-
摘要:
在全球能源结构迅速向低碳甚至无碳转型的背景下,天然气水合物作为一种清洁能源,凭借其巨大的能源潜力,已成为能源领域内重要的关注对象和研究热点,而其中的海洋浅表层天然气水合物由于埋藏浅、易开采、环境敏感等诸多特点备受关注。本文概述了当前浅表层天然气水合物的成藏体系方面的最新研究成果,剖析了其成藏过程中的地质作用、气体来源、运移通道、储层特征等关键控制因素,阐明了全球典型浅表层天然气水合物藏的分布和特征,探讨了浅表层天然气水合物在海洋碳循环和深海生境塑造过程中的重要作用,以及其在水合物产业化的重要前景,最后展望了海洋浅表层天然气水合物系统未来的研究思路和方向,希望能引起公众和学界对这种特殊类型能源的重视,从而加强全社会对天然气水合物产业化的关注与兴趣。
Abstract:In the process of accelerating the global transition towards a low-carbon energy framework, natural gas hydrates, as a clean energy source with enormous energy potential, have become a core research area in the energy field. In the accelerated global move towards a low-carbon energy framework, natural gas hydrates, as a clean energy source with enormous energy potential, have become a core research area in the energy field. In particular, shallow marine natural gas hydrates have garnered significant interest due to their shallow depth, easy mining, sensitive to environmental conditions, and other attributes. In this study, we reviewed the latest research findings on the characteristics of shallow marine natural gas hydrate systems and examined the critical factors that influence their formation, including geological processes, gas sources, migration pathways, and reservoir properties. We also clarified the distribution characteristics of typical shallow natural gas hydrate deposits in the world and explored their critical roles of play in the oceanic carbon cycling and the shaping of deep-sea ecosystems. Furthermore, we discussed the promising prospects for the commercial development of shallow natural gas hydrates, and looked ahead the future research ideas and plans, to highlight this special potential energy resource and enhance the societal awareness and interest in the industrial exploitation of natural gas hydrates.
-
-
图 1 马尼拉海沟地区已证实的浅表层水合物成藏机制及流体运移途径[11]
Figure 1.
图 2 海洋浅表层水合物及浅层构造关系综合示意图[31]
Figure 2.
图 5 冷泉化学合成生态系统中天然气水合物“电容器”的形成和分解示意图[59]
Figure 5.
图 6 海底冷泉区原位种植水合物技术模型[70]
Figure 6.
-
[1] Buffett B, Archer D. Global inventory of methane clathrate: sensitivity to changes in the deep ocean[J]. Earth and Planetary Science Letters, 2004, 227(3-4):185-199. doi: 10.1016/j.jpgl.2004.09.005
[2] Giavarini C, Hester K. Environmental issues with gas hydrates[M]//Giavarini C, Hester K. Gas Hydrates: Immense Energy Potential and Environmental Challenges. London: Springer, 2011: 159-172.
[3] Schulz H D. Conceptual models and computer models[M]//Schulz H D, Zabel M. Marine Geochemistry. Berlin Heidelberg: Springer, 2006: 513-547.
[4] Collett T S, Boswell R, Waite W F, et al. India National Gas Hydrate Program Expedition 02 Summary of Scientific Results: gas hydrate systems along the eastern continental margin of India[J]. Marine and Petroleum Geology, 2019, 108:39-142. doi: 10.1016/j.marpetgeo.2019.05.023
[5] Ye J L, Wei J G, Liang J Q, et al. Complex gas hydrate system in a gas chimney, South China Sea[J]. Marine and Petroleum Geology, 2019, 104:29-39. doi: 10.1016/j.marpetgeo.2019.03.023
[6] Bahr A, Pape T, Abegg F, et al. Authigenic carbonates from the eastern Black Sea as an archive for shallow gas hydrate dynamics–Results from the combination of CT imaging with mineralogical and stable isotope analyses[J]. Marine and Petroleum Geology, 2010, 27(9):1819-1829. doi: 10.1016/j.marpetgeo.2010.08.005
[7] Wei J G, Pape T, Sultan N, et al. Gas hydrate distributions in sediments of pockmarks from the Nigerian margin-Results and interpretation from shallow drilling[J]. Marine and Petroleum Geology, 2015, 59:359-370. doi: 10.1016/j.marpetgeo.2014.09.013
[8] Hsu S K, Lin S S, Wang S Y, et al. Seabed gas emissions and submarine landslides off SW Taiwan[J]. Terrestrial, Atmospheric and Oceanic Sciences, 2018, 29(1):7-15. doi: 10.3319/TAO.2016.10.04.01
[9] Liu L P, Chu F Y, Wu N Y, et al. Gas sources, migration, and accumulation systems: the shallow subsurface and near-seafloor gas hydrate deposits[J]. Energies, 2022, 15(19):6921. doi: 10.3390/en15196921
[10] Weinberger J L, Brown K M. Fracture networks and hydrate distribution at Hydrate Ridge, Oregon[J]. Earth and Planetary Science Letters, 2006, 245(1-2):123-136. doi: 10.1016/j.jpgl.2006.03.012
[11] Maglalang E J M, Armada L T, Santos M C, et al. Bottom simulating reflectors in the Manila Trench forearc and its implications on the occurrence of gas hydrates in the region[J]. Marine and Petroleum Geology, 2023, 158:106538. doi: 10.1016/j.marpetgeo.2023.106538
[12] Solomon E A, Kastner M, Jannasch H, et al. Dynamic fluid flow and chemical fluxes associated with a seafloor gas hydrate deposit on the northern Gulf of Mexico slope[J]. Earth and Planetary Science Letters, 2008, 270(1-2):95-105. doi: 10.1016/j.jpgl.2008.03.024
[13] Römer M, Torres M, Kasten S, et al. First evidence of widespread active methane seepage in the Southern Ocean, off the sub-Antarctic island of South Georgia[J]. Earth and Planetary Science Letters, 2014, 403:166-177. doi: 10.1016/j.jpgl.2014.06.036
[14] Sun Z L, Wei H L, Zhang X H, et al. A unique Fe-rich carbonate chimney associated with cold seeps in the Northern Okinawa Trough, East China Sea[J]. Deep Sea Research Part I: Oceanographic Research Papers, 2015, 95:37-53. doi: 10.1016/j.dsr.2014.10.005
[15] 杨竞红, 蒋少涌, 凌洪飞. 天然气水合物的成因及其碳同位素判别标志[J]. 海洋地质动态, 2001, 17(8):1-4
YANG Jinghong, JIANG Shaoyong, LING Hongfei. The genesis of natural gas hydrates and their carbon isotope discrimination signatures[J]. Marine Geology Frontiers, 2001, 17(8):1-4.]
[16] Collett T S, Johnson A H, Knapp C C, et al. Natural gas hydrates: a review[C]//Collett T, Johnson A, Knapp C, et al. Natural Gas Hydrates—Energy Resource Potential and Associated Geologic Hazards. AAPG, 2009: 146-219.
[17] Brooks J M, Field M E, Kennicutt II M C. Observations of gas hydrates in marine sediments, offshore northern California[J]. Marine Geology, 1991, 96(1-2):103-109. doi: 10.1016/0025-3227(91)90204-H
[18] 狄永军, 郭正府, 李凯明, 等. 天然气水合物成因探讨[J]. 地球科学进展, 2003, 18(1):138-143 doi: 10.3321/j.issn:1001-8166.2003.01.020
DI Yongjun, GUO Zhengfu, LI Kaiming, et al. Discussion of the origin of gas hydrates[J]. Advances in Earth Science, 2003, 18(1):138-143.] doi: 10.3321/j.issn:1001-8166.2003.01.020
[19] Johnson J E, Mienert J, Plaza-Faverola A, et al. Abiotic methane from ultraslow-spreading ridges can charge Arctic gas hydrates[J]. Geology, 2015, 43(5):371-374. doi: 10.1130/G36440.1
[20] Mottl M J, Wheat C G, Fryer P, et al. Chemistry of springs across the Mariana forearc shows progressive devolatilization of the subducting plate[J]. Geochimica et Cosmochimica Acta, 2004, 68(23):4915-4933. doi: 10.1016/j.gca.2004.05.037
[21] Ludwig K A, Kelley D S, Butterfield D A, et al. Formation and evolution of carbonate chimneys at the Lost City Hydrothermal Field[J]. Geochimica et Cosmochimica Acta, 2006, 70(14):3625-3645. doi: 10.1016/j.gca.2006.04.016
[22] Kelley D S, Karson J A, Blackman D K, et al. An off-axis hydrothermal vent field near the Mid-Atlantic Ridge at 30° N[J]. Nature, 2001, 412(6843):145-149. doi: 10.1038/35084000
[23] Lai H F, Qiu H J, Kuang Z G, et al. Integrated signatures of secondary microbial gas within gas hydrate reservoirs: a case study in the Shenhu area, northern South China Sea[J]. Marine and Petroleum Geology, 2022, 136:105486. doi: 10.1016/j.marpetgeo.2021.105486
[24] Huang W, Meng M M, Zhang W, et al. Geological, geophysical, and geochemical characteristics of deep-routed fluid seepage and its indication of gas hydrate occurrence in the Beikang Basin, Southern South China Sea[J]. Marine and Petroleum Geology, 2022, 139:105610. doi: 10.1016/j.marpetgeo.2022.105610
[25] Suess E. Marine cold seeps and their manifestations: geological control, biogeochemical criteria and environmental conditions[J]. International Journal of Earth Sciences, 2014, 103(7):1889-1916. doi: 10.1007/s00531-014-1010-0
[26] 张光学, 梁金强, 陆敬安, 等. 南海东北部陆坡天然气水合物藏特征[J]. 天然气工业, 2014, 34(11):1-10
ZHANG Guangxue, LIANG Jinqiang, LU Jing’an, et al. Characteristics of natural gas hydrate reservoirs on the northeastern slope of the South China Sea[J]. Natural Gas Industry, 2014, 34(11):1-10.]
[27] 孙治雷, 李清, 吴能友, 等. 海洋浅表层天然气水合物成矿特征及探测技术[M]. 北京: 海洋出版社, 2023: 1-295
SUN Zhilei, LI Qing, WU Nengyou, et al. Study on Water Resources Management and Water Supply Security Measures for the Hilly Areas Between the Huaihe and the Yangtze River, Anhui Province[M]. Beijing: China Ocean Press, 2023: 1-295.]
[28] Bahk J J, Kim D H, Chun J H, et al. Gas hydrate occurrences and their relation to host sediment properties: results from second Ulleung Basin gas hydrate drilling expedition, East Sea[J]. Marine and Petroleum Geology, 2013, 47:21-29. doi: 10.1016/j.marpetgeo.2013.05.006
[29] Winters W J, Wilcox-Cline R W, Long P, et al. Comparison of the physical and geotechnical properties of gas-hydrate-bearing sediments from offshore India and other gas-hydrate-reservoir systems[J]. Marine and Petroleum Geology, 2014, 58:139-167. doi: 10.1016/j.marpetgeo.2014.07.024
[30] 雷裕红, 宋颖睿, 张立宽, 等. 海洋天然气水合物成藏系统研究进展及发展方向[J]. 石油学报, 2021, 42(6):801-820 doi: 10.7623/syxb202106009
LEI Yuhong, SONG Yingrui, ZHANG Likuan, et al. Research progress and development direction of reservoir-forming system of marine gas hydrates[J]. Acta Petrolei Sinica, 2021, 42(6):801-820.] doi: 10.7623/syxb202106009
[31] Ma G Z, Zhan L S, Lu H L, et al. Structures in shallow marine sediments associated with gas and fluid migration[J]. Journal of Marine Science and Engineering, 2021, 9(4):396. doi: 10.3390/jmse9040396
[32] Liu L P, Sun Z L, Zhang L, et al. Progress in global gas hydrate development and production as a new energy resource[J]. Acta Geologica Sinica: English Edition, 2019, 93(3):731-755. doi: 10.1111/1755-6724.13876
[33] Vardaro M F, MacDonald I R, Bender L C, et al. Dynamic processes observed at a gas hydrate outcropping on the continental slope of the Gulf of Mexico[J]. Geo-Marine Letters, 2006, 26(1):6-15. doi: 10.1007/s00367-005-0010-2
[34] Chen D F, Cathles III L M. A kinetic model for the pattern and amounts of hydrate precipitated from a gas steam: application to the Bush Hill vent site, Green Canyon Block 185, Gulf of Mexico[J]. Journal of Geophysical Research: Solid Earth, 2003, 108(B1):2058.
[35] Matsumoto R, Tanahashi M, Kakuwa Y, et al. Recovery of thick deposits of massive gas hydrates from gas chimney structures, eastern margin of Japan Sea: Japan Sea Shallow Gas Hydrate Project[J]. Fire in the Ice, 2017, 17(1):1-6.
[36] Snyder G T, Sano Y, Takahata N, et al. Magmatic fluids play a role in the development of active gas chimneys and massive gas hydrates in the Japan Sea[J]. Chemical Geology, 2020, 535:119462. doi: 10.1016/j.chemgeo.2020.119462
[37] Freire A F M, Matsumoto R, Santos L A. Structural-stratigraphic control on the Umitaka Spur gas hydrates of Joetsu Basin in the eastern margin of Japan Sea[J]. Marine and Petroleum Geology, 2011, 28(10):1967-1978. doi: 10.1016/j.marpetgeo.2010.10.004
[38] Ryu B J, Riedel M. Gas hydrates in the Ulleung Basin, east sea of Korea[J]. Terrestrial, Atmospheric and Oceanic Sciences, 2017, 28(6):943-963. doi: 10.3319/TAO.2017.10.21.01
[39] Bahk J J, Kim J H, Kong G S, et al. Occurrence of near-seafloor gas hydrates and associated cold vents in the Ulleung Basin, East Sea[J]. Geosciences Journal, 2009, 13(4):371-385. doi: 10.1007/s12303-009-0039-8
[40] Kim J H, Torres M E, Hong W L, et al. Pore fluid chemistry from the Second Gas Hydrate Drilling Expedition in the Ulleung Basin (UBGH2): source, mechanisms and consequences of fluid freshening in the central part of the Ulleung Basin, East Sea[J]. Marine and Petroleum Geology, 2013, 47:99-112. doi: 10.1016/j.marpetgeo.2012.12.011
[41] Waage M, Portnov A, Serov P, et al. Geological controls on fluid flow and gas hydrate pingo development on the Barents Sea margin[J]. Geochemistry, Geophysics, Geosystems, 2019, 20(2):630-650. doi: 10.1029/2018GC007930
[42] Waage M, Serov P, Andreassen K, et al. Geological controls of giant crater development on the Arctic seafloor[J]. Scientific Reports, 2020, 10(1):8450. doi: 10.1038/s41598-020-65018-9
[43] Nixon F C, Chand S, Thorsnes T, et al. A modified gas hydrate-geomorphological model for a new discovery of enigmatic craters and seabed mounds in the Central Barents Sea, Norway[J]. Geo-Marine Letters, 2019, 39(3):191-203. doi: 10.1007/s00367-019-00567-1
[44] Andreassen K, Hubbard A, Winsborrow M, et al. Massive blow-out craters formed by hydrate-controlled methane expulsion from the Arctic seafloor[J]. Science, 2017, 356(6341):948-953. doi: 10.1126/science.aal4500
[45] Mazzini A, Etiope G. Mud volcanism: an updated review[J]. Earth-Science Reviews, 2017, 168:81-112. doi: 10.1016/j.earscirev.2017.03.001
[46] Milkov A V, Vogt P R, Crane K, et al. Geological, geochemical, and microbial processes at the hydrate-bearing Håkon Mosby mud volcano: a review[J]. Chemical Geology, 2004, 205(3-4):347-366. doi: 10.1016/j.chemgeo.2003.12.030
[47] Ren J F, Cheng C, Xiong P F, et al. Sand-rich gas hydrate and shallow gas systems in the Qiongdongnan Basin, northern South China Sea[J]. Journal of Petroleum Science and Engineering, 2022, 215:110630. doi: 10.1016/j.petrol.2022.110630
[48] Milkov A V, Sassen R, Apanasovich T V, et al. Global gas flux from mud volcanoes: a significant source of fossil methane in the atmosphere and the ocean[J]. Geophysical Research Letters, 2003, 30(2):1037.
[49] Reeburgh W S. Oceanic methane biogeochemistry[J]. Chemical Reviews, 2007, 107(2):486-513. doi: 10.1021/cr050362v
[50] Jahren A H, Conrad C P, Arens N C, et al. A plate tectonic mechanism for methane hydrate release along subduction zones[J]. Earth and Planetary Science Letters, 2005, 236(3-4):691-704. doi: 10.1016/j.jpgl.2005.06.009
[51] Sundquist E T, Visser K. The geologic history of the carbon cycle[J]. Treatise on Geochemistry, 2003, 8:425-472.
[52] Hsu S K, Wang S Y, Liao Y C, et al. Tide-modulated gas emissions and tremors off SW Taiwan[J]. Earth and Planetary Science Letters, 2013, 369-370:98-107. doi: 10.1016/j.jpgl.2013.03.013
[53] Ruppel C D, Waite W F. Timescales and processes of methane hydrate formation and breakdown, with application to geologic systems[J]. Journal of Geophysical Research: Solid Earth, 2020, 125(8):e2018JB016459. doi: 10.1029/2018JB016459
[54] Sibuet M, Roy K O L. Cold seep communities on continental margins: structure and quantitative distribution relative to geological and fluid venting patterns[M]//Wefer G, Billett D, Hebbeln D, et al. Ocean Margin Systems. Berlin, Heidelberg: Springer, 2002: 235-251.
[55] Akam S A, Swanner E D, Yao H M, et al. Methane-derived authigenic carbonates–A case for a globally relevant marine carbonate factory[J]. Earth-Science Reviews, 2023, 243:104487. doi: 10.1016/j.earscirev.2023.104487
[56] Boetius A, Wenzhöfer F. Seafloor oxygen consumption fuelled by methane from cold seeps[J]. Nature Geoscience, 2013, 6(9):725-734. doi: 10.1038/ngeo1926
[57] 杨力, 刘斌, 徐梦婕, 等. 南海北部琼东南海域活动冷泉特征及形成模式[J]. 地球物理学报, 2018, 61(7):2905-2914 doi: 10.6038/cjg2018L0374
YANG Li, LIU Bin, XU Mengjie, et al. Characteristics of active cold seepages in Qiongdongnan Sea Area of the northern South China Sea[J]. Chinese Journal of Geophysics, 2018, 61(7):2905-2914.] doi: 10.6038/cjg2018L0374
[58] 赵静, 梁前勇, 尉建功, 等. 南海北部陆坡西部海域“海马”冷泉甲烷渗漏及其海底表征[J]. 地球化学, 2020, 49(1):108-118
ZHAO Jing, LIANG Qianyong, WEI Jiangong, et al. Seafloor geology and geochemistry characteristic of methane seepage of the “Haima” cold seep, northwestern slope of the South China Sea[J]. Geochimica, 2020, 49(1):108-118.]
[59] Zhang X, Luan Z D, Du Z F, et al. Gas hydrates in shallow sediments as capacitors for cold seep ecosystems: insights from in-situ experiments[J]. Earth and Planetary Science Letters, 2023, 624:118469. doi: 10.1016/j.jpgl.2023.118469
[60] Ferré B, Jansson P G, Moser M, et al. Reduced methane seepage from Arctic sediments during cold bottom-water conditions[J]. Nature Geoscience, 2020, 13(2):144-148. doi: 10.1038/s41561-019-0515-3
[61] Hong W L, Torres M E, Kim J H, et al. Carbon cycling within the sulfate-methane-transition-zone in marine sediments from the Ulleung Basin[J]. Biogeochemistry, 2013, 115(1):129-148.
[62] Wallmann K, Pinero E, Burwicz E, et al. The global inventory of methane hydrate in marine sediments: a theoretical approach[J]. Energies, 2012, 5(7):2449-2498. doi: 10.3390/en5072449
[63] Stolper D A, Lawson M, Davis C L, et al. Formation temperatures of thermogenic and biogenic methane[J]. Science, 2014, 344(6191):1500-1503. doi: 10.1126/science.1254509
[64] Stolper D A, Sessions A L, Ferreira A A, et al. Combined 13C–D and D–D clumping in methane: methods and preliminary results[J]. Geochimica et Cosmochimica Acta, 2014, 126:169-191. doi: 10.1016/j.gca.2013.10.045
[65] 刘玉山, 祝有海, 吴必豪. 更具开发前景的浅成天然气水合物[J]. 海洋地质前沿, 2016, 32(4):24-30
LIU Yushan, ZHU Youhai, WU Bihao. Shallow gas hydrates, a type of hydrate deposits more suitable for production[J]. Marine Geology Frontiers, 2016, 32(4):24-30.]
[66] Serié C, Huuse M, Schødt N H. Gas hydrate pingoes: deep seafloor evidence of focused fluid flow on continental margins[J]. Geology, 2012, 40(3):207-210. doi: 10.1130/G32690.1
[67] Liu L P, Ryu B, Sun Z L, et al. Monitoring and research on environmental impacts related to marine natural gas hydrates: review and future perspective[J]. Journal of Natural Gas Science and Engineering, 2019, 65:82-107. doi: 10.1016/j.jngse.2019.02.007
[68] 张炜, 邵明娟, 王海华, 等. 日本浅表层水合物勘查试采进展[J]. 中国地质调查, 2024, 11(3):117-126
ZHANG Wei, SHAO Mingjuan, WANG Haihua, et al. Progress of shallow hydrate exploration and production test in Japan[J]. Geological Survey of China, 2024, 11(3):117-126.]
[69] 周守为, 陈伟, 李清平, 等. 深水浅层非成岩天然气水合物固态流化试采技术研究及进展[J]. 中国海上油气, 2017, 29(4):1-8
ZHOU Shouwei, CHEN Wei, LI Qingping, et al. Research on the solid fluidization well testing and production for shallow non-diagenetic natural gas hydrate in deep water area[J]. China Offshore Oil and Gas, 2017, 29(4):1-8.]
[70] 孙治雷, 张喜林, 郭金家, 等. 深海极端环境探测技术与应用[M]. 北京: 科学出版社, 2023: 1-278
SUN Zhilei, ZHANG Xilin, GUO Jinjia, et al. Deep-Sea Extreme Environment Exploration Technology and Application[M]. Beijing: Science Press, 2023: 1-278.]
[71] 魏合龙, 孙治雷, 王利波, 等. 天然气水合物系统的环境效应[J]. 海洋地质与第四纪地质, 2016, 36(1):1-13
WEI Helong, SUN Zhilei, WANG Libo, et al. Perspective of the environmental effect of natural gas hydrate system[J]. Marine Geology and Quaternary Geology, 2016, 36(1):1-13.]
-