沿海锋面水动力过程引发的微生物响应研究进展与启示

卢涵, 祁文龙, 贺娟, 王鹏. 沿海锋面水动力过程引发的微生物响应研究进展与启示[J]. 海洋地质与第四纪地质, 2025, 45(4): 178-186. doi: 10.16562/j.cnki.0256-1492.2025052902
引用本文: 卢涵, 祁文龙, 贺娟, 王鹏. 沿海锋面水动力过程引发的微生物响应研究进展与启示[J]. 海洋地质与第四纪地质, 2025, 45(4): 178-186. doi: 10.16562/j.cnki.0256-1492.2025052902
LU Han, QI Wenlong, HE Juan, WANG Peng. Research progress and prospects of microbial adaptation induced by coastal frontal hydrodynamic activity[J]. Marine Geology & Quaternary Geology, 2025, 45(4): 178-186. doi: 10.16562/j.cnki.0256-1492.2025052902
Citation: LU Han, QI Wenlong, HE Juan, WANG Peng. Research progress and prospects of microbial adaptation induced by coastal frontal hydrodynamic activity[J]. Marine Geology & Quaternary Geology, 2025, 45(4): 178-186. doi: 10.16562/j.cnki.0256-1492.2025052902

沿海锋面水动力过程引发的微生物响应研究进展与启示

  • 基金项目: 国家重点研发计划“大洋科学钻探井下长期观测及原位取样关键技术”(2024YFC2814301)
详细信息
    作者简介: 卢涵(2000—),女,硕士研究生,海洋科学专业,E-mail:luhanorbunny@tongji.edu.cn
    通讯作者: 王鹏(1978—),女,教授,主要从事海洋微生物生态等研究,E-mail:pengwang@tongji.edu.cn
  • 中图分类号: P736

Research progress and prospects of microbial adaptation induced by coastal frontal hydrodynamic activity

More Information
  • 海洋锋面是河口-近海连续体中重要的(亚−)中尺度物理过程,调控着微生物群落的多样性、分布格局及生态功能。基于已有研究,本文系统综述了悬沙锋、羽流锋、上升流锋面、潮汐锋面以及陆架坡折锋的固有特性、形成机制及生态效应;重点阐明锋面动力过程(辐聚效应、次级环流与垂向混合等)如何通过驱动环境梯度、营养输运和有机颗粒物迁移,影响微生物群落的种群多样性、组装模式、代谢功能及生物地球化学循环。锋面的水动力过程可以为浮游微生物获取营养物质、进行生物生命活动提供便利的途径及机械动能。锋面辐聚效应可以改善锋区光照条件,提升锋区的初级生产力,进而影响微生物群落的结构多样性与营养循环。锋面系统的横向输运与垂向混合过程则显著影响着微生物群落的分布模式、胞外酶的活性表达及群落的扩散与融合。基于前人研究,本文还总结了随机性过程(如扩散限制)和确定性过程对锋面微生物群落组装的相对重要性,并探讨了种间关系等生物相互作用的重要性。

  • 加载中
  • 图 1  锋面水动力过程及引起的微生物群落结构及组装机制的响应概念图

    Figure 1. 

    表 1  河口及沿岸海域常见的锋面类型及其水动力特征与生态效应

    Table 1.  The common types, hydrodynamic characteristics, and ecological effects of estuarine and coastal fronts

    锋面类型 水动力机制 典型特征及生态效应
    悬沙锋 辐聚效应、潮汐混合、再悬浮、絮凝、湍流等过程 改善远岸侧的光照条件,阻碍颗粒物及营养物质的跨锋面输运,
    加强垂直水柱的混合等[25-27, 29, 34-36]
    羽流锋 辐聚效应、水体层化等过程 提高初级生产力及生物量的累积等[29, 31, 33, 37, 38]
    上升流锋面 辐聚效应/辐散效应、上升流等过程 将底层营养物质传输至真光层,提高初级生产力及生物量的
    累积等[30, 31, 33, 39-43]
    潮汐锋面 辐聚效应、潮汐混合、湍流等过程 改变颗粒物及营养物质的跨锋面输运模式等[4, 44]
    陆架坡折锋 垂直混合等过程 将底层营养物质传输至真光层,提高初级生产力及生物量的累积[4, 16-17, 45]
    下载: 导出CSV
  • [1]

    Phoma S, Vikram S, Jansson J K, et al. Agulhas Current properties shape microbial community diversity and potential functionality[J]. Scientific Reports, 2018, 8(1):10542. doi: 10.1038/s41598-018-28939-0

    [2]

    Bachmann J, Heimbach T, Hassenrück C, et al. Environmental drivers of free-living vs. Particle-attached bacterial community composition in the Mauritania upwelling system[J]. Frontiers in Microbiology, 2018, 9:2836. doi: 10.3389/fmicb.2018.02836

    [3]

    McWilliams J C. Oceanic frontogenesis[J]. Annual Review of Marine Science, 2021, 13:227-253. doi: 10.1146/annurev-marine-032320-120725

    [4]

    刘东艳, 吕婷, 林磊, 等. 我国近海陆架锋面与生态效应研究回顾[J]. 海洋科学进展, 2022, 40(4):725-741 doi: 10.12362/j.issn.1671-6647.20220719001

    LIU Dongyan, LÜ Ting, LIN Lei, et al. Review of fronts and its ecological effects in the shelf sea of China[J]. Advances in Marine Science, 2022, 40(4):725-741.] doi: 10.12362/j.issn.1671-6647.20220719001

    [5]

    Hopkins J, Challenor P, Shaw A G P. A new statistical modeling approach to ocean front detection from SST satellite images[J]. Journal of Atmospheric and Oceanic Technology, 2010, 27(1):173-191. doi: 10.1175/2009JTECHO684.1

    [6]

    Hutchins D A, Fu F X. Microorganisms and ocean global change[J]. Nature Microbiology, 2017, 2(6):17058. doi: 10.1038/nmicrobiol.2017.58

    [7]

    Azam F, Malfatti F. Microbial structuring of marine ecosystems[J]. Nature Reviews Microbiology, 2007, 5(10):782-791. doi: 10.1038/nrmicro1747

    [8]

    Deutschmann I M, Delage E, Giner C R, et al. Disentangling microbial networks across pelagic zones in the tropical and subtropical global ocean[J]. Nature Communications, 2024, 15(1):126. doi: 10.1038/s41467-023-44550-y

    [9]

    Liu Y T, Xu J X, Liu L, et al. A dataset of prokaryotic diversity in the surface layer of the China seas[J]. Scientific Data, 2025, 12(1):279. doi: 10.1038/s41597-025-04477-z

    [10]

    Wang Z, Juarez D L, Pan J F, et al. Microbial communities across nearshore to offshore coastal transects are primarily shaped by distance and temperature[J]. Environmental Microbiology, 2019, 21(10):3862-3872. doi: 10.1111/1462-2920.14734

    [11]

    Sunagawa S, Coelho L P, Chaffron S, et al. Structure and function of the global ocean microbiome[J]. Science, 2015, 348(6237):1261359. doi: 10.1126/science.1261359

    [12]

    Cai S J, Wang F P, Laws E A, et al. Linkages between bacterial community and extracellular enzyme activities crossing a coastal front[J]. Ecological Indicators, 2022, 145:109639. doi: 10.1016/j.ecolind.2022.109639

    [13]

    时静, 左亚强, 曹萍麟, 等. 夏季长江口海水中自由生活和颗粒附着古菌群落的组装过程研究[J]. 海洋与湖沼, 2023, 54(3):773-785 doi: 10.11693/hyhz20220800216

    SHI Jing, ZUO Yaqiang, CAO Pinglin, et al. The assembling of free-living and particle-attached archaea communities in the Changjiang River estuary in summer[J]. Oceanologia et Limnologia Sinica, 2023, 54(3):773-785.] doi: 10.11693/hyhz20220800216

    [14]

    Pachiadaki M G, Brown J M, Brown J, et al. Charting the complexity of the marine microbiome through single-cell genomics[J]. Cell, 2019, 179(7): 1623-1635. E11.

    [15]

    Raes E J, Bodrossy L, van de Kamp J, et al. Oceanographic boundaries constrain microbial diversity gradients in the south Pacific Ocean[J]. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115(35):E8266-E8275.

    [16]

    Baltar F, Currie K, Stuck E, et al. Oceanic fronts: transition zones for bacterioplankton community composition[J]. Environmental Microbiology Reports, 2016, 8(1):132-138. doi: 10.1111/1758-2229.12362

    [17]

    Cordone A, Selci M, Barosa B, et al. Surface bacterioplankton community structure crossing the antarctic circumpolar current fronts[J]. Microorganisms, 2023, 11(3):702. doi: 10.3390/microorganisms11030702

    [18]

    Lopes E, Semedo M, Tomasino M P, et al. Horizontal distribution of marine microbial communities in the North Pacific Subtropical Front[J]. Frontiers in Microbiology, 2024, 15:1455196. doi: 10.3389/fmicb.2024.1455196

    [19]

    Mittelbach G G, Steiner C F, Scheiner S M, et al. What is the observed relationship between species richness and productivity?[J]. Ecology, 2001, 82(9):2381-2396. doi: 10.1890/0012-9658(2001)082[2381:WITORB]2.0.CO;2

    [20]

    Fernández-Castro B, Mouriño-Carballido B, Marañón E, et al. Importance of salt fingering for new nitrogen supply in the oligotrophic ocean[J]. Nature Communications, 2015, 6(1):8002. doi: 10.1038/ncomms9002

    [21]

    Alonso-González I J, Arístegui J, Lee C, et al. Regional and temporal variability of sinking organic matter in the subtropical northeast Atlantic Ocean: a biomarker diagnosis[J]. Biogeosciences, 2010, 7(7):2101-2115. doi: 10.5194/bg-7-2101-2010

    [22]

    Fründt B, Waniek J. Impact of the azores front propagation on deep ocean particle flux[J]. Open Geosciences, 2012, 4(4):531-544. doi: 10.2478/s13533-012-0102-2

    [23]

    Baltar F, Arístegui J. Fronts at the surface ocean can shape distinct regions of microbial activity and community assemblages down to the bathypelagic zone: the azores front as a case study[J]. Frontiers in Marine Science, 2017, 4:252. doi: 10.3389/fmars.2017.00252

    [24]

    Wu W X, Lu H P, Sastri A, et al. Contrasting the relative importance of species sorting and dispersal limitation in shaping marine bacterial versus protist communities[J]. The ISME Journal, 2018, 12(2):485-494. doi: 10.1038/ismej.2017.183

    [25]

    Zhou Y, Xuan J L, Huang D J. Tidal variation of total suspended solids over the Yangtze bank based on the geostationary ocean color imager[J]. Science China Earth Sciences, 2020, 63(9):1381-1389. doi: 10.1007/s11430-019-9618-7

    [26]

    Maciel F P, Santoro P E, Pedocchi F. Spatio-temporal dynamics of the Río de la Plata turbidity front; combining remote sensing with in-situ measurements and numerical modeling[J]. Continental Shelf Research, 2021, 213:104301. doi: 10.1016/j.csr.2020.104301

    [27]

    Tu J B, Wu J X, Fan D D, et al. Shear instability and turbulent mixing by Kuroshio intrusion into the Changjiang river plume[J]. Geophysical Research Letters, 2024, 51(20):e2024GL110957. doi: 10.1029/2024GL110957

    [28]

    Cadier M, Gorgues T, LHelguen S, et al. Tidal cycle control of biogeochemical and ecological properties of a macrotidal ecosystem[J]. Geophysical Research Letters, 2017, 44(16):8453-8462. doi: 10.1002/2017GL074173

    [29]

    Du Y F, Qin Y, Chu D D, et al. Spatial and temporal variability of suspended sediment fronts over the Yangtze Bank in the Yellow and East China Seas[J]. Estuarine, Coastal and Shelf Science, 2023, 288:108361. doi: 10.1016/j.ecss.2023.108361

    [30]

    李洁, 经志友, 张偲. 季风环流影响下的南海海洋细菌多样性特征初探[J]. 热带海洋学报, 2018, 37(6):1-15

    LI Jie, JING Zhiyou, ZHANG Si. Preliminary investigation on the bacteria diversity coupled with the monsoon forced circulation in the South China Sea[J]. Journal of Tropical Oceanography, 2018, 37(6):1-15.]

    [31]

    Samo T J, Pedler B E, Ball G I, et al. Microbial distribution and activity across a water mass frontal zone in the California current ecosystem[J]. Journal of Plankton Research, 2012, 34(9):802-814. doi: 10.1093/plankt/fbs048

    [32]

    Karati K K, Vineetha G, Raveendran T V, et al. River plume fronts and their implications for the biological production of the bay of Bengal, Indian ocean[J]. Marine Ecology Progress Series, 2018, 597:79-98. doi: 10.3354/meps12607

    [33]

    Li W Q, Ge J Z, Ding P X, et al. Effects of dual fronts on the spatial pattern of chlorophyll-a concentrations in and off the Changjiang River Estuary[J]. Estuaries and Coasts, 2021, 44(5):1408-1418. doi: 10.1007/s12237-020-00893-z

    [34]

    Ge J Z, Torres R, Chen C S, et al. Influence of suspended sediment front on nutrients and phytoplankton dynamics off the Changjiang estuary: a FVCOM-ERSEM coupled model experiment[J]. Journal of Marine Systems, 2020, 204:103292. doi: 10.1016/j.jmarsys.2019.103292

    [35]

    Du Y F, Han X J, Wang Y P, et al. Multiscale spatio‐temporal variability of suspended sediment front in the Yangtze River estuary and its ecological effects[J]. Water Research, 2025, 279:123349. doi: 10.1016/j.watres.2025.123349

    [36]

    Wang M Y, Gao L. New insights into the non-conservative behaviors of nutrients triggering phytoplankton blooms in the Changjiang (Yangtze) river estuary[J]. Journal of Geophysical Research: Oceans, 2022, 127(2):e2021JC017688. doi: 10.1029/2021JC017688

    [37]

    Zhang Z R, Zhou M, Zhong Y S, et al. Spatial variations of phytoplankton biomass controlled by river plume dynamics over the lower Changjiang Estuary and adjacent shelf based on high-resolution observations[J]. Frontiers in Marine Science, 2020, 7:587539. doi: 10.3389/fmars.2020.587539

    [38]

    Woodson C B, Litvin S Y. Ocean fronts drive marine fishery production and biogeochemical cycling[J]. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112(6):1710-1715.

    [39]

    Bergen B, Herlemann D P R, Jürgens K. Zonation of bacterioplankton communities along aging upwelled water in the northern benguela upwelling[J]. Frontiers in Microbiology, 2015, 6:621.

    [40]

    曹智勇, 曹瑞雪, 张书文, 等. 琼东海域锋面特征初探[J]. 广东海洋大学学报, 2016, 36(3):82-88 doi: 10.3969/j.issn.1673-9159.2016.03.014

    CAO Zhiyong, CAO Ruixue, ZHANG Shuwen, et al. A preliminary study of frontal characteristics in the continental shelf of the Eastern Hainan Island[J]. Journal of Guangdong Ocean University, 2016, 36(3):82-88.] doi: 10.3969/j.issn.1673-9159.2016.03.014

    [41]

    曹智勇. 琼东区域海洋锋面的次中尺度过程[D]. 广东海洋大学硕士学位论文, 2016

    CAO Zhiyong. Submesoscale process of ocean front in the continental shelf sea of Eastern Hainan Island[D]. Master Dissertation of Guandong Ocean University, 2016.]

    [42]

    Wei Q S, Yao P, Xu B C, et al. Coastal upwelling combined with the river plume regulates hypoxia in the Changjiang Estuary and adjacent inner East China sea shelf[J]. Journal of Geophysical Research: Oceans, 2021, 126(11):e2021JC017740. doi: 10.1029/2021JC017740

    [43]

    黄小龙, 经志友, 郑瑞玺, 等. 南海西部夏季上升流锋面的次中尺度特征分析[J]. 热带海洋学报, 2020, 39(3):1-9

    HUANG Xiaolong, JING Zhiyou, ZHENG Ruixi, et al. Analysis of submesoscale characteristics of summer upwelling fronts in the western South China Sea[J]. Journal of Tropical Oceanography, 2020, 39(3):1-9.]

    [44]

    Hatcher B G. Dynamics of marine ecosystems Biological-physical interactions in the oceans[J]. Botanica Marina, 2006, 49(3):272-273.

    [45]

    Tomczak M, Godfrey J S. Regional oceanography: an introduction[M]. New York: Pergamon, 2005.

    [46]

    Houghton R W, Aikman F, Ou H W. Shelf-slope frontal structure and cross-shelf exchange at the New England shelf-break[J]. Continental Shelf Research, 1988, 8(5-7):687-710. doi: 10.1016/0278-4343(88)90072-6

    [47]

    Mann K H, Lazier J R N. Dynamics of marine ecosystems[M]. 3rd ed. Malden: Blackwell Publishing, 2006.

    [48]

    Ryan J P, McManus M A, Sullivan J M. Interacting physical, chemical and biological forcing of phytoplankton thin-layer variability in Monterey Bay, California[J]. Continental Shelf Research, 2010, 30(1):7-16. doi: 10.1016/j.csr.2009.10.017

    [49]

    Prants S V. Marine life at Lagrangian fronts[J]. Progress in Oceanography, 2022, 204:102790. doi: 10.1016/j.pocean.2022.102790

    [50]

    de Sousa A G G, Tomasino M P, Duarte P, et al. Diversity and composition of pelagic prokaryotic and protist communities in a thin arctic sea-ice regime[J]. Microbial Ecology, 2019, 78(2):388-408. doi: 10.1007/s00248-018-01314-2

    [51]

    Inoue N, Taira Y, Emi T, et al. Acclimation to the growth temperature and the high-temperature effects on photosystem II and plasma membranes in a mesophilic cyanobacterium, Synechocystis sp. PCC6803[J]. Plant and Cell Physiology, 2001, 42(10):1140-1148. doi: 10.1093/pcp/pce147

    [52]

    Hüner N P A, Smith D R, Cvetkovska M, et al. Photosynthetic adaptation to polar life: energy balance, photoprotection and genetic redundancy[J]. Journal of Plant Physiology, 2022, 268:153557. doi: 10.1016/j.jplph.2021.153557

    [53]

    Hu J Y, Kawamura H, Tang D L. Tidal front around the Hainan Island, northwest of the South China Sea[J]. Journal of Geophysical Research: Oceans, 2003, 108(C11):2003JC001883. doi: 10.1029/2003JC001883

    [54]

    Raina J B, Giardina M, Brumley D R, et al. Chemotaxis increases metabolic exchanges between marine picophytoplankton and heterotrophic bacteria[J]. Nature Microbiology, 2023, 8(3):510-521.

    [55]

    Kuhlisch C, Shemi A, Barak-Gavish N, et al. Algal blooms in the ocean: hot spots for chemically mediated microbial interactions[J]. Nature Reviews Microbiology, 2024, 22(3):138-154. doi: 10.1038/s41579-023-00975-2

    [56]

    Cardman Z, Arnosti C, Durbin A, et al. Verrucomicrobia are candidates for polysaccharide-degrading bacterioplankton in an arctic fjord of Svalbard[J]. Applied and Environmental Microbiology, 2014, 80(12):3749-3756. doi: 10.1128/AEM.00899-14

    [57]

    Zhang X, Cui L J, Liu S L, et al. Seasonal dynamics of bacterial community and co-occurrence with eukaryotic phytoplankton in the Pearl River Estuary[J]. Marine Environmental Research, 2023, 192:106193. doi: 10.1016/j.marenvres.2023.106193

    [58]

    Li X F, Xu J, Shi Z, et al. Regulation of protist grazing on bacterioplankton by hydrological conditions in coastal waters[J]. Estuarine, Coastal and Shelf Science, 2019, 218:1-8. doi: 10.1016/j.ecss.2018.11.013

    [59]

    McGillicuddy Jr D J. Mechanisms of physical-biological-biogeochemical interaction at the oceanic mesoscale[J]. Annual Review of Marine Science, 2016, 8:125-159. doi: 10.1146/annurev-marine-010814-015606

    [60]

    Gong X F, Liu X, Li Y Y, et al. Distinct ecological processes mediate domain-level differentiation in microbial spatial scaling[J]. Applied and Environmental Microbiology, 2023, 89(3):e02096-22.

    [61]

    Monger B, Landry M. Prey-size dependency of grazing by free-living marine flagellates[J]. Marine Ecology Progress Series, 1991, 74:239-248. doi: 10.3354/meps074239

    [62]

    Sun P, Wang Y, Huang X, et al. Water masses and their associated temperature and cross-domain biotic factors co-shape upwelling microbial communities[J]. Water Research, 2022, 215:118274. doi: 10.1016/j.watres.2022.118274

    [63]

    Malits A, Weinbauer M G. Effect of turbulence and viruses on prokaryotic cell size, production and diversity[J]. Aquatic Microbial Ecology, 2009, 54(3):243-254.

    [64]

    Massana R, Logares R. Eukaryotic versus prokaryotic marine picoplankton ecology[J]. Environmental Microbiology, 2013, 15(5):1254-1261. doi: 10.1111/1462-2920.12043

    [65]

    Kirchman D L. Growth rates of microbes in the oceans[J]. Annual Review of Marine Science, 2016, 8:285-309. doi: 10.1146/annurev-marine-122414-033938

    [66]

    Zou J, Xiao Y Y, Wu P, et al. Distribution, community structure and assembly patterns of phytoplankton in the northern South China sea[J]. Frontiers in Microbiology, 2024, 15:1450706. doi: 10.3389/fmicb.2024.1450706

    [67]

    Gonzfilez J M. Efficient size-selective bacterivory by phagotrophic nanoflagellates in aquatic ecosystems[J]. Marine Biology, 1996, 126(4):785-789. doi: 10.1007/BF00351345

    [68]

    Isabwe A, Yao H F, Zhang S X, et al. Spatial assortment of soil organisms supports the size-plasticity hypothesis[J]. ISME Communications, 2022, 2(1):102. doi: 10.1038/s43705-022-00185-6

    [69]

    Villarino E, Watson J R, Jönsson B, et al. Large-scale ocean connectivity and planktonic body size[J]. Nature Communications, 2018, 9(1):142. doi: 10.1038/s41467-017-02535-8

    [70]

    Li R, Hu C, Wang J N, et al. Biogeographical distribution and community assembly of active Protistan assemblages along an estuary to a basin transect of the northern south China sea[J]. Microorganisms, 2021, 9(2):351. doi: 10.3390/microorganisms9020351

    [71]

    Largier J L. Estuarine fronts: how important are they?[J]. Estuaries, 1993, 16(1):1-11. doi: 10.2307/1352760

    [72]

    Djurhuus A, Boersch-Supan P H, Mikalsen S O, et al. Microbe biogeography tracks water masses in a dynamic oceanic frontal system[J]. Royal Society Open Science, 2017, 4(3):170033. doi: 10.1098/rsos.170033

    [73]

    Xian W D, Chen J H, Zheng Z, et al. Water masses influence the variation of microbial communities in the Yangtze River estuary and its adjacent waters[J]. Frontiers in Microbiology, 2024, 15:1367062. doi: 10.3389/fmicb.2024.1367062

    [74]

    Gao Y, Zhang W L, Li Y, et al. Dams shift microbial community assembly and imprint nitrogen transformation along the Yangtze River[J]. Water Research, 2021, 189:116579. doi: 10.1016/j.watres.2020.116579

    [75]

    Wilkins D, Van Sebille E, Rintoul S R, et al. Advection shapes southern ocean microbial assemblages independent of distance and environment effects[J]. Nature Communications, 2013, 4(1):2457. doi: 10.1038/ncomms3457

    [76]

    Milici M, Tomasch J, Wos-Oxley M L, et al. Bacterioplankton biogeography of the Atlantic Ocean: a case study of the distance-decay relationship[J]. Frontiers in Microbiology, 2016, 7:590.

    [77]

    Stegen J C, Lin X J, Fredrickson J K, et al. Estimating and mapping ecological processes influencing microbial community assembly[J]. Frontiers in Microbiology, 2015, 6:370.

    [78]

    Li H Z, Zhou H Y, Yang S S, et al. Stochastic and deterministic assembly processes in seamount microbial communities[J]. Applied and Environmental Microbiology, 2023, 89(7):e00701-23.

    [79]

    Moran M A, Kujawinski E B, Schroer W F, et al. Microbial metabolites in the marine carbon cycle[J]. Nature Microbiology, 2022, 7(4):508-523. doi: 10.1038/s41564-022-01090-3

    [80]

    Middelboe M, Søndergaard M, Letarte Y, et al. Attached and free-living bacteria: production and polymer hydrolysis during a diatom bloom[J]. Microbial Ecology, 1995, 29(3):231-248. doi: 10.1007/BF00164887

    [81]

    Wei Q S, Yuan Y Q, Song S Q, et al. Spatial variability of hypoxia and coupled physical-biogeochemical controls off the Changjiang (Yangtze River) Estuary in summer[J]. Frontiers in Marine Science, 2022, 9:987368. doi: 10.3389/fmars.2022.987368

    [82]

    New A L, Pingree R D. Evidence for internal tidal mixing near the shelf break in the Bay of Biscay[J]. Deep Sea Research Part A. Oceanographic Research Papers, 1990, 37(12):1783-1803. doi: 10.1016/0198-0149(90)90078-A

    [83]

    Deng Y Q, Jiang J J, Huang Y B, et al. Hypoxia triggers the proliferation of antibiotic resistance genes in a marine aquaculture system[J]. Science of the Total Environment, 2023, 859:160305. doi: 10.1016/j.scitotenv.2022.160305

    [84]

    Waite D W, Chuvochina M, Pelikan C, et al. Proposal to reclassify the proteobacterial classes Deltaproteobacteria and Oligoflexia, and the phylum Thermodesulfobacteria into four phyla reflecting major functional capabilities[J]. International Journal of Systematic and Evolutionary Microbiology, 2020, 70(11):5972-6016. doi: 10.1099/ijsem.0.004213

    [85]

    Hallstrøm S, Benavides M, Salamon E R, et al. Pelagic N2 fixation dominated by sediment diazotrophic communities in a shallow temperate estuary[J]. Limnology and Oceanography, 2022, 67(2):364-378. doi: 10.1002/lno.11997

    [86]

    Robicheau B M, Tolman J, Rose S, et al. Marine nitrogen-fixers in the Canadian arctic gateway are dominated by biogeographically distinct noncyanobacterial communities[J]. FEMS Microbiology Ecology, 2023, 99(12):fiad122. doi: 10.1093/femsec/fiad122

    [87]

    Freilich M A, Poirier C, Dever M, et al. 3D intrusions transport active surface microbial assemblages to the dark ocean[J]. Proceedings of the National Academy of Sciences, 2024, 121(19):e2319937121. doi: 10.1073/pnas.2319937121

    [88]

    Nelson C E, Carlson C A, Ewart C S, et al. Community differentiation and population enrichment of Sargasso Sea bacterioplankton in the euphotic zone of a mesoscale mode-water eddy[J]. Environmental Microbiology, 2014, 16(3):871-887. doi: 10.1111/1462-2920.12241

    [89]

    Rodríguez J, Tintoré J, Allen J T, et al. Mesoscale vertical motion and the size structure of phytoplankton in the ocean[J]. Nature, 2001, 410(6826):360-363. doi: 10.1038/35066560

    [90]

    Ruiz S, Claret M, Pascual A, et al. Effects of oceanic mesoscale and submesoscale frontal processes on the vertical transport of phytoplankton[J]. Journal of Geophysical Research: Oceans, 2019, 124(8):5999-6014. doi: 10.1029/2019JC015034

    [91]

    Fielding S, Crisp N, Allen J T, et al. Mesoscale subduction at the Almeria–Oran front: part 2. Biophysical interactions[J]. Journal of Marine Systems, 2001, 30(3-4):287-304. doi: 10.1016/S0924-7963(01)00063-X

    [92]

    Borgnino M, Arrieta J, Boffetta G, et al. Turbulence induces clustering and segregation of non-motile, buoyancy-regulating phytoplankton[J]. Journal of the Royal Society Interface, 2019, 16(159):20190324. doi: 10.1098/rsif.2019.0324

  • 加载中

(1)

(1)

计量
  • 文章访问数:  25
  • PDF下载数:  9
  • 施引文献:  0
出版历程
收稿日期:  2025-05-29
修回日期:  2025-07-04
录用日期:  2025-07-04
刊出日期:  2025-08-28

目录