南海天然气水合物智能识别方法与应用

田冬梅, 杨胜雄, 刘鑫, 李沅衡, 胡广, 曹荆亚, 周军明, 邓雨恬. 南海天然气水合物智能识别方法与应用[J]. 海洋地质与第四纪地质, 2024, 44(6): 25-33. doi: 10.16562/j.cnki.0256-1492.2024092401
引用本文: 田冬梅, 杨胜雄, 刘鑫, 李沅衡, 胡广, 曹荆亚, 周军明, 邓雨恬. 南海天然气水合物智能识别方法与应用[J]. 海洋地质与第四纪地质, 2024, 44(6): 25-33. doi: 10.16562/j.cnki.0256-1492.2024092401
TIAN Dongmei, YANG Shengxiong, LIU Xin, LI Yuanheng, HU Guang, CAO Jingya, ZHOU Junming, DENG Yutian. Intelligent identification and application of gas hydrate in South China Sea[J]. Marine Geology & Quaternary Geology, 2024, 44(6): 25-33. doi: 10.16562/j.cnki.0256-1492.2024092401
Citation: TIAN Dongmei, YANG Shengxiong, LIU Xin, LI Yuanheng, HU Guang, CAO Jingya, ZHOU Junming, DENG Yutian. Intelligent identification and application of gas hydrate in South China Sea[J]. Marine Geology & Quaternary Geology, 2024, 44(6): 25-33. doi: 10.16562/j.cnki.0256-1492.2024092401

南海天然气水合物智能识别方法与应用

  • 基金项目: 国家自然科学基金国家重大科研仪器研制项目“海底地震与电磁同步探测系统关键技术及验证样机”(42327901); 国家自然科学基金项目“南海北部高富集天然气水合物储层特征与成藏控制机理研究”(U2244224);广州市基础与应用基础研究项目“基于地震属性海域天然气水合物识别方法研究”(2023A04J0916)
详细信息
    作者简介: 田冬梅(1995—),女,博士,主要从事海洋地球物理、天然气水合物识别计算研究,E-mail:dongmeitian@gmlab.ac.cn
    通讯作者: 刘鑫(1983—),男,硕士,高级工程师,主要从事海洋地质环境相关研究,E-mail:lxin05@gmlab.ac.cn
  • 中图分类号: P714

Intelligent identification and application of gas hydrate in South China Sea

More Information
  • 天然气水合物是一种重要的能源资源,具有能量高、储量大、分布广和埋藏浅等优势。准确地从地层中识别出天然气水合物储层是应用天然气水合物资源的必要前提。本文围绕水合物勘探识别的难点问题,结合海洋-地质-人工智能学科交叉技术,以具有显示度的地球物理属性参数为基础,研究并提出了有效的含水合物地层识别技术方法,在中国南海东沙海域研究区进行了方法的验证,选择了几种较为常用的机器学习算法,例如随机森林、Bagging、AdaBoost、和最近邻(KNN)算法,对水合物变化灵敏度较高的纵波速度和密度属性进行数据分析,通过训练优化不同算法模型参数,对比不同算法模型的识别分类效果。结果表明,这几种算法都能够较好地对地层中是否含有水合物进行区分,其中KNN性能最好,表明基于机器学习手段能够提高天然气水合物的识别精度和准确性。

  • 加载中
  • 图 1  全球天然气水合物分布图(据文献[3]修改)

    Figure 1. 

    图 2  研究区位置

    Figure 2. 

    图 3  GMGS2-05、GMGS2-08和GMGS2-16站位纵波速度和密度测井曲线

    Figure 3. 

    图 4  AdaBoost算法对GMGS2-05、GMGS2-08和GMGS2-16纵波速度和密度数据训练识别水合物结果

    Figure 4. 

    图 5  随机森林算法对GMGS2-05、GMGS2-08和GMGS2-16站位纵波速度和密度数据训练识别水合物结果

    Figure 5. 

    图 6  Bagging算法对GMGS2-05、GMGS2-08和GMGS2-16站位纵波速度和密度数据训练识别水合物结果

    Figure 6. 

    图 7  KNN算法对GMGS2-05、GMGS2-08和GMGS2-16站位纵波速度和密度数据训练识别水合物结果

    Figure 7. 

    图 8  不同算法模型的ROC曲线

    Figure 8. 

    表 1  评价结果指标意义

    Table 1.  Significance of evaluation results indicators

    预测为真预测为负
    实际为真TPFN
    实际为负FPTN
    下载: 导出CSV

    表 2  每个模型的超参数调整

    Table 2.  Hyperparameter tuning for each algorithm

    监督模型超参数调整范围最优参数
    AdaBoostN estimators5~2515
    Learning rate0.1~0.90.5
    RFmax leaf nodes5~4510
    n estimators0~15030
    Baggingn estimators10~500100
    Max samples50~500150
    KNNN neighbors5~20010
    weightsuniform/distanceuniform
    下载: 导出CSV

    表 3  各算法评价指标计算结果

    Table 3.  Calculation results of evaluation indicators of each algorithm

    Supervision algorithm Accuracy Precision Recall F1 AUC
    AdaBoost 0.9171 0.8625 0.4726 0.6106 0.9146
    Random forest 0.9388 0.8857 0.6370 0.7410 0.9278
    Bagging 0.9341 0.8725 0.6096 0.7177 0.9449
    KNN 0.9379 0.8636 0.6507 0.7422 0.9580
    下载: 导出CSV
  • [1]

    Sloan E D Jr, Koh C A. Clathrate Hydrates of Natural Gases[M]. 3rd ed. Boca Raton: CRC Press, 2007.

    [2]

    Chong Z R, Yang S H B, Babu P, et al. Review of natural gas hydrates as an energy resource: Prospects and challenges[J]. Applied Energy, 2016, 162:1633-1652. doi: 10.1016/j.apenergy.2014.12.061

    [3]

    Collett T S, Johnson A H, Knapp C C, et al. Natural gas hydrates-A review[M]//Collett T, Johnson A, Knapp C, et al. Natural Gas Hydrates—Energy Resource Potential and Associated Geologic Hazards. American Association of Petroleum Geologists, 2009, 89: 146-219.

    [4]

    Boswell R, Hancock S, Yamamoto K, et al. Natural gas hydrates: Status of potential as an energy resource[M]//Letcher T M. Future Energy: Improved, Sustainable and Clean Options for our Planet. 3rd ed. New York: Elsevier, 2020: 111-135.

    [5]

    Yang S X, Liang J Q, Lei Y, et al. GMGS4 gas hydrate drilling expedition in the South China Sea[J]. Fire in the Ice, 2017, 17(1):7-11.

    [6]

    雷裕红, 宋颖睿, 张立宽, 等. 海洋天然气水合物成藏系统研究进展及发展方向[J]. 石油学报, 2021, 42(6):801-820

    LEI Yuhong, SONG Yingrui, ZHANG Likuan, et al. Research progress and development direction of reservoir-forming system of marine gas hydrates[J]. Acta Petrolei Sinica, 2021, 42(6):801-820.]

    [7]

    Zhang G X, Liang J Q, Lu J A, et al. Geological features, controlling factors and potential prospects of the gas hydrate occurrence in the east part of the Pearl River Mouth Basin, South China Sea[J]. Marine and Petroleum Geology, 2015, 67:356-367. doi: 10.1016/j.marpetgeo.2015.05.021

    [8]

    Liang J Q, Zhang W, Lu J A, et al. Geological occurrence and accumulation mechanism of natural gas hydrates in the eastern Qiongdongnan Basin of the South China Sea: Insights from Site GMGS5-W9-2018[J]. Marine Geology, 2019, 418:106042. doi: 10.1016/j.margeo.2019.106042

    [9]

    Sha Z B, Liang J Q, Zhang G X, et al. A seepage gas hydrate system in northern South China Sea: Seismic and well log interpretations[J]. Marine Geology, 2015, 366:69-78. doi: 10.1016/j.margeo.2015.04.006

    [10]

    Milkov A V. Global estimates of hydrate-bound gas in marine sediments: how much is really out there?[J]. Earth-Science Reviews, 2004, 66(3-4):183-197. doi: 10.1016/j.earscirev.2003.11.002

    [11]

    勾丽敏, 张金华, 王嘉玮. 海洋天然气水合物地震识别方法研究进展[J]. 地球物理学进展, 2017, 32(6):2626-2635

    GOU Limin, ZHANG Jinhua, WANG Jiawei. Progress in seismic identification approach of marine gas hydrate[J]. Progress in Geophysics, 2017, 32(6):2626-2635.]

    [12]

    宋海斌, 张岭, 江为为, 等. 海洋天然气水合物的地球物理研究(Ⅲ): 似海底反射[J]. 地球物理学进展, 2003, 18(2):182-187

    SONG Haibin, ZHANG Ling, JIANG Weiwei, et al. Geophysical researches on marine gas hydrates (Ⅲ): bottom simulating reflections[J]. Progress in Geophysics, 2003, 18(2):182-187.]

    [13]

    White R S. Gas hydrate layers trapping free gas in the Gulf of Oman[J]. Earth and Planetary Science Letters, 1979, 42(1):114-120. doi: 10.1016/0012-821X(79)90196-1

    [14]

    Stoll R D, Ewing J, Bryan G M. Anomalous wave velocities in sediments containing gas hydrates[J]. Journal of Geophysical Research, 1971, 76(8):2090-2094. doi: 10.1029/JB076i008p02090

    [15]

    Liu X W, He J, Sun Q L. Gas hydrate identification from △Vp/△Vs[C]//Beijing 2009 International Geophysical Conference & Exposition. Beijing: Society of Exploration Geophysicists, 2009: 150.

    [16]

    Tian D M, Liu X W. Identification of gas hydrate based on velocity cross plot analysis[J]. Marine Geophysical Research, 2021, 42(2):11. doi: 10.1007/s11001-021-09431-3

    [17]

    Chen J Z, You J C, Wei J T, et al. Interpreting XGBoost predictions for shear-wave velocity using SHAP: Insights into gas hydrate morphology and saturation[J]. Fuel, 2024, 364:131145. doi: 10.1016/j.fuel.2024.131145

    [18]

    Luo Y L, Zhang G L, Liang G W, et al. Limited-label multiscale deep-learning multihorizon tracking[J]. IEEE Transactions on Geoscience and Remote Sensing, 2024, 62:5918814.

    [19]

    王迪, 张益明, 张繁昌, 等. 利用先验信息约束的深度学习方法定量预测致密砂岩“甜点”[J]. 石油地球物理勘探, 2023, 58(1):65-74

    WANG Di, ZHANG Yiming, ZHANG Fanchang, et al. Quantitative prediction of tight sandstone sweet spots based on deep learning method with prior information constraints[J]. Oil Geophysical Prospecting, 2023, 58(1):65-74.]

    [20]

    Bai Y, Tan M J. Dynamic committee machine with fuzzy-c-means clustering for total organic carbon content prediction from wireline logs[J]. Computers & Geosciences, 2021, 146:104626.

    [21]

    陈钢花, 张寓侠, 王军, 等. 双向长短时记忆神经网络在滩坝砂储层岩性识别中的应用[J]. 测井技术, 2023, 47(3):319-325

    CHEN Ganghua, ZHANG Yuxia, WANG Jun, et al. Application of BiLSTM in lithology identification of beach-bar sand reservoir[J]. Well Logging Technology, 2023, 47(3):319-325.]

    [22]

    Chen Y J, Dunn K J, Liu X W, et al. New method for estimating gas hydrate saturation in the Shenhu area[J]. Geophysics, 2014, 79(5):IM11-IM22. doi: 10.1190/geo2013-0264.1

    [23]

    Zhu X Y, Liu T, Ma S, et al. Morphology identification of gas hydrate based on a machine learning method and its applications on saturation estimation[J]. Geophysical Journal International, 2023, 234(2):1307-1325. doi: 10.1093/gji/ggad133

    [24]

    杨笑, 王志章, 周子勇, 等. 基于参数优化AdaBoost算法的酸性火山岩岩性分类[J]. 石油学报, 2019, 40(4):457-467

    YANG Xiao, WANG Zhizhang, ZHOU Ziyong, et al. Lithology classification of acidic volcanic rocks based on parameter-optimized AdaBoost algorithm[J]. Acta Petrolei Sinica, 2019, 40(4):457-467.]

    [25]

    Breiman L. Random forests[J]. Machine Learning, 2001, 45(1):5-23. doi: 10.1023/A:1010933404324

    [26]

    任涛, 林梦楠, 陈宏峰, 等. 基于Bagging集成学习算法的地震事件性质识别分类[J]. 地球物理学报, 2019, 62(1):383-392

    REN Tao, LIN Mengnan, CHEN Hongfeng, et al. Seismic event classification based on Bagging ensemble learning algorithm[J]. Chinese Journal of Geophysics, 2019, 62(1):383-392.]

    [27]

    Bayar B, Stamm M C. Constrained convolutional neural networks: a new approach towards general purpose image manipulation detection[J]. IEEE Transactions on Information Forensics and Security, 2018, 13(11):2691-2706. doi: 10.1109/TIFS.2018.2825953

    [28]

    Nguyen B, Morell C, De Baets B. Large-scale distance metric learning for k-nearest neighbors regression[J]. Neurocomputing, 2016, 214:805-814. doi: 10.1016/j.neucom.2016.07.005

  • 加载中

(8)

(3)

计量
  • 文章访问数:  324
  • PDF下载数:  35
  • 施引文献:  0
出版历程
收稿日期:  2024-09-24
修回日期:  2024-12-23
刊出日期:  2024-12-28

目录