印度扇近海盆地重磁场融合与油气盆地构造解析

张菲菲, 韩波, 朱莹洁, 廖晶, 王万银. 印度扇近海盆地重磁场融合与油气盆地构造解析[J]. 海洋地质与第四纪地质, 2025, 45(3): 132-143. doi: 10.16562/j.cnki.0256-1492.2024070102
引用本文: 张菲菲, 韩波, 朱莹洁, 廖晶, 王万银. 印度扇近海盆地重磁场融合与油气盆地构造解析[J]. 海洋地质与第四纪地质, 2025, 45(3): 132-143. doi: 10.16562/j.cnki.0256-1492.2024070102
ZHANG Feifei, HAN Bo, ZHU Yingjie, LIAO Jing, WANG Wanyin. Tectonic division of the offshore Indus Basin by integrated gravity and magnetic study[J]. Marine Geology & Quaternary Geology, 2025, 45(3): 132-143. doi: 10.16562/j.cnki.0256-1492.2024070102
Citation: ZHANG Feifei, HAN Bo, ZHU Yingjie, LIAO Jing, WANG Wanyin. Tectonic division of the offshore Indus Basin by integrated gravity and magnetic study[J]. Marine Geology & Quaternary Geology, 2025, 45(3): 132-143. doi: 10.16562/j.cnki.0256-1492.2024070102

印度扇近海盆地重磁场融合与油气盆地构造解析

  • 基金项目: 中国地质调查局地质调查专项(DD20230643,DD20191003);国家自然科学基金项目“马克兰增生楔低角度俯冲区断层接力过程及其对水合物成藏的控制”(42076069);山东省自然科学基金“利用变参数界面反演方法圈定渤海古陆核”(ZR202112030094)
详细信息
    作者简介: 张菲菲(1983—),女,博士,副研究员,主要从事从事海洋重磁数据处理与解释研究,E-mail:ffeizhang@126.com
    通讯作者: 王万银(1962—),男,博士,教授,主要从事重磁位场理论及应用研究,E-mail:wwy7902@chd.edu.cn
  • 中图分类号: P738

Tectonic division of the offshore Indus Basin by integrated gravity and magnetic study

More Information
  • 印度扇近海盆地是巴基斯坦海域重要的油气勘探目标区,但盆地尚处于勘探早期,受限于勘探资料的数量和品质,对盆地内部结构认识不够清晰,制约了该地区油气调查工作的进一步深入。以新一代卫星测高重力异常数据(V29.1)和EMGA2地磁网格数据(V2)为基础,利用重、磁场融合技术得到印度扇近海盆地及邻区重磁场融合结果,并对该研究区盆地内部油气构造格架进行研究。通过研究表明,重磁场融合结果能够很好刻画印度扇近海盆地内部结构:低磁低重对应盆地沉积坳陷区,高磁低重对应有岩浆岩侵入的坳陷区,高磁高重对应盆地隆起区,低磁高重对应碳酸盐岩台地区;结合钻井和二维地震资料,推断印度扇近海盆地呈现“三坳两隆”的构造格架,且受不同期次构造运动的影响,盆地“东西分块”特征明显。本次新划定盆地西南部的西部坳陷、西部隆起,南部坳陷面积增大,盆地南缘位于帕拉蒂纳脊附近。该研究成果为印度扇近海盆地及邻区基础地质、油气勘探研究提供依据。

  • 加载中
  • 图 1  印度扇近海盆地及邻域构造单元划分示意图[5,8]

    Figure 1. 

    图 2  印度扇近海盆地地层柱状图[1]

    Figure 2. 

    图 3  印度扇近海盆地卫星测高重力异常图

    Figure 3. 

    图 4  印度扇近海盆地ΔT磁力异常图

    Figure 4. 

    图 5  印度扇近海盆地布格重力异常图

    Figure 5. 

    图 6  印度扇近海盆地剩余布格重力异常图

    Figure 6. 

    图 7  印度扇近海盆地化极磁力异常图

    Figure 7. 

    图 8  印度扇近海盆地剩余化极磁力异常图

    Figure 8. 

    图 9  印度扇近海盆地重磁场融合结果图

    Figure 9. 

    图 10  印度扇近海盆地油气构造划分结果

    Figure 10. 

    图 11  地震剖面资料解释结果[1]

    Figure 11. 

    表 1  研究区内构造单元的重磁特征

    Table 1.  The gravity and magnetic characteristics of each tectonic unit in the study area

    构造单元 构造走向 重力场特征 磁力场特征 重磁融合
    马克兰增生楔 近EW 条带状低重力异常,西宽东窄,两侧重力梯级带特征明显 磁力低异常区,分布2个磁力低异常圈闭。异常区南侧为明显的磁力梯级带 低磁低重
    阿曼深海平原 NE向 “三角状”低重力异常区,西宽东窄。剩余布格重力异常上分布3个重力高异常圈闭 高低相间条带状磁力异常,北高南低。高磁力异常条带自西向东分为4段;低磁力异常条带向西与北默里脊的西南段相连 北侧为高磁低重、南侧为低磁低重,局部分布高磁高重
    默里脊系统 北默里脊 NE向 条带状重力高异常带,自西向东分为3段。西段与中段之间为 NW 向重力低,东段异常走向转为 NNE 向,截止于查曼走滑断裂 条带状磁力异常,分为东西两段。东段为高磁力异常条带,南段为低磁力异常条带,两段之间磁力异常梯级带 东段为高磁高重
    西段为低磁高重
    达尔林普尔
    海槽
    NE向 条带状重力低异常,海槽东端被NW向高重力异常条带截断 高磁力异常 低磁低重
    真纳海槽 NE向 条带状重力低异常,向东延伸异常转为NNE向 分布2个块状低磁力异常圈闭,之间为NW向高磁力异常条带 低磁低重
    南默里脊 NE向 狭长重力低异常条带,向东北延伸至查曼走滑断裂 自西向东分为2段,西段为条带状磁力高异常,东部为3个串珠状磁力高异常,不同磁力高异常之间为NW向磁力低异常 高磁高重
    印度扇近海盆地 东部NW向
    西部NE-NEE向
    分为东西两个异常区,中间以 NW 向重力高异常带为界,北宽南窄。东部为重力低异常带,呈 NW 走向;西部为高低相间重力异常分布,自北向南异常走向由 NE 向逐渐转为 NEE 向 分为东西两个异常区,中间以狭长的磁力高异常条带为界。东部为磁力低异常区,局部发育NE向磁力高异常条带;西部高低相间磁力异常特征,可细分为北中南3个异常区,北区位于南默里脊南侧,表现为条带状磁力低异常;中区以磁力高异常为主;南区以磁力低异常为主,局部发育块状磁力高异常 东部低磁低重;
    中部高磁高重;
    西部以低磁低重、高磁高重相间分布
    下载: 导出CSV

    表 2  印度扇近海盆地新旧构造划分对比

    Table 2.  Comparison of new and old structure division in offshore Indus Basin

    下载: 导出CSV
  • [1]

    Carmichael S M, Akhter S, Bennett J K, et al. Geology and hydrocarbon potential of the offshore Indus Basin, Pakistan[J]. Petroleum Geoscience, 2009, 15(2):107-116. doi: 10.1144/1354-079309-826

    [2]

    Gaina C, VAN HINSBERGEN D J J, SPAKMAN W. Tectonic interactions between India and Arabia since the Jurassic reconstructed from marine geophysics, ophiolite geology, and seismic tomography[J]. Tectonics, 2015, 34:875-906. doi: 10.1002/2014TC003780

    [3]

    Clift P D, Shimizzu N, Layne G D, et al. Development of the Indus Fan and its significance for the erosional history of the Weatern Himalaya and Karakorma[J]. Geological Society of America Bulletin, 2001, 113(8):1039-1051. doi: 10.1130/0016-7606(2001)113<1039:DOTIFA>2.0.CO;2

    [4]

    廖晶, 龚建明, 陈建文, 等. 印度扇近海盆地重力滑动构造新发现[J]. 海洋地质前沿, 2020, 36(6): 76-79

    LIAO Jing, GONG Jianming, CHEN Jianwen, et al. New Discovery of Gravity Sliding Structures in the offshore Indus Basin[J], Marine Geology Frontiers, 2020, 36(6): 76-79.]

    [5]

    程昊皞, 索艳慧, 李三忠, 等. 印度西部洋陆过渡区结构特征及构造演化[J]. 大地构造与成矿学, 2021, 45(5):851-860

    CHENG Haohao, SUO Yanhui, LI Sanzhong, et al. Structural Properties and Tectonic Evolution of the Western Indian Continental Margin[J]. Geotectonica et Metallogenia, 2021, 45(5):851-860.]

    [6]

    Solangi S H, Naeer A, Abbasi S A, et al. Morphological features of shelf margin: Examples from the Pakistan offshore[J]. Geodesy and Geodynamics, 2019, 10:77-91. doi: 10.1016/j.geog.2018.09.004

    [7]

    MCHARGUE T R, WEBB J E. Internal geometry, seismic facies, and petroleum potential of canyons and inner fan channels of the Indus submarine fan[J]. AAPG bulletin, 1986, 70(2):161-180.

    [8]

    Moin R K, Abid H, Muhammad S, et al. Mud Diapirism induced structuration and implications for the definition and mapping of hydrocarbon traps in Makran accretionary prism, Pakistan[C] // AAPG/SEG International Conference & Exhibition, Melbourne, Australia, 2015: 13-16.

    [9]

    龚建明, 廖晶, Muhammad Khalid, 等. 巴基斯坦海域油气勘探方向探讨[J]. 海洋地质前沿, 2019, 35(11):1-6

    GONG Jianming, LIAO Jing, Muhammad K, et al. Preliminary study on the oil and gas exploration targets in offshore Pakistan[J]. Marine Geology Frontiers, 2019, 35(11):1-6.]

    [10]

    刘金萍, 王改云, 简晓玲, 等. 巴基斯坦印度扇近海盆地油气地质条件分析[J]. 地质学刊, 2022, 46(4): 351-357

    LIU Jinping, WANG Gaiyun, JIAN Xiaoling, et al. Analysis of petroleum geological condition in offshore Indus Basin, Pakistan[J]. Journal of Geology, 46(4): 351-357.]

    [11]

    梁杰, 李森, 陈建文, 等. 巴基斯坦东部海域中生代地层发现与油气意义[J]. 海洋地质与第四纪地质, 2024, 44(3):115-124

    LIANG Jie, LI Sen, CHEN Jianwen, et al. Discovery of Mesozoic strata in the eastern region of offshore Pakistan and its oil and gas significance[J]. Marine Geology & Quaternary Geology, 2024, 44(3):115-124.]

    [12]

    李森, 梁杰, 龚建明, 等. 巴基斯坦东部海域中−新生代沉积研究进展[J]. 海洋地质前沿, 2022, 38(2):1-13

    LI Sen, LIANG Jie, GONG Jianming, et al. Research progress of the Meso-Cenozoic sedimentary evolution in eastern Pakistan sea[J]. Marine Geology Frontiers, 2022, 38(2):1-13.]

    [13]

    Sandwell D T, Smith W H F. Global marine gravity from retracked Geosat and ERS-1 altimetry: Ridge segmentation versus spreading rate[J]. Journal of Geophysical Research: Solid Earth(1978-2012), 2009, 114(B1): B01411.

    [14]

    Sandwell D T, Garicia E, Soofi K, et al. Toward 1 mGal Global Marine Gravity from CryoSat-2, Envisat, and Jason-1[J]. The Leading Edge, 2013, 32(8):892-899. doi: 10.1190/tle32080892.1

    [15]

    Sandwell D T, Muller R D, Smith W H F, et al. New global marine gravity model from GryoSat-2 and Jason-1 reveals buried tectonic structure[J]. Science, 2014, 346(6205):65-67. doi: 10.1126/science.1258213

    [16]

    张菲菲, 王皓, 张义蜜, 等. 西太平洋海域卫星测高重力数据精度分析[J/OL]. 武汉大学学报:信息科学版, 202305

    ZHANG Feifei, WANG Hao, ZHANG Yimi, et al. Accuracy analysis of satellite altimetry gravity data in the Western Pacific Area [J]. Geomatics and Information Science of Wuhan University, 202305.]

    [17]

    张功成, 贾庆军, 王万银, 等. 南海构造格局及其演化[J]. 地球物理学报, 2018, 61(10):4194-4215

    ZHANG Gongcheng, JIA Qingjun, WANG Wanyin, et al. On tectonic framework and evolution of the South China Sea[J]. Chinese Journal of Geophysics, 2018, 61(10):4194-4215.]

    [18]

    Maus S, Barckhausen U, Berkenbosch H, et al. EMAG2: A 2-arc min resolution Earth Magnetic Anomaly Grid compiled from satellite, airborne, and marine magnetic measurements[J]. Geochemistry, Geophysics, Geosystems, 2009, 10(8).

    [19]

    张春灌, 李想, 袁炳强, 等. 地球磁异常(EMAG2)数据中海域资料质量评估—以北极地区Kolbeinsey脊南段为例[J]. 地球科学进展, 2019, 34(3):288-294

    ZHANG Chunguan, LI Xiang, YUAN Bingqiang, et al. Quality evaluation of offshore data in the Earth Magnetic Anomaly Grid (2-arc-Minute Resolution): Taking the southern section of the Kolbeinsey Ridge in the Arctic Region as an example[J]. Advances in Earth Science, 2019, 34(3):288-294.]

    [20]

    戴勤奋, 周良勇, 魏合龙. 南黄海卫星重力场及构造演化[J]. 海洋地质与第四纪地质, 2002, 22(4):67-71

    DAI Qinfeng, ZHOU Liangyong, WEI Helong. Satellite gravity field and tectonic evolution of the South Yellow Sea[J]. Marine Geology & Quaternary Geology, 2002, 22(4):67-71.]

    [21]

    纪晓琳, 王万银, 杜向东, 等. 利用重磁资料研究西非中南段含盐盆地构造区划[J]. 地球物理学报, 2019, 62(4):1502-1514

    JI Xiaolin, WANG Wanyin, DU Xiangdong, et al. Tectonic division by gravity and magnetic data of salt-bearing basins, south-central section of West Africa[J]. Chinese Journal of Geophysics, 2019, 62(4):1502-1514.]

    [22]

    Martín‐Español A, Zammit‐Mangion A, Clarke P J, et al. Spatial and temporal Antarctic Ice Sheet mass trends, glacio‐isostatic adjustment, and surface processes from a joint inversion of satellite altimeter, gravity, and GPS data[J]. Journal of Geophysical Research: Earth Surface, 2016, 121(2):182-200. doi: 10.1002/2015JF003550

    [23]

    Yang M, Wang W, Zhang G, et al. Relationship between the Extent of Igneous Rocks and Deep Structures as Determined by Gravitational and Magnetic Data in the South China Sea[J]. Acta Geologica Sinica‐English Edition, 2021, 95(1):294-304. doi: 10.1111/1755-6724.14642

    [24]

    Dobslaw H, Bergmann-Wolf I, Dill R, et al. A new high-resolution model of non-tidal atmosphere and ocean mass variability for de-aliasing of satellite gravity observations: AOD1B RL06. Geophysical Journal International, 2017, 211(1): 263-269.

    [25]

    MA J, WANG W, DU X, et al. Study on System of Faults in the Gulf of Mexico and Adjacent Region based on Gravity Data[J]. Acta Geologica Sinica-English Edition, 2021, 95(1):305-318. doi: 10.1111/1755-6724.14643

    [26]

    雷受旻. 重力广义地形改正值和均衡该正值的一种计算方法[J]. 海洋地质与第四纪地质, 1984, 4(1):101-111

    LEI Shoumin. Calculation of generalized topographic and isostatic gravity corrections[J]. Marine Geology and Quaternary Geology, 1984, 4(1):101-111.]

    [27]

    刘芬, 王万银, 纪晓琳. 空间域和频率域平面位场延拓影响因素和稳定性分析[J]. 物探与化探, 2019, 43(2): 320-328

    LIU Fen, WANG Wanyin, JI Xiaolin. Influence factors and stability analysis of plane potential field continuation in space and frequency domains. Geophysical and Geochemical Exploration, 2019, 43(2): 320-328.

    [28]

    He T, Xiong S Q, Wang W Y. Three-dimensional transformation of magnetization direction and magnetic field component at low latitudes based on vertical relationship[J]. Applied Geophysics, 2022, 19(1):91-106. doi: 10.1007/s11770-022-0928-4

    [29]

    纪晓琳, 王万银, 邱之云. 最小曲率位场分离方法研究[J]. 地球物理学报, 2015, 58(3):1042-1058

    JI Xiaolin, WANG Wanyin, QIU Zhiyun. The research to the minimum curvature technique for potential field data separation[J]. Chinese Journal of Geophysics, 2015, 58(3):1042-1058.]

    [30]

    纪晓琳, 王万银, 邱之云. 最小曲率位场分离方法参数选择试验研究[J]. 地球物理学进展, 2019, 34(4):1441-1452 doi: 10.6038/pg2019AA0098

    JI Xiaolin, WANG Wanyin, QIU Zhiyun. Parameter choose experimental research to the minimum curvature technique potential field data separation method[J]. Progress in Geophysics, 2019, 34(4):1441-1452.] doi: 10.6038/pg2019AA0098

    [31]

    鲁宝亮, 马涛, 熊盛青, 等. 基于重磁异常相关分析的场源位置及属性识别方法[J]. 地球物理学报, 2020, 63(4): 1663-1674

    LU Baoliang, MA Tao, XIONG Shengqing, et al. A new recognition method for source locations and attributes based on correlation analysis of gravity and magnetic anomalies. Chinese Journal of Geophysics, 2020, 63(4): 1663-1674.

    [32]

    He T, Wang W Y, Bai Z Z, et al. Integrated gravity and magnetic study on patterns of petroleum basin occurrence in the China seas and adjacent areas[J]. Acta Oceanologica Sinica, 2023, 42(3):201-214. doi: 10.1007/s13131-022-2139-5

  • 加载中

(11)

(2)

计量
  • 文章访问数:  21
  • PDF下载数:  3
  • 施引文献:  0
出版历程
收稿日期:  2024-07-01
修回日期:  2024-08-19
录用日期:  2024-08-19
刊出日期:  2025-06-28

目录