Research progress on climatic effects of marine dissolved organic carbon pool and its quantitative reconstruction
-
摘要:
海洋溶解有机碳储库是地球碳循环的重要组成部分,庞大的储量与缓慢周转的特征使其成为调节全球气候的关键缓冲系统。溶解有机碳储库在长时间尺度上的气候效应主要体现在海洋碳同位素的异常记录中。在定量重建研究方面,数值模型的发展实现了对DOC生产-输运-降解过程的多尺度耦合模拟,但理想的参数化方案(如细菌转化效率、光降解速率等)仍可以通过原位观测与培养实验进行优化,以实现更符合现实的模拟结果。DOC储库气候效应和地质演变定量研究仍然薄弱。未来可以聚焦单一重点环境参数,比如溶解有机碳的表观降解系数,提升模拟结果的精度和置信度,重建长时间尺度上溶解有机碳库的地质演变,为理解碳循环与气候变化的耦合关系提供新视角。
Abstract:The marine dissolved organic carbon (DOC) reservoir is one of the most important parts of the Earth's carbon cycle. Its vast storage capacity and slow turnover rate make it a key buffering system for regulating global climate. The climatic effects of the DOC reservoir over long timescales are primarily reflected in anomalies recorded in marine carbon isotopes. The development of box models has enabled multi-scale coupled simulations of DOC production, transport, and degradation processes. However, ideal parameterization schemes, such as bacterial degradation efficiency and photodegradation efficiency, can still be optimized through in situ observations and culture experiments to achieve more realistic simulation results. Research on the climatic effects and geological evolution of the DOC reservoir remains quantitatively underdeveloped. Future studies shall focus on specific environmental parameters, such as the apparent degradation coefficient of DOC, to enhance the accuracy and confidence of simulations and facilitate the reconstruction of the geological evolution of the DOC reservoir over long timescales, offering new perspectives for understanding the relationship between carbon cycle and climate change.
-
-
图 1 碳储库储量及δ13C平均值[11]
Figure 1.
图 2 12C和16O在冰期−间冰期的海陆转换[11]
Figure 2.
图 7 DOC的源和汇[69]
Figure 7.
表 1 溶解有机碳分类
Table 1. Classification of dissolved organic carbon
DOC类型 停留时间 储量 不稳定溶解有机碳,LDOC 几小时至几天 <200 Tg C 半不稳定溶解溶解有机碳,SLDOC 几周至几个月 ~600 Tg C 半惰性溶解有机碳,SRDOC 十年以上 ~ 1400 Tg C惰性溶解有机碳,RDOC 千年以上 ~ 63000 Tg C -
[1] Rae J W B, Zhang G Y, Liu X Q, et al. Atmospheric CO2 over the past 66 million years from marine archives[J]. Annual Review of Earth and Planetary Sciences, 2021, 49:609-641. doi: 10.1146/annurev-earth-082420-063026
[2] Petit J R, Jouzel J, Raynaud D, et al. Climate and atmospheric history of the past 420, 000 years from the Vostok ice core, Antarctica[J]. Nature, 1999, 399(6735):429-436. doi: 10.1038/20859
[3] Jian Z M, Wang Y, Dang H W, et al. Warm pool ocean heat content regulates ocean-continent moisture transport[J]. Nature, 2022, 612(7938):92-99. doi: 10.1038/s41586-022-05302-y
[4] Sigman D M, Boyle E A. Glacial/interglacial variations in atmospheric carbon dioxide[J]. Nature, 2000, 407(6806):859-869. doi: 10.1038/35038000
[5] 王海洋, 王威. 温室气体的“牢笼”: 海洋惰性溶解有机碳库[J]. 科学中国人, 2017132-134
WANG Haiyang, WANG Wei. The “cage” of greenhouse gases - the inert dissolved organic carbon pool of the ocean[J]. Scientific Chinese, 2017: 132-134.]
[6] 焦念志. 海洋固碳与储碳: 并论微型生物在其中的重要作用[J]. 中国科学: 地球科学, 2012, 42(10):1473-1486 doi: 10.1360/zd-2012-42-10-1473
JIAO Nianzhi. Carbon fixation and sequestration in the ocean, with special reference to the microbial carbon pump[J]. Scientia Sinica Terrae, 2012, 42(10):1473-1486.] doi: 10.1360/zd-2012-42-10-1473
[7] Augustin L, Barbante C, Barnes P R F, et al. Eight glacial cycles from an Antarctic ice core[J]. Nature, 2004, 429(6992):623-628. doi: 10.1038/nature02599
[8] Etheridge D M, Steele L P, Langenfelds R L, et al. Natural and anthropogenic changes in atmospheric CO2 over the last 1000 years from air in Antarctic ice and firn[J]. Journal of Geophysical Research: Atmospheres, 1996, 101(D2):4115-4128. doi: 10.1029/95JD03410
[9] Lorius C, Jouzel J, Raynaud D, et al. The ice-core record: climate sensitivity and future greenhouse warming[J]. Nature, 1990, 347(6289):139-145. doi: 10.1038/347139a0
[10] Peterson, C D, Lisiecki L E, Stern J V. Deglacial whole-ocean δ13C change estimated from 480 benthic foraminiferal records[J]. Paleoceanography and Paleoclimatology, 2014, 29(6):549-563.
[11] Ruddiman W F. Earth’s Climate Past and Future[M]. 3rd ed. New York: W. H. Freeman and Company, 2013: 215-232.
[12] Ravelo A C, Hillaire-Marcel C. Chapter eighteen the use of oxygen and carbon isotopes of foraminifera in paleoceanography[J]. Developments in Marine Geology, 2007, 1:735-764.
[13] Oppo D W, Raymo M E, Lohmann G P, et al. A δ13C record of Upper North Atlantic deep water during the past 2.6 million years[J]. Paleoceanography, 1995, 10(3):373-394. doi: 10.1029/95PA00332
[14] Peng C H, Guiot J, Van Campo E, et al. The vegetation carbon storage variation in Europe since 6000 BP: reconstruction from pollen[J]. Journal of Biogeography, 1994, 21(1):19-31. doi: 10.2307/2845601
[15] Follett C L, Repeta D J, Rothman D H, et al. Hidden cycle of dissolved organic carbon in the deep ocean[J]. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111(47):16706-16711.
[16] Rothman D H, Hayes J M, Summons R E. Dynamics of the Neoproterozoic carbon cycle[J] Proceedings of the National Academy of Sciences of the United States of America, 2003, 100(14): 8124-8129.
[17] Peltier W R, Liu Y G, Crowley J W. Snowball Earth prevention by dissolved organic carbon remineralization[J]. Nature, 2007, 450(7171):813-818. doi: 10.1038/nature06354
[18] Swanson-Hysell N L, Rose C V, Calmet C C, et al. Cryogenian glaciation and the onset of carbon-isotope decoupling[J]. Science, 2010, 328(5978):608-611. doi: 10.1126/science.1184508
[19] Ma W T, Wang P X, Tian J. Modeling 400-500-kyr Pleistocene carbon isotope cyclicity through variations in the dissolved organic carbon pool[J]. Global and Planetary Change, 2017, 152:187-198. doi: 10.1016/j.gloplacha.2017.04.001
[20] Wang P X, Li Q Y, Tian J, et al. Long-term cycles in the carbon reservoir of the Quaternary ocean: a perspective from the South China Sea[J]. National Science Review, 2014, 1(1):119-143. doi: 10.1093/nsr/nwt028
[21] Jiao N Z, Luo T W, Chen Q R, et al. The microbial carbon pump and climate change[J]. Nature Reviews Microbiology, 2024, 22(7):408-419. doi: 10.1038/s41579-024-01018-0
[22] Hansell D A, Carlson C A, Repeta D J, et al. Dissolved organic matter in the ocean: a controversy stimulates new insights[J]. Oceanography, 2009, 22(4):202-211. doi: 10.5670/oceanog.2009.109
[23] Amado A M, Cotner J B, Cory R M, et al. Disentangling the interactions between photochemical and bacterial degradation of dissolved organic matter: amino acids play a central role[J]. Microbial Ecology, 2015, 69(3):554-566. doi: 10.1007/s00248-014-0512-4
[24] Porcal P, Koprivnjak J F, Molot L A, et al. Humic substances-part 7: the biogeochemistry of dissolved organic carbon and its interactions with climate change[J]. Environmental Science and Pollution Research, 2009, 16(6):714-726. doi: 10.1007/s11356-009-0176-7
[25] Guo H F, Chen X, Yao H W, et al. Quantifying the pattern of organic carbon burial through Cretaceous Oceanic Anoxic Event 2[J]. Earth-Science Reviews, 2024, 257:104903. doi: 10.1016/j.earscirev.2024.104903
[26] Williams P M, Druffel E R M. Radiocarbon in dissolved organic matter in the central North Pacific Ocean[J]. Nature, 1987, 330(6145):246-248. doi: 10.1038/330246a0
[27] Pan D L, Liu Q, Bai Y. Review and suggestions for estimating particulate organic carbon and dissolved organic carbon inventories in the ocean using remote sensing data[J]. Acta Oceanologica Sinica, 2014, 33(1):1-10. doi: 10.1007/s13131-014-0419-4
[28] Hansell D A, Carlson C A. Deep-ocean gradients in the concentration of dissolved organic carbon[J]. Nature, 1998, 395(6699):263-266. doi: 10.1038/26200
[29] Hansell D A, Carlson C A, Schlitzer R. Net removal of major marine dissolved organic carbon fractions in the subsurface ocean[J]. Global Biogeochemical Cycles, 2012, 26(1):GB1016.
[30] Hansell D A. Recalcitrant dissolved organic carbon fractions[J]. Annual Review of Marine Science, 2013, 5:421-445. doi: 10.1146/annurev-marine-120710-100757
[31] Wagner S, Schubotz F, Kaiser K, et al. Soothsaying DOM: a current perspective on the future of oceanic dissolved organic carbon[J]. Frontiers in Marine Science, 2020, 7:341. doi: 10.3389/fmars.2020.00341
[32] Dittmar T, Kattner G. The biogeochemistry of the river and shelf ecosystem of the Arctic Ocean: a review[J]. Marine Chemistry, 2003, 83(3-4):103-120. doi: 10.1016/S0304-4203(03)00105-1
[33] Arrhenius S. Über die reaktionsgeschwindigkeit bei der inversion Von Rohrzucker Durch Säuren[J]. Zeitschrift für Physikalische Chemie, 1889, 4U(1):226-248.
[34] Berner R A. An idealized model of dissolved sulfate distribution in recent sediments[J]. Geochimica et Cosmochimica Acta, 1964, 28(9):1497-1503. doi: 10.1016/0016-7037(64)90164-4
[35] Lønborg C, Álvarez–Salgado X A, Letscher R T, et al. Large stimulation of recalcitrant dissolved organic carbon degradation by increasing ocean temperatures[J]. Frontiers in Marine Science, 2018, 4:436. doi: 10.3389/fmars.2017.00436
[36] Anesio A M, Granéli W. Photochemical mineralization of dissolved organic carbon in lakes of differing pH and humic content[J]. Archiv für Hydrobiologie, 2004, 160(1):105-116.
[37] Engel A, Borchard C, Piontek J, et al. CO2 increases 14C primary production in an Arctic plankton community[J]. Biogeosciences, 2013, 10(3):1291-1308. doi: 10.5194/bg-10-1291-2013
[38] Zark M, Riebesell U, Dittmar T. Effects of ocean acidification on marine dissolved organic matter are not detectable over the succession of phytoplankton blooms[J]. Science Advances, 2015, 1(9):e1500531. doi: 10.1126/sciadv.1500531
[39] Bergen B, Endres S, Engel A, et al. Acidification and warming affect prominent bacteria in two seasonal phytoplankton bloom mesocosms[J]. Environmental Microbiology, 2016, 18(12):4579-4595. doi: 10.1111/1462-2920.13549
[40] James A K, Passow U, Brzezinski M A, et al. Elevated pCO2 enhances bacterioplankton removal of organic carbon[J]. PLoS One, 2017, 12(3):e0173145. doi: 10.1371/journal.pone.0173145
[41] Canfield D E, Kristensen E, Thamdrup B. Aquatic geomicrobiology[J]. Advances in Marine Biology, 2005, 48:1-599. doi: 10.1016/S0065-2881(05)48001-3
[42] Baltar F, Alvarez-Salgado X A, Aristegui J, et al. What is refractory organic matter in the ocean?[J]. Frontiers in Marine Science, 2021, 8:642637. doi: 10.3389/fmars.2021.642637
[43] 李超, 王海洋. 揭秘地质历史时期最大碳同位素负偏事件的本质[J]. 中国科学: 地球科学, 2024, 54(3): 902-906
LI Chao, WANG Haiyang. Uncovering the largest negative carbon isotope excursion in Earth history[J]. Science China Earth Sciences, 2024, 67(3): 885-889.]
[44] Kaufman A J, Corsetti F A, Varni M A. The effect of rising atmospheric oxygen on carbon and sulfur isotope anomalies in the Neoproterozoic Johnnie Formation, Death Valley, USA[J]. Chemical Geology, 2007, 237(1-2):47-63. doi: 10.1016/j.chemgeo.2006.06.023
[45] Lee C, Love G D, Fischer W W, et al. Marine organic matter cycling during the Ediacaran Shuram excursion[J]. Geology, 2015, 45(12):1103-1106.
[46] Sexton P F, Norris R D, Wilson P A, et al. Eocene global warming events driven by ventilation of oceanic dissolved organic carbon[J]. Nature, 2011, 471(7338):349-352. doi: 10.1038/nature09826
[47] Lourens L J, Sluijs A, Kroon D, et al. Astronomical pacing of late Palaeocene to Early Eocene global warming events[J]. Nature, 2005, 435(7045):1083-1087. doi: 10.1038/nature03814
[48] Nicolo M J, Dickens G R, Hollis C J, et al. Multiple early Eocene hyperthermals: their sedimentary expression on the New Zealand continental margin and in the deep sea[J]. Geology, 2007, 35(8):699-702. doi: 10.1130/G23648A.1
[49] Panchuk K, Ridgwell A, Kump L R. Sedimentary response to Paleocene-Eocene Thermal Maximum carbon release: a model-data comparison[J]. Geology, 2008, 36(4):315-318. doi: 10.1130/G24474A.1
[50] Zachos J C, Dickens G R, Zeebe R E. An early Cenozoic perspective on greenhouse warming and carbon-cycle dynamics[J]. Nature, 2008, 451(7176):279-283. doi: 10.1038/nature06588
[51] Dickens G R. Rethinking the global carbon cycle with a large, dynamic and microbially mediated gas hydrate capacitor[J]. Earth and Planetary Science Letters, 2003, 213(3-4):169-183. doi: 10.1016/S0012-821X(03)00325-X
[52] Falkowski P G, Katz M E, Knoll A H, et al. The evolution of modern eukaryotic Phytoplankton[J]. Science, 2004, 305(5682):354-360. doi: 10.1126/science.1095964
[53] Klaas C, Archer D E. Association of sinking organic matter with various types of mineral ballast in the deep sea: implications for the rain ratio[J]. Global Biogeochemical Cycles, 2002, 16(4):1116.
[54] Ducklow H W, Hansell D A, Morgan J A. Dissolved organic carbon and nitrogen in the Western Black Sea[J]. Marine Chemistry, 2007, 105(1-2):140-150. doi: 10.1016/j.marchem.2007.01.015
[55] Yang C, Rooney A D, Condon D J, et al. The tempo of Ediacaran evolution[J]. Science Advances, 2021, 7(45):eabi9643. doi: 10.1126/sciadv.abi9643
[56] Milankovitch M. Mathematische klimalehre und astronomische theorie der klimaschwankungen[J]. Handbuch Der Klimatologie, 1930.
[57] Westerhold T, Marwan N, Drury A J, et al. An astronomically dated record of Earth’s climate and its predictability over the last 66 million years[J]. Science, 2020, 369(6509):1383-1387. doi: 10.1126/science.aba6853
[58] Tian J, Wu H C, Huang C J, et al. Revisiting the Milankovitch theory from the perspective of the 405 ka long eccentricity cycle[J]. Earth Science, 2022, 47(10):3543-3568.
[59] Russon T, Paillard D, Elliot M. Potential origins of 400–500 kyr periodicities in the ocean carbon cycle: a box model approach[J]. Global Biogeochemical Cycles, 2010, 24(2):GB2013.
[60] Jiao N Z, Zheng Q. The microbial carbon pump: from genes to ecosystems[J]. Applied and Environmental Microbiology, 2011, 77(21):7439-7444. doi: 10.1128/AEM.05640-11
[61] Romaniello S J, Derry L A. An intermediate‐complexity model for simulating marine biogeochemistry in deep time: validation against the modern global ocean[J]. Geochemistry, Geophysics, Geosystems, 2010, 11(8):Q08001.
[62] Redfield A C. The biological control of chemical factors in the environment[J]. Science Progress, 1960, 11:150-170.
[63] Eichinger M, Kooijman S A L M, Sempéré R, et al. Consumption and release of dissolved organic carbon by marine bacteria in a pulsed-substrate environment: from experiments to modelling[J]. Aquatic Microbial Ecology, 2009, 56(1):41-54.
[64] Tian J, Xie X, Ma W T, et al. X-ray fluorescence core scanning records of chemical weathering and monsoon evolution over the past 5 Myr in the southern South China Sea[J]. Paleoceanography, 2011, 26(4):PA4202.
[65] Wang P X, Tian J, Cheng X R, et al. Major Pleistocene stages in a carbon perspective: the South China Sea record and its global comparison[J]. Paleoceanography, 2004, 19(4):PA4005.
[66] Iturriaga R, Zsolnay A. Transformation of some dissolved organic compounds by a natural heterotrophic population[J]. Marine Biology, 1981, 62(2-3):125-129. doi: 10.1007/BF00388174
[67] Ogawa H, Amagai Y, Koike I, et al. Production of refractory dissolved organic matter by bacteria[J]. Science, 2001, 292(5518):917-920. doi: 10.1126/science.1057627
[68] Hansell D A, Carlson C A. Biogeochemistry of marine dissolved organic matter[M]. 2nd ed. New York: Academic Press, 2015: 65-126.
[69] Lønborg C, Carreira C, Jickells T, et al. Impacts of global change on ocean dissolved organic carbon (DOC) cycling[J]. Frontiers in Marine Science, 2020, 7:466. doi: 10.3389/fmars.2020.00466
[70] Fakhraee M, Tarhan L G, Planavsky N J, et al. A largely invariant marine dissolved organic carbon reservoir across Earth’s history[J]. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118(40):e2103511118.
[71] Shields G A, Mills B J W, Zhu M Y, et al. Unique Neoproterozoic carbon isotope excursions sustained by coupled evaporite dissolution and pyrite burial[J]. Nature Geoscience, 2019, 12(10):823-827. doi: 10.1038/s41561-019-0434-3
[72] Gilchrist M D, Matsumoto K. Dynamics of the marine dissolved organic carbon reservoir in glacial climate simulations: the importance of biological production[J]. Paleoceanography and Paleoclimatology, 2023, 38(7):e2022PA004522. doi: 10.1029/2022PA004522
-