地质环境综合调查及科学意义[J]. 地球科学, 2020, 45(4):1416-1426

    ZHU Junjiang, LI Sanzhong, LU Jing’an, et al. Scientific implications and preliminary surveying results of geological and physical oceanography environment in the Shenhu Area of the northern South China Sea[J]. Earth Science, 2020, 45(4):1416-1426.]

    [31]

    Wang X C, Nie B, Wu Z Y, et al. Identification and characteristics analysis of micro-seismic signals in the Haima Seep Area[J]. Journal of Earth Science, 2024, 35(1):288-291. doi: 10.1007/s12583-024-1968-x

    [32]

    Liu B, Huang J Y, Jiang W B, et al. Seismic monitoring of sub-seafloor fluid processes in the [36]Haima cold seep area using an Ocean Bottom Seismometer (OBS)[J]. Earth and Planetary Physics, 2023, 7(5): 582-602.

    [33]

    王宜志, 杨挺, 刘晨光, 等. 中国南海西北次海盆海底地震记录的短时事件分析[J]. 地震学报, 2023, 45(3):431-444 doi: 10.11939/jass.20220175

    WANG Yizhi, YANG Ting, LIU Chenguang, et al. Short duration events on OBS recordings in the Northwest Sub-basin of the South China Sea[J]. Acta Seismologica Sinica, 2023, 45(3):431-444.] doi: 10.11939/jass.20220175

    [34]

    刘晨光, 华清峰, 裴彦良, 等. 南海海底天然地震台阵观测实验及其数据质量分析[J]. 科学通报, 2014, 59(16):1542-1552 doi: 10.1360/csb2014-59-16-1542

    LIU Chenguang, HUA Qingfeng, PEI Yanliang, et al. Passive-source Ocean Bottom Seismograph (OBS) array experiment in South China Sea and data quality analyses[J]. Chinese Science Bulletin, 2014, 59(16):1542-1552.] doi: 10.1360/csb2014-59-16-1542

    [35]

    孙国静, 管红香, 张志顺, 等. 南海海马冷泉区沉积物孔隙水地球化学特征对冷泉活动的指示[J]. 海洋地质与第四纪地质, 2024, 44(1):1-14

    SUN Guojing, GUAN Hongxiang, ZHANG Zhishun, et al. Geochemical characteristics of sediment pore water in Haima area of the South China Sea: an indication of cold seeps[J]. Marine Geology & Quaternary Geology, 2024, 44(1):1-14.]

    [36]

    Huang Y Y, Feng J C, Xie Y, et al. Phase equilibrium characteristics of natural gas hydrate formation at the deep-water environment of “Haima” cold seep[J]. Energy Reports, 2022, 8:5501-5509. doi: 10.1016/j.egyr.2022.04.011

    [37]

    赵静, 梁前勇, 尉建功, 等. 南海北部陆坡西部海域“海马”冷泉甲烷渗漏及其海底表征[J]. 地球化学, 2020, 49(1):108-118

    ZHAO Jing, LIANG Qianyong, WEI Jiangong, et al. Seafloor geology and geochemistry characteristic of methane seepage of the “Haima” cold seep, northwestern slope of the South China Sea[J]. Geochimica, 2020, 49(1):108-118.]

    [38]

    Feng J X, Yang S X, Wang H B, et al. Methane source and turnover in the shallow sediments to the west of Haima cold seeps on the northwestern slope of the South China Sea[J]. Geofluids, 2019, 2019:1010824.

    [39]

    杨力, 刘斌, 徐梦婕, 等. 南海北部琼东南海域活动冷泉特征及形成模式[J]. 地球物理学报, 2018, 61(7):2905-2914

    YANG Li, LIU Bin, XU Mengjie, et al. Characteristics of active cold seepages in Qiongdongnan Sea area of the northern South China Sea[J]. Chinese Journal of Geophysics, 2018, 61(7):2905-2914.]

    [40]

    赵文宇, 童思友, 陈江欣, 等. 海底冷泉羽状流及其资源效应探讨[J]. 地球物理学进展, 2021, 36(5):2251-2263

    ZHAO Wenyu, TONG Siyou, CHEN Jiangxin, et al. Discussion on the submarine bubble plume and its effect on hydrocarbon resources[J]. Progress in Geophysics, 2021, 36(5):2251-2263.]

    [41]

    Stevenson P R. Microearthquakes at Flathead Lake, Montana: A study using automatic earthquake processing[J]. Bulletin of the Seismological Society of America, 1976, 66(1):61-80.

    [42]

    Allen R V. Automatic earthquake recognition and timing from single traces[J]. Bulletin of the Seismological Society of America, 1978, 68(5):1521-1532. doi: 10.1785/BSSA0680051521

    [43]

    Earle P S, Shearer P M. Characterization of global seismograms using an automatic-picking algorithm[J]. Bulletin of the Seismological Society of America, 1994, 84(2):366-376. doi: 10.1785/BSSA0840020366

    [44]

    杨胜雄, 梁金强, 陆敬安, 等. 南海北部神狐海域天然气水合物成藏特征及主控因素新认识[J]. 地学前缘, 2017, 24(4):1-14

    YANG Shengxiong, LIANG Jinqiang, LU Jing'an, et al. New understandings on the characteristics and controlling factors of gas hydrate reservoirs in the Shenhu area on the northern slope of the South China Sea[J]. Earth Science Frontiers, 2017, 24(4):1-14.]

    [45]

    雷裕红, 宋颖睿, 张立宽, 等. 海洋天然气水合物成藏系统研究进展及发展方向[J]. 石油学报, 2021, 42(6):801-820

    LEI Yuhong, SONG Yingrui, ZHANG Likuan, et al. Research progress and development direction of reservoir-forming system of marine gas hydrates[J]. Acta Petrolei Sinica, 2021, 42(6):801-820.]

  • 加载中

(10)

(4)

计量
  • 文章访问数:  236
  • PDF下载数:  30
  • 施引文献:  0
出版历程
收稿日期:  2024-09-09
修回日期:  2024-12-03
刊出日期:  2024-12-28

目录