电火花震源高分辨率地震勘探技术及其在海域天然气水合物识别中的应用

骆迪, 蔡峰, 闫桂京, 李清, 孙运宝, 董刚, 李昂. 电火花震源高分辨率地震勘探技术及其在海域天然气水合物识别中的应用[J]. 海洋地质与第四纪地质, 2024, 44(6): 34-45. doi: 10.16562/j.cnki.0256-1492.2024091301
引用本文: 骆迪, 蔡峰, 闫桂京, 李清, 孙运宝, 董刚, 李昂. 电火花震源高分辨率地震勘探技术及其在海域天然气水合物识别中的应用[J]. 海洋地质与第四纪地质, 2024, 44(6): 34-45. doi: 10.16562/j.cnki.0256-1492.2024091301
LUO Di, CAI Feng, YAN Guijing, LI Qing, SUN Yunbao, DONG Gang, LI Ang. High-resolution seismic exploration technology with spark source and its application in identification of natural gas hydrates in marine areas[J]. Marine Geology & Quaternary Geology, 2024, 44(6): 34-45. doi: 10.16562/j.cnki.0256-1492.2024091301
Citation: LUO Di, CAI Feng, YAN Guijing, LI Qing, SUN Yunbao, DONG Gang, LI Ang. High-resolution seismic exploration technology with spark source and its application in identification of natural gas hydrates in marine areas[J]. Marine Geology & Quaternary Geology, 2024, 44(6): 34-45. doi: 10.16562/j.cnki.0256-1492.2024091301

电火花震源高分辨率地震勘探技术及其在海域天然气水合物识别中的应用

  • 基金项目: 国家自然科学基金“南海北部高富集天然气水合物储层特征与成藏控制机理研究”(U2244224), “马克兰增生楔低角度俯冲区断层'接力'过程及其对水合物成藏的控制”(42076069)
详细信息
    作者简介: 骆迪(1982—),女,博士,副研究员 ,主要从事海洋综合地球物理及天然气水合物研究,E-mail:luodi0927@sina.com
    通讯作者: 蔡峰(1965—),男,博士,研究员,主要从事资源评价及油气地质研究,E-mail:caifeng@cgs.cn
  • 中图分类号: P631.4;P736

High-resolution seismic exploration technology with spark source and its application in identification of natural gas hydrates in marine areas

More Information
  • 精准识别天然气水合物对于保障国家能源安全、优化能源结构和环境保护等方面都具有重要的战略意义。地震勘探技术是水合物勘查的重要手段,但海域多道地震勘探多采用气枪震源,震源主频较低,导致地震波的分辨率有限,限制了其在探测浅表层或细微地质结构中的能力。随着水合物勘查精度和难度日益增长,采用气枪震源的地震勘探技术已无法满足精细刻画水合物矿体的需要。因此,提高地震勘探技术的分辨率对于水合物勘查而言至关重要。本文介绍了一种基于电火花震源的小道距高分辨率地震探测技术,通过与气枪震源的对比分析,深入探讨了电火花震源的特点及其在海域水合物勘查中的应用,研究结果表明,电火花震源地震勘探技术在扩散型水合物和浅表层渗漏型水合物识别中都具有良好的应用效果,尤其是对于浅表层渗漏型水合物,电火花震源地震可以更好地识别出海底和浅部地层的振幅异常、流体运移通道和海底微地貌,可有效提高浅表层渗漏型水合物识别的可靠性。

  • 加载中
  • 图 1  气枪震源与电火花震源叠加剖面及对应频谱[27]

    Figure 1. 

    图 2  电火花震源单炮低通滤波扫描

    Figure 2. 

    图 3  电火花震源单炮高通滤波扫描

    Figure 3. 

    图 4  气枪震源与电火花震源单炮振幅能量对比

    Figure 4. 

    图 5  小道距高分辨率地震采集观测系统示意图

    Figure 5. 

    图 6  含水合物沉积层模型

    Figure 6. 

    图 7  气枪震源和电火花震源数值模拟结果对比

    Figure 7. 

    图 8  过扩散型水合物的地震剖面

    Figure 8. 

    图 9  过扩散型水合物的地震属性剖面

    Figure 9. 

    图 10  过浅表层水合物地震剖面(下)和沿海底下方振幅分布曲线(上)

    Figure 10. 

    图 11  围绕气烟囱环状分布的浅表层渗漏型水合物地震剖面

    Figure 11. 

    图 12  围绕气烟囱环状分布的浅表层渗漏型水合物地震属性剖面

    Figure 12. 

  • [1]

    Rincón-Martínez D, Ruge S M, Arias A S. Seismic analysis of the geological occurrence of gas hydrate in the Colombian Caribbean offshore[J]. Journal of South American Earth Sciences, 2022, 116:103800. doi: 10.1016/j.jsames.2022.103800

    [2]

    Shipley T H, Houston M H, Buffler R T, et al. Seismic evidence for widespread possible gas hydrate horizons on continental slopes and rises[J]. American Association of Petroleum Geologists Bulletin, 1979, 63(12):2204-2213.

    [3]

    Vanneste M, De Batist M, Golmshtok A, et al. Multi-frequency seismic study of gas hydrate-bearing sediments in Lake Baikal, Siberia[J]. Marine Geology, 2001, 172(1-2):1-21. doi: 10.1016/S0025-3227(00)00117-1

    [4]

    Foschi M, Etiope G, Cartwright J A. Seismic evidence of extensive microbial gas migration and trapping in submarine gas hydrates (Rakhine Basin, Bay of Bengal)[J]. Marine and Petroleum Geology, 2023, 149:106100. doi: 10.1016/j.marpetgeo.2023.106100

    [5]

    Yoo D G, Kang N K, Yi B Y, et al. Occurrence and seismic characteristics of gas hydrate in the Ulleung Basin, East Sea[J]. Marine and Petroleum Geology, 2013, 47:236-247. doi: 10.1016/j.marpetgeo.2013.07.001

    [6]

    Pecher I A, Kukowski N, Huebscher C, et al. The link between bottom-simulating reflections and methane flux into the gas hydrate stability zone – new evidence from Lima Basin, Peru Margin[J]. Earth and Planetary Science Letters, 2001, 185(3-4):343-354. doi: 10.1016/S0012-821X(00)00376-9

    [7]

    Zhang W, Liang J Q, Qiu H J, et al. Double bottom simulating reflectors and tentative interpretation with implications for the dynamic accumulation of gas hydrates in the northern slope of the Qiongdongnan Basin, South China Sea[J]. Journal of Asian Earth Sciences, 2022, 229:105151. doi: 10.1016/j.jseaes.2022.105151

    [8]

    宋海斌, 张岭, 江为为, 等. 海洋天然气水合物的地球物理研究(III): 似海底反射[J]. 地球物理学进展, 2003, 18(2):182-187 doi: 10.3969/j.issn.1004-2903.2003.02.002

    SONG Haibin, ZHANG Ling, JIANG Weiwei, et al. Geophysical researches on marine gas Hydrates (III): bottom simulating reflections[J]. Progress in Geophysics, 2003, 18(2):182-187.] doi: 10.3969/j.issn.1004-2903.2003.02.002

    [9]

    Yi B Y, Lee G H, Horozal S, et al. Qualitative assessment of gas hydrate and gas concentrations from the AVO characteristics of the BSR in the Ulleung Basin, East Sea (Japan Sea)[J]. Marine and Petroleum Geology, 2011, 28(10):1953-1966. doi: 10.1016/j.marpetgeo.2010.12.001

    [10]

    Yuan T, Spence G D, Hyndman R D, et al. Seismic velocity studies of a gas hydrate bottom-simulating reflector on the northern Cascadia continental margin: amplitude modeling and full waveform inversion[J]. Journal of Geophysical Research: Solid Earth, 1999, 104(B1):1179-1191. doi: 10.1029/1998JB900020

    [11]

    Crutchley G J, Maslen G, Pecher I A, et al. High-resolution seismic velocity analysis as a tool for exploring gas hydrate systems: an example from New Zealand's southern Hikurangi margin[J]. Interpretation, 2016, 4(1):SA1-SA12. doi: 10.1190/INT-2015-0042.1

    [12]

    Turco F, Crutchley G J, Gorman A R, et al. Seismic velocity and reflectivity analysis of concentrated gas hydrate deposits on the southern Hikurangi Margin (New Zealand)[J]. Marine and Petroleum Geology, 2020, 120:104572. doi: 10.1016/j.marpetgeo.2020.104572

    [13]

    Jeong T, Byun J, Choi H, et al. Estimation of gas hydrate saturation in the Ulleung basin using seismic attributes and a neural network[J]. Journal of Applied Geophysics, 2014, 106:37-49. doi: 10.1016/j.jappgeo.2014.04.006

    [14]

    沙志彬, 梁金强, 郑涛, 等. 地震属性在天然气水合物预测中的应用[J]. 海洋地质与第四纪地质, 2013, 33(5):185-192

    SHA Zhibin, LIANG Jinqiang, ZHENG Tao, et al. The application of seismic attributes to the prediction of gas hydrates[J]. Marine Geology & Quaternary Geology, 2013, 33(5):185-192.]

    [15]

    王秀娟, 吴时国, 徐宁. 地震属性参数在识别天然气水合物和游离气分布模式中的应用[J]. 海洋与湖沼, 2006, 37(3):271-279 doi: 10.3321/j.issn:0029-814X.2006.03.012

    WANG Xiujuan, WU Shiguo, XU Ning. Determining the distribution model of hydrate and free gas occurrence in sediment with seismic attribute parameters[J]. Oceanologia et Limnologia Sinica, 2006, 37(3):271-279.] doi: 10.3321/j.issn:0029-814X.2006.03.012

    [16]

    邢磊. 海洋小多道地震高精度探测关键技术研究[D]. 中国海洋大学硕士学位论文, 2012

    XING Lei. Study of the key technologies of high-precision marine multichannel seismic survey[D]. Master Dissertation of Ocean University of China, 2012.]

    [17]

    戚宾, 王祥春, 赵庆献. 海洋电火花震源地震勘探研究进展[J]. 物探与化探, 2020, 44(1):107-111

    QI Bin, WANG Xiangchun, ZHAO Qingxian. Research on the progress of marine sparker seismic exploration[J]. Geophysical and Geochemical Exploration, 2020, 44(1):107-111.]

    [18]

    Buogo S, Cannelli G B. Implosion of an underwater spark-generated bubble and acoustic energy evaluation using the Rayleigh model[J]. The Journal of the Acoustical Society of America, 2002, 111(6):2594-2600. doi: 10.1121/1.1476919

    [19]

    卢新培, 潘垣, 张寒虹. 水中脉冲放电的电特性与声辐射特性研究[J]. 物理学报, 2002, 51(7):1549-1553 doi: 10.3321/j.issn:1000-3290.2002.07.024

    LU Xinpei, PAN Yuan, ZHANG Hanhong. The electrical and acoustical characteristics of pulsed discharge in water[J]. Acta Physica Sinica, 2002, 51(7):1549-1553.] doi: 10.3321/j.issn:1000-3290.2002.07.024

    [20]

    秦曾衍, 左公宁, 王永荣, 等. 高压强脉冲放电及其应用[M]. 北京: 北京工业大学出版社, 2000

    QIN Zengyan, ZUO Gongning, WANG Yongrong, et al. The Application of High Voltage and Super-Density Pulse Discharge[M]. Beijing: Beijing Industry University Press, 2000.]

    [21]

    裴彦良, 王揆洋, 李官保, 等. 海洋工程地震勘探震源及其应用研究[J]. 石油仪器, 2007, 21(2):20-23

    PEI Yanliang, WANG Kuiyang, LI Guanbao, et al. Application study of marine engineering seismic sources[J]. Petroleum Instruments, 2007, 21(2):20-23.]

    [22]

    刘怀山, 王文秋, 尹燕欣. 海洋地球物理探测在海岸工程建设中的应用: 以曹妃甸港为例[J]. 海岸工程, 2022, 41(4):313-327 doi: 10.12362/j.issn.1002-3682.20220727001

    LIU Huaishan, WANG Wenqiu, YIN Yanxin. Offshore geophysical prospecting on coastal engineering: a case study in Caofeidian[J]. Coastal Engineering, 2022, 41(4):313-327.] doi: 10.12362/j.issn.1002-3682.20220727001

    [23]

    Anitha G, Ramana M V, Ramprasad T, et al. Shallow geological environment of Krishna–Godavari offshore, eastern continental margin of India as inferred from the interpretation of high resolution sparker data[J]. Journal of Earth System Science, 2014, 123(2):329-342. doi: 10.1007/s12040-013-0399-3

    [24]

    Mangipudi V R, Goli A, Desa M, et al. Synthesis of deep multichannel seismic and high resolution sparker data: implications for the geological environment of the Krishna–Godavari offshore, Eastern Continental Margin of India[J]. Marine and Petroleum Geology, 2014, 58:339-355. doi: 10.1016/j.marpetgeo.2014.08.006

    [25]

    易虎, 詹文欢, 闵伟, 等. 小多道地震震源效果在海域活动断裂探测中的对比研究[J]. 地震地质, 2022, 44(2):333-348 doi: 10.3969/j.issn.0253-4967.2022.02.004

    YI Hu, ZHAN Wenhuan, MIN Wei, et al. A comparative study of source effect based on mini-multichannel seismic profile in marine active fault detection[J]. Seismology and Geology, 2022, 44(2):333-348.] doi: 10.3969/j.issn.0253-4967.2022.02.004

    [26]

    骆迪, 蔡峰, 闫桂京, 等. 浅表层天然气水合物高分辨率地震勘探方法与应用[J]. 海洋地质前沿, 2020, 36(9):101-108

    LUO Di, CAI Feng, YAN Guijing, et al. High resolution seismic method for shallow gas hydrates exploration[J]. Marine Geology Frontiers, 2020, 36(9):101-108.]

    [27]

    Luo D, Cai F, Wu Z Q. Numerical simulation for accuracy of velocity analysis in small-scale high-resolution marine multichannel seismic technology[J]. Journal of Ocean University of China, 2017, 16(3):370-382. doi: 10.1007/s11802-017-3145-7

    [28]

    骆迪, 蔡峰, 吴志强, 等. 海洋短排列高分辨率多道地震高精度成像关键技术[J]. 地球物理学报, 2019, 62(2):730-742 doi: 10.6038/cjg2019M0178

    LUO Di, CAI Feng, WU Zhiqiang, et al. The key technologies of marine small scale high resolution multichannel seismic high-precision imaging[J]. Chinese Journal of Geophysics, 2019, 62(2):730-742.] doi: 10.6038/cjg2019M0178

    [29]

    蔡峰, 吴能友, 闫桂京, 等. 海洋浅表层天然气水合物成藏特征[J]. 海洋地质前沿, 2020, 36(9):73-78

    CAI Feng, WU Nengyou, YAN Guijing, et al. Characteristics of shallow gas hydrates accumulation in the sea[J]. Marine Geology Frontiers, 2020, 36(9):73-78.]

    [30]

    Barnes P M, Lamarche G, Bialas J, et al. Tectonic and geological framework for gas hydrates and cold seeps on the Hikurangi subduction margin, New Zealand[J]. Marine Geology, 2010, 272(1-4):26-48. doi: 10.1016/j.margeo.2009.03.012

    [31]

    Ye J L, Wei J G, Liang J Q, et al. Complex gas hydrate system in a gas chimney, South China Sea[J]. Marine and Petroleum Geology, 2019, 104:29-39. doi: 10.1016/j.marpetgeo.2019.03.023

    [32]

    Hovland M, Svensen H. Submarine pingoes: indicators of shallow gas hydrates in a pockmark at Nyegga, Norwegian Sea[J]. Marine Geology, 2006, 228(1-4):15-23. doi: 10.1016/j.margeo.2005.12.005

    [33]

    Ben-Avraham Z, Reshef M, Smith G. Seismic signature of gas hydrate and mud volcanoes of the South African continental margin[C]//Proceedings of the NATO Advanced Research Workshop on Mud Volcanism, Geodynamics and Seismicity. Baku, Azerbaijan: Springer, 2005: 17-27.

    [34]

    Bohrmann G, Ivanov M, Foucher J P, et al. Mud volcanoes and gas hydrates in the Black Sea: new data from Dvurechenskii and Odessa mud volcanoes[J]. Geo-Marine Letters, 2003, 23(3-4):239-249. doi: 10.1007/s00367-003-0157-7

  • 加载中

(12)

计量
  • 文章访问数:  328
  • PDF下载数:  19
  • 施引文献:  0
出版历程
收稿日期:  2024-09-13
修回日期:  2024-11-22
刊出日期:  2024-12-28

目录