Changes and migrations in the paleoposition of the East China Sea: Evidence from paleomagnetic records
-
摘要:
东海盆地作为西太平洋汇聚大陆边缘盆地体系的重要组成部分,其起源与运动过程存在诸多争议,目前就存在着是“华南地块的一部分”还是“外来微陆块”两种不同认识。为明确东海盆地早白垩世以来的古位置变化,本文首次对东海盆地内9口钻井的白垩系—始新统岩芯进行了系统采样和古地磁实验测试研究,分析结果表明,东海盆地在早白垩世—中始新世时期一直处于15°N至30°N之间的低纬度位置,且其方位与现代方位基本一致,与华南地块之间表现出密切的古地理位置关系和构造亲缘性。对东海与华南的古位置对比分析表明,自早白垩世早期(约134 Ma)至中始新世(约40 Ma)期间,东海始终位于华南的东南位置,二者经历了纬度差持续缩小、位置逐渐靠近的三阶段过程:① 从早白垩世早期至早古新世早期(约134~65 Ma),东海与华南之间的纬度差从9.0°缓慢降至6.2°;② 从早古新世早期到中古新世末(约65~60 Ma),二者之间的纬度差从6.2°快速降至1.2°;③ 从中古新世末到中始新世(约60~40 Ma),二者之间的纬度差为1.2°~2.0°,东海与华南之间基本形成了现今空间格局,开始一体化同步运动。本研究确认了东海与华南地块之间早白垩世以来的构造亲缘性,对于东海盆地的构造演化过程研究和油气资源潜力评价具有重要意义。
Abstract:As an important part of the western Pacific convergent marginal basin system, the origin and movement history of the East China Sea Basin is still controversial, especially the paleopositional relationship between the East China Sea and the South China Block, which remains unclear. To clarify the paleolocation changes of the East China Sea Basin since the Early Cretaceous, we conducted a systematic paleomagnetic study using Cretaceous-Eocene samples from nine boreholes in the East China Sea Basin. Results show that the East China Sea Basin was located at a low latitude between 15°N and 30°N during the Early Cretaceous to Middle Eocene epoches, and its paleo-orientation was largely the same to the modern one, showing a close paleogeographical relationship and tectonic affinity with the South China Block. The comparative analysis of the paleoposition of the East China Sea and South China Block showed that the East China Sea had always been located in the southeast of the South China Block from the Early Cretaceous (~134 Ma) to the Middle Eocene (~40 Ma). During this period, the latitudinal difference between the two had continued to narrow down, and their positions became closer after experiencing three stages of change: (1) From the Early Cretaceous to the Early Paleocene (~134 - ~65 Ma), the latitudinal difference between the East China Sea and South China Block decreased slowly from 9.0° to 6.2°; (2) from the Early Paleocene to the end of the Middle Paleocene (~65 - ~60 Ma), the latitudinal difference between the two decreased rapidly from 6.2° to 1.2°; (3) from the end of the Middle Paleocene to the Middle Eocene (~60 - ~40 Ma), the latitudinal difference ranged from 1.2° to 2.0°, and a spatial pattern similar to the modern one was formed between the East China Sea and South China Block, with synchronous movement. This study confirmed the tectonic affinity between the East China Sea and the South China Block since the Early Cretaceous, holding significant implications for research on the tectonic evolution of the East China Sea Basin and the evaluation of its hydrocarbon resource potential.
-
-
图 4 东海样品岩石磁学分析结果(Flinn图[47]与热磁曲线)
Figure 4.
表 1 东海盆地钻井古地磁样品采集
Table 1. Specifications of the paleomagnetic samples collected from the East China Sea Basin
采样点编号 采样钻井 地层 年代/Ma 岩性 样品数量 S1 W-1 白垩系石门潭组 134 安山岩 13 S2 W-2 白垩系石门潭组 108.5~105.7 凝灰岩 13 S3 W-3 古新统美人峰组 66~61 砂岩 12 S4 W-4 古新统月桂峰组 66~61 砂岩 13 S5 W-4, W-5 古新统灵峰组-明月峰组 61~56 砂岩 22 S6 W-6, W-7, W-8, W-9 始新统宝石组-平湖组 49~34 砂岩 28 注:地层年代据文献[42]。 表 2 东海样品古地磁分析结果
Table 2. Paleomagnetic results of the samples from the East China Sea
年代 采样点
编号岩性 样品数量
n磁倾角
Inc /(°)磁倾角置信
区间α95/ (°)精度参数
κ采样点古纬度
λ0 /(°)参考点古纬度
λ /(°)古纬度置信
区间Δλ /(°)134 S1 安山岩 12 33.5 6.9 40.8 18.3 18.7 4.5 108.5~105.7 S2 凝灰岩 7 37.2 9.3 43.2 20.8 21.4 6.4 66~61 S3 砂岩 9 35.4 8.4 37.2 19.6 18.0 5.6 66~61 S4 砂岩 7 27.5 7.6 63.9 14.6 18.1 4.5 61~56 S5 砂岩 12 31.2 6.9 40.9 16.8 20.3 4.3 49~34 S6 砂岩 14 43.7 10.5 15.4 25.5 26.4 8.2 -
[1] Suo Y H, Li S Z, Cao X Z, et al. Mesozoic-Cenozoic basin inversion and geodynamics in East China: a review[J]. Earth-Science Reviews, 2020, 210:103357. doi: 10.1016/j.earscirev.2020.103357
[2] Liu Y M, Liu L J, Li Y C, et al. Global back-arc extension due to trench-parallel mid-ocean ridge subduction[J]. Earth and Planetary Science Letters, 2022, 600:117889. doi: 10.1016/j.jpgl.2022.117889
[3] Hu L C, Li N, Fu X W, et al. Unveiling the ~110 Ma continental arc in South China: geochemical and isotopic insights from offshore magmatic records in the East China Sea Basin[J]. Gondwana Research, 2025, 143:239-255. doi: 10.1016/j.gr.2025.03.013
[4] Zhao W Z, Wang Z C, Li J M, et al. Natural gas resources of the sedimentary basins in China[J]. Marine and Petroleum Geology, 2008, 25(4-5):309-319. doi: 10.1016/j.marpetgeo.2007.03.007
[5] Ye J R, Qing H R, Bend S L, et al. Petroleum systems in the offshore Xihu Basin on the continental shelf of the East China Sea[J]. AAPG Bulletin, 2007, 91(8):1167-1188. doi: 10.1306/02220705158
[6] 徐发. 东海陆架盆地新生界结构特征及迁移规律[J]. 石油天然气学报, 2012, 34(6):1-7 doi: 10.3969/j.issn.1000-9752.2012.06.001
XU Fa. Characteristics of Cenozoic structure and tectonic migration of the East China Sea Shelf Basin[J]. Journal of Oil and Gas Technology, 2012, 34(6):1-7.] doi: 10.3969/j.issn.1000-9752.2012.06.001
[7] Zhu W L, Zhong K, Fu X W, et al. The formation and evolution of the East China Sea Shelf Basin: a new view[J]. Earth-Science Reviews, 2019, 190:89-111. doi: 10.1016/j.earscirev.2018.12.009
[8] Niu Y L, Liu Y, Xue Q Q, et al. Exotic origin of the Chinese continental shelf: new insights into the tectonic evolution of the western Pacific and eastern China since the Mesozoic[J]. Science Bulletin, 2015, 60(18):1598-1616. doi: 10.1007/s11434-015-0891-z
[9] Suo Y H, Li S Z, Zhao S J, et al. Continental margin basins in East Asia: tectonic implications of the Meso-Cenozoic East China Sea pull-apart basins[J]. Geological Journal, 2015, 50(2):139-156. doi: 10.1002/gj.2535
[10] Zhang J P, Li S Z, Suo Y H. Formation, tectonic evolution and dynamics of the East China Sea Shelf Basin[J]. Geological Journal, 2016, 51(S1):162-175. doi: 10.1002/gj.2808
[11] Xu J Y, Ben-Avraham Z, Kelty T, et al. Origin of marginal basins of the NW Pacific and their plate tectonic reconstructions[J]. Earth-Science Reviews, 2014, 130:154-196. doi: 10.1016/j.earscirev.2013.10.002
[12] Ding W W, Li J B, Wu Z C, et al. Late Mesozoic transition from Andean-type to Western Pacific-type of the East China continental margin—Is the East China Sea basement an allochthonous terrain?[J]. Geological Journal, 2018, 53(5):1994-2002. doi: 10.1002/gj.3029
[13] Fu X W, Ding W W, Dadd K, et al. An exotic origin of the eastern East China Sea basement before ~ 150 Ma[J]. Science Bulletin, 2022, 67(19):1939-1942. doi: 10.1016/j.scib.2022.08.029
[14] Yang C Q, Han B F, Yang C S, et al. Mesozoic basin evolution of the East China Sea Shelf and tectonic system transition in Southeast China[J]. Geological Journal, 2020, 55(1):239-252. doi: 10.1002/gj.3409
[15] Li S Z, Suo Y H, Li X Y, et al. Mesozoic tectono-magmatic response in the East Asian ocean-continent connection zone to subduction of the Paleo-Pacific Plate[J]. Earth-Science Reviews, 2019, 192:91-137. doi: 10.1016/j.earscirev.2019.03.003
[16] Li C F, Zhou Z Y, Ge H P, et al. Rifting process of the Xihu Depression, East China Sea Basin[J]. Tectonophysics, 2009, 472(1-4):135-147. doi: 10.1016/j.tecto.2008.04.026
[17] Wei X D, Ding W W, Christeson G L, et al. Mesozoic suture zone in the East China Sea: evidence from wide-angle seismic profiles[J]. Tectonophysics, 2021, 820:229116. doi: 10.1016/j.tecto.2021.229116
[18] Huang B C, Yan Y G, Piper J D A, et al. Paleomagnetic constraints on the paleogeography of the East Asian blocks during Late Paleozoic and Early Mesozoic times[J]. Earth-Science Reviews, 2018, 186:8-36. doi: 10.1016/j.earscirev.2018.02.004
[19] Vaes B, van Hinsbergen D J J, Boschman L M. Reconstruction of subduction and back-arc spreading in the NW Pacific and Aleutian Basin: clues to causes of cretaceous and Eocene plate reorganizations[J]. Tectonics, 2019, 38(4):1367-1413. doi: 10.1029/2018TC005164
[20] Zhao J, Huang B C, Yan Y G, et al. Late Triassic paleomagnetic result from the Baoshan Terrane, West Yunnan of China: implication for orientation of the East Paleotethys suture zone and timing of the Sibumasu-Indochina collision[J]. Journal of Asian Earth Sciences, 2015, 111:350-364. doi: 10.1016/j.jseaes.2015.06.033
[21] Yang Z Y, Courtillot V, Besse J, et al. Jurassic paleomagnetic constraints on the collision of the North and South China blocks[J]. Geophysical Research Letters, 1992, 19(6):577-580. doi: 10.1029/91GL02416
[22] 黄宝春, 周烑秀, 朱日祥. 从古地磁研究看中国大陆形成与演化过程[J]. 地学前缘, 2008, 15(3):348-359 doi: 10.3321/j.issn:1005-2321.2008.03.031
HUANG Baochun, ZHOU Yaoxiu, ZHU Rixiang. Discussions on Phanerozoic evolution and formation of continental China, based on paleomagnetic studies[J]. Earth Science Frontiers, 2008, 15(3):348-359.] doi: 10.3321/j.issn:1005-2321.2008.03.031
[23] van Hinsbergen D J J. Indian plate paleogeography, subduction and horizontal underthrusting below Xizang: paradoxes, controversies and opportunities[J]. National Science Review, 2022, 9(8):nwac074. doi: 10.1093/nsr/nwac074
[24] Meng J, Wang C S, Zhao X X, et al. India-Asia collision was at 24°N and 50 Ma: palaeomagnetic proof from southernmost Asia[J]. Scientific reports, 2012, 2(1):925. doi: 10.1038/srep00925
[25] van de Lagemaat S H A, Pastor-Galán D, Zanderink B B G, et al. A critical reappraisal of paleomagnetic evidence for Philippine Sea Plate rotation[J]. Tectonophysics, 2023, 863:230010. doi: 10.1016/j.tecto.2023.230010
[26] Liu W, Liu Q S, Hu J S, et al. Complexity of the Oligocene meridional motion of the Philippine Sea Plate[J]. Geology, 2025, 53(2):140-144. doi: 10.1130/G52707.1
[27] Liu Y M, Hao F, Wu Z P, et al. Characteristics and origin of rift migration within the East China Sea Basin: coupling relation with deep mantle dynamics[J]. Journal of Structural Geology, 2025, 191:105334. doi: 10.1016/j.jsg.2024.105334
[28] Liang X X, Chen S, Ma B S, et al. Changes of tectonic regime of the East China Sea Shelf Basin since Mesozoic: insights from the Tiantai slope belt, East China Sea[J]. Journal of Asian Earth Sciences, 2024, 259:105900. doi: 10.1016/j.jseaes.2023.105900
[29] 赵志刚, 王鹏, 祁鹏, 等. 东海盆地形成的区域地质背景与构造演化特征[J]. 地球科学, 2016, 41(3):546-554
ZHAO Zhigang, WANG Peng, QI Peng, et al. Regional background and tectonic evolution of East China Sea Basin[J]. Earth Science, 2016, 41(3):546-554.]
[30] 赵金海. 东海中、新生代盆地成因机制和演化(上)[J]. 海洋石油, 2004, 24(4):6-14 doi: 10.3969/j.issn.1008-2336.2004.04.002
ZHAO Jinhai. The forming factors and evolvement of the Mesozoic and Cenozoic basin in the East China Sea[J]. Offshore Oil, 2004, 24(4):6-14.] doi: 10.3969/j.issn.1008-2336.2004.04.002
[31] Zang Y B, Li S Z, Guo L L, et al. Similarity and differentiation between the East China Sea Shelf Basin and Cenozoic basins in the northeast South China Sea[J]. Geological Journal, 2016, 51(S1):304-317. doi: 10.1002/gj.2826
[32] 韩波. 东海地球物理场及深部地质构造研究[D]. 中国科学院研究生院(海洋研究所)博士学位论文, 2008
HAN Bo. Geophysical field and deep tectonic features of East China Sea[D]. Doctor Dissertation of the Institute of Oceanology, Chinese Academy of Sciences, 2008.]
[33] 刘金水, 许怀智, 蒋一鸣, 等. 东海盆地中、新生代盆架结构与构造演化[J]. 地质学报, 2020, 94(3):675-691 doi: 10.3969/j.issn.0001-5717.2020.03.001
LIU Jinshui, XU Huaizhi, JIANG Yiming, et al. Mesozoic and Cenozoic basin structure and tectonic evolution in the East China Sea basin[J]. Acta Geologica Sinica, 2020, 94(3):675-691.] doi: 10.3969/j.issn.0001-5717.2020.03.001
[34] 王磊, 李春峰, 李珂迪, 等. 东海陆架盆地中生代残留地层特征及其构造启示[J]. 海洋学研究, 2022, 40(4):11-24 doi: 10.3969/j.issn.1001-909X.2022.04.002
WANG Lei, LI Chunfeng, LI Kedi, et al. Characteristics and tectonic implications of the Mesozoic residual strata in the East China Sea Shelf Basin[J]. Journal of Marine Sciences, 2022, 40(4):11-24.] doi: 10.3969/j.issn.1001-909X.2022.04.002
[35] 李家彪. 东海区域地质[M]. 北京: 海洋出版社, 2008
LI Jiabiao. Regional Tectonics of the East China Sea[M]. Beijing: China Ocean Press, 2008.]
[36] Yang C S, Li S Z, Li G, et al. Tectonic units and proto-basin of the East China Sea Shelf Basin: correlation to Mesozoic subduction of the Palaeo-Pacific Plate[J]. Geological Journal, 2016, 51(S1):149-161. doi: 10.1002/gj.2776
[37] Cheng Y J, Wu Z P, Zhang J, et al. Cenozoic tectonic evolution of offshore Chinese Basins and its response to geodynamic processes of the East Asian Continental Margin[J]. Earth-Science Reviews, 2022, 232:104140. doi: 10.1016/j.earscirev.2022.104140
[38] Cheng Y J, Wu Z P, Xu B, et al. The Mesozoic tectonic evolution of the East China Sea Basin: new insights from 3D seismic reflection data[J]. Tectonophysics, 2023, 848:229717. doi: 10.1016/j.tecto.2023.229717
[39] Shang L N, Zhang X H, Jia Y G, et al. Late Cenozoic evolution of the East China continental margin: insights from seismic, gravity, and magnetic analyses[J]. Tectonophysics, 2017, 698:1-15. doi: 10.1016/j.tecto.2017.01.003
[40] Tauxe L. Essentials of Paleomagnetism[M]. Berkeley: University of California Press, 2010.
[41] 杨风丽, 徐铭辰, 庄圆, 等. 古生代中国中西部三大陆块古地理位置重建与演变[J]. 地学前缘, 2022, 29(6):265-276
YANG Fengli, XU Mingchen, ZHUANG Yuan, et al. Paleozoic paleogeographic reconstruction and evolution of the three continental blocks of central and western China[J]. Earth Science Frontiers, 2022, 29(6):265-276.]
[42] 唐贤君, 李宁, 黄晓松, 等. 东海盆地西湖凹陷中下始新统宝石组再认识[J]. 地层学杂志, 2024, 48(4):404-418
TANG Xianjun, LI Ning, HUANG Xiaosong, et al. Reassessment of the Baoshi Formation of the Middle−Lower Eocene series in the Xihu Sag of the East China Sea Basin[J]. Journal of Stratigraphy, 2024, 48(4):404-418.]
[43] 谌微微, 杨风丽, 庄圆, 等. 利用古地磁学方法恢复钻孔岩心原始方位可靠性的探讨: 以塔里木盆地钻井为例[J]. 地质科技通报, 2023, 42(6):266-280
CHEN Weiwei, YANG Fengli, ZHUANG Yuan, et al. On the reliability of drilling core reorientations using palaeomagnetic methods: a case study from the boreholes in the Tarim Basin[J]. Bulletin of Geological Science and Technology, 2023, 42(6):266-280.]
[44] Zijderveld J D A. AC demagnetization of rocks: analysis of results[M]//Runcorn S K, Creer K M, Collinson D W. Methods in Palaeomagnetism. Amsterdam: Elsevier, 1967: 254-286.
[45] Kirschvink J L. The least-squares line and plane and the analysis of palaeomagnetic data[J]. Geophysical Journal International, 1980, 62(3):699-718. doi: 10.1111/j.1365-246X.1980.tb02601.x
[46] Li Y X, Wang S P, Fu S Y, et al. Recognizing the threshold magnetic anisotropy for inclination shallowing: implications for correcting inclination errors of sedimentary rocks[J]. Frontiers in Earth Science, 2014, 2:8.
[47] Flinn D. On the symmetry principle and the deformation ellipsoid[J]. Geological Magazine, 1965, 102(1):36-45. doi: 10.1017/S0016756800053851
[48] 敖红, 邓成龙. 磁性矿物的磁学鉴别方法回顾[J]. 地球物理学进展, 2007, 22(2):432-442 doi: 10.3969/j.issn.1004-2903.2007.02.015
AO Hong, DENG Chenglong. Review in the identification of magnetic minerals[J]. Progress in Geophysics, 2007, 22(2):432-442.] doi: 10.3969/j.issn.1004-2903.2007.02.015
[49] 刘青松, 邓成龙, 潘永信. 磁铁矿和磁赤铁矿磁化率的温度和频率特性及其环境磁学意义[J]. 第四纪研究, 2007, 27(6):955-962 doi: 10.3321/j.issn:1001-7410.2007.06.010
LIU Qingsong, DENG Chenglong, PAN Yongxin. Temperature-dependency and frequency-dependency of magnetic susceptibility of magnetite and maghemite and their significance for environmental magnetism[J]. Quaternary Sciences, 2007, 27(6):955-962.] doi: 10.3321/j.issn:1001-7410.2007.06.010
[50] Hodych J P, Bijaksana S, Pätzold R. Using magnetic anisotropy to correct for paleomagnetic inclination shallowing in some magnetite-bearing deep-sea turbidites and limestones[J]. Tectonophysics, 1999, 307(1-2):191-205. doi: 10.1016/S0040-1951(99)00125-0
[51] Arason Þ, Levi S. Maximum likelihood solution for inclination-only data in paleomagnetism[J]. Geophysical Journal International, 2010, 182(2):753-771. doi: 10.1111/j.1365-246X.2010.04671.x
[52] Butler R F. Paleomagnetism: Magnetic Domains to Geologic Terranes[M]. Boston: Blackwell Scientific Publications, 1992.
[53] Meng J, Gilder S A, Li Y L, et al. Remagnetization age and mechanism of cretaceous sediments in relation to dyke intrusion, Hainan Island: Tectonic implications for South China and the Red River Fault[J]. Journal of Geophysical Research: Solid Earth, 2022, 127(1):e2021JB023474. doi: 10.1029/2021JB023474
[54] Jeong D, Yu Y. Apparent polar wander path for East Asia and implications for paleomagnetic low inclination in sedimentary rocks[J]. Physics of the Earth and Planetary Interiors, 2019, 289:63-72. doi: 10.1016/j.pepi.2019.02.005
[55] Li S H, Advokaat E L, van Hinsbergen D J J, et al. Paleomagnetic constraints on the Mesozoic-Cenozoic paleolatitudinal and rotational history of Indochina and South China: review and updated kinematic reconstruction[J]. Earth-Science Reviews, 2017, 171:58-77. doi: 10.1016/j.earscirev.2017.05.007
[56] Vaes B, van Hinsbergen D J J, van de Lagemaat S H A, et al. A global apparent polar wander path for the last 320 Ma calculated from site-level paleomagnetic data[J]. Earth-Science Reviews, 2023, 245:104547. doi: 10.1016/j.earscirev.2023.104547
-