Altered evolution sequence of abyssal peridotites from the Tianxiu hydrothermal field in the northwestern Indian Ocean: Evidence from petrochemistry and mineralogy
-
摘要:
热液区超基性岩的蚀变过程在控制区域地球化学循环与矿物演化方面起关键作用,但热液区超基性岩的蚀变过程与蚀变机制目前还不清楚。本文以西北印度洋天休热液区不同位置获取的超基性岩为例,通过镜下岩矿综合鉴定、全岩化学成分分析以及电子探针成分分析等进行了岩石化学特征、矿物学特征及其蚀变演化过程的研究。结果表明,天休热液区超基性岩发生了严重蚀变,主要特征组合矿物为蛇纹石(叶蛇纹石、纤蛇纹石、利蛇纹石)、伴生磁铁矿、绿泥石、伊丁石、方解石等次生矿物。综合全岩以及矿物主量元素分析发现天休热液区超基性岩的蚀变演化过程主要分为两个阶段:(Ⅰ)橄榄石、辉石类矿物在封闭系统下经历了典型的蛇纹石化作用;(Ⅱ)橄榄石在开放氧化环境下进一步经历了伊丁石化作用。蛇纹石化过程中Fe、Ca大量迁移并富集于次生矿物(如磁铁矿或碳酸盐矿物)中,说明原生橄榄石已经发生了较完全的蛇纹石化,形成了高镁型蛇纹石。相比之下,伊丁石化过程中Fe的富集和Si、Mg元素的迁移对伊丁石、铁氧化物的形成与演化起到了一定的催化作用。本研究揭示了天休热液区深海橄榄岩的两期蚀变演化过程,为理解该热液区蚀变矿物的形成演化机制和元素的富集迁移提供了重要参考。
Abstract:The alteration of ultrabasic rocks in hydrothermal fields plays a critical role in regulating regional geochemical cycles and mineral evolution. However, the detailed processes and mechanisms governing such alteration remain poorly understood. We investigated ultrabasic rocks collected from various locations in the Tianxiu hydrothermal field in the northwestern Indian Ocean. By integrating analysis results in petrography, whole-rock geochemistry, and electron micro-probing, the petrochemical and mineralogical features were clarified and the evolution of the rock alteration was reconstruct. Results indicate that the ultrabasic rocks in the hydrothermal field had undergone extensive alteration. The dominant secondary mineral assemblage includes serpentine minerals (antigorite, chrysotile, and lizardite), accompanied by magnetite, chlorite, iddingsite, calcite, and other alteration products. The alteration history could be divided into two stages. In Stage I, olivine and pyroxene experienced typical serpentinization under relatively closed-system conditions; in Stage II, olivine subsequently underwent iddingsitization in an open ad oxidizing environment. During the serpentinization, substantial Fe and Ca were mobilized and enriched in the secondary minerals such as magnetite and carbonate, suggesting that the original olivine was completely replaced by high-Mg serpentine. In the later iddingsitization stage, Fe enrichment along with Si and Mg mobilization played a catalytic role in the formation and evolution of iddingsite and associated iron oxides. These findings reveal a complex and multi-stage alteration history of deep-sea peridotites in the Tianxiu hydrothermal field and provide valuable insights into mineral transformation mechanisms and element mobility in such settings.
-
Key words:
- abyssal peridotite /
- serpentinization /
- iddingsitization /
- Tianxiu hydrothermal field
-
-
图 6 橄榄石蚀变MgO-FeO、辉石蚀变MgO-CaO协变图以及蛇纹石族矿物SiO2-FeO-MgO三元图[39]
Figure 6.
表 1 蚀变橄榄岩全岩主量元素成分分析结果
Table 1. Chemical composition analysis of the metamorphic ultrabasic rocks
% 样品 SiO2 TiO2 Al2O3 TFe2O3 MnO MgO CaO Na2O K2O P2O5 LOI 总计 JL213U 38.93 0.007 0.48 7.90 0.04 37.53 0.09 0.15 0.033 0.020 14.39 99.56 JL214U 38.33 0.021 1.03 8.30 0.08 38.11 0.07 0.12 0.019 0.017 12.99 99.08 JL215U 32.23 0.003 0.33 27.87 0.12 18.99 0.14 0.62 0.204 0.076 18.44 99.01 注:TFe2O3代表全铁含量。 表 2 蚀变橄榄岩代表性矿物主量元素组成
Table 2. Major element composition of representative minerals in altered peridotite
% 矿物样品 Atg Ctl Spl Mgt Chl Idd JL213U JL214U JL213U JL214U JL213U JL214U JL213U JL214U JL213U JL214U JL215U JL215U SiO2 36.9 37.3 43.1 42.8 0.010 0.057 2.22 1.61 30.9 32.0 33.3 33.8 TiO2 0.069 0 0.060 0.058 0.176 0.397 0.026 0.101 0.011 0.115 0 0.006 Al2O3 1.29 1.33 0.246 0.154 34.6 11.7 0.057 0.016 16.6 15.3 12.1 0.358 K2O 0.007 0.030 0.011 0 0.04 0.018 0.005 0 0.057 0.018 0.033 0.230 P2O5 0 0 0.009 0.063 0 0 0 0.023 0.036 0 0.052 0.624 MnO 0.013 0.085 0.033 0 0.155 0.553 0.045 0.065 0.025 0 0.092 0.037 FeO 3.72 3.20 3.67 1.43 14.1 32.0 88.2 89.1 2.79 3.04 11.4 36.7 MgO 33.1 35.3 39.9 42.6 15.6 5.15 2.46 1.9 33.0 33.9 28.9 18.4 Cr2O3 1.07 0 0.013 0.011 33.8 48.6 0.038 0.080 1.52 1.24 0.076 0.012 CaO 0.002 0.161 0.058 0 0.003 0 0 0 0.028 0.027 0.063 0.892 Na2O 0.108 0.059 0 0 0.006 0.035 0.020 0.004 0.023 0.014 0.068 0.133 NiO 0.153 0.101 0.229 0.391 0.179 0.037 0.146 0.211 0.218 0.234 0.007 0.035 总计 76.5 77.5 87.3 87.6 98.7 98.6 93.2 93.2 85.2 85.9 86.1 91.2 注:Atg: 叶蛇纹石;Ctl: 纤蛇纹石;Spl: 尖晶石;Mgt: 磁铁矿;Chl: 绿泥石;Idd: 伊丁石。 -
[1] Steinthorsdottir K, Dipple G M, Cutts J A, et al. Formation and preservation of brucite and awaruite in serpentinized and tectonized mantle in Central British Columbia: implications for carbon mineralization and nickel mining[J]. Journal of Petrology, 2022, 63(11):egac100. doi: 10.1093/petrology/egac100
[2] Pineda-Rodríguez N A, Zuluaga C A, Bernet M, et al. Petrology of serpentinites associated to the Romeral Suture Zone in the Central Cordillera (Colombia)[M]//Gomez J, Zuluaga CA, Bernet M. New Insights into the Colombian Andes: Magmatism, Metamorphism and Exhumation. Geological Society, London, Special Publications, 2025, 558(1): 31-52.
[3] Evans K A, Powell R, Frost B R. Using equilibrium thermodynamics in the study of metasomatic alteration, illustrated by an application to serpentinites[J]. Lithos, 2013, 168-169: 67-84.
[4] Mével C. Serpentinization of abyssal peridotites at mid-ocean ridges[J]. Comptes Rendus Geoscience, 2003, 335(10-11):825-852. doi: 10.1016/j.crte.2003.08.006
[5] Kelley D S, Karson J A, Blackman D K, et al. An off-axis hydrothermal vent field near the Mid-Atlantic Ridge at 30°N[J]. Nature, 2001, 412(6843):145-149. doi: 10.1038/35084000
[6] Tsuchiya J, Mizoguchi T, Inoué S, et al. First-principles investigations of antigorite polysomatism under pressure[J]. Journal of Geophysical Research: Solid Earth, 2024, 129(6):e2023JB028060. doi: 10.1029/2023JB028060
[7] Ding T, Dias Á A, Wang J, et al. Serpentinization and its implications for ultramafic-hosted sulfide mineralization: a case study at the Tianzuo hydrothermal field, 63.5°E, Southwest Indian Ridge[J]. Marine Geology, 2023, 455:106969. doi: 10.1016/j.margeo.2022.106969
[8] McCafferty A E, Van Gosen B S. Airborne gamma-ray and magnetic anomaly signatures of serpentinite in relation to soil geochemistry, Northern California[J]. Applied Geochemistry, 2009, 24(8):1524-1537. doi: 10.1016/j.apgeochem.2009.04.007
[9] Bach W, Garrido C J, Paulick H, et al. Seawater-peridotite interactions: First insights from ODP Leg 209, MAR 15°N[J]. Geochemistry, Geophysics, Geosystems, 2004, 5(9):Q09F26 .
[10] Qi L, Allerton S, Muxworthy A R, et al. Remagnetization of serpentinite during deformation: evidence from a fossil oceanic transform fault zone of the Troodos Ophiolite[J]. Journal of Geophysical Research: Solid Earth, 2025, 130(4):e2024JB030790. doi: 10.1029/2024JB030790
[11] Newman S A, Lincoln S A, O’Reilly S, et al. Lipid biomarker record of the serpentinite-hosted ecosystem of the Samail Ophiolite, Oman and implications for the search for biosignatures on Mars[J]. Astrobiology, 2020, 20(7):830-845. doi: 10.1089/ast.2019.2066
[12] Putman L I, Sabuda M C, Brazelton W J, et al. Microbial communities in a serpentinizing aquifer are assembled through strong concurrent dispersal limitation and selection[J]. mSystems, 2021, 6(5):e0030021.
[13] Boyd E S, Colman D R, Templeton A S. Perspective: microbial hydrogen metabolism in rock-hosted ecosystems[J]. Frontiers in Energy Research, 2024, 12:1340410. doi: 10.3389/fenrg.2024.1340410
[14] Ruff S E, De Angelis I H, Mullis M, et al. A global comparison of surface and subsurface microbiomes reveals large-scale biodiversity gradients, and a marine-terrestrial divide[J]. Science Advances, 2024, 10(51):eadq0645. doi: 10.1126/sciadv.adq0645
[15] Patterson S N, Lynn K J, Prigent C, et al. High temperature hydrothermal alteration and amphibole formation in Gakkel Ridge abyssal peridotites[J]. Lithos, 2021, 392-393: 106107.
[16] Alt J C, Shanks III W C. Serpentinization of abyssal peridotites from the MARK area, Mid-Atlantic Ridge: sulfur geochemistry and reaction modeling[J]. Geochimica et Cosmochimica Acta, 2003, 67(4):641-653. doi: 10.1016/S0016-7037(02)01142-0
[17] Albers E, Behrendt N, Diehl A, et al. Formation and hydrothermal alteration of a volcanic center: melt pooling and mass transfers at Langseth Ridge (Gakkel Ridge, Arctic Ocean)[J]. Marine Geology, 2024, 475:107347. doi: 10.1016/j.margeo.2024.107347
[18] Chan L H, Edmond J M, Thompson G, et al. Lithium isotopic composition of submarine basalts: implications for the lithium cycle in the oceans[J]. Earth and Planetary Science Letters, 1992, 108(1-3):151-160. doi: 10.1016/0012-821X(92)90067-6
[19] Megevand V, Viennet J C, Le Guillou C, et al. Tardi-magmatic iddingsite in the Martian Nakhlite NWA 817[J]. Geochimica et Cosmochimica Acta, 2025, 393:318-333. doi: 10.1016/j.gca.2025.01.028
[20] Sheppard R A. Iddingsitization and recurrent crystallization of olivine in basalts from the Simcoe mountains, Washington[J]. American Journal of Science, 1962, 260(1):67-74. doi: 10.2475/ajs.260.1.67
[21] Velbel M A. Dissolution of olivine during natural weathering[J]. Geochimica et Cosmochimica Acta, 2009, 73(20):6098-6113. doi: 10.1016/j.gca.2009.07.024
[22] Schrenk M O, Brazelton W J, Lang S Q. Serpentinization, carbon, and deep life[J]. Reviews in Mineralogy and Geochemistry, 2013, 75(1):575-606. doi: 10.2138/rmg.2013.75.18
[23] Kitadai N, Maruyama S. Origins of building blocks of life: a review[J]. Geoscience Frontiers, 2018, 9(4):1117-1153. doi: 10.1016/j.gsf.2017.07.007
[24] 吴雪停. 卡尔斯伯格脊典型热液区流体地球化学时空演化特征研究[D]. 浙江大学博士学位论文, 2022
WU Xueting. Research on the spatio-temporal evolution characteristics of fluid geochemistry in the typical hydrothermal area of the Carlsberg Ridge[D]. Doctor Dissertation of Zhejiang University, 2022.]
[25] 陈阳. 西北印度洋卡尔斯伯格脊天休热液区深海橄榄岩蚀变和元素迁移特征及过程研究[D]. 浙江大学博士学位论文. 2019
CHEN Yang. Characteristics and processes of alteration and element migration of abyssal peridotite at the Tianxiu hydrothermal field on the Carlsberg Ridge, Northwest Indian Ocean[D]. Doctor Dissertation of Zhejiang University, 2019.]
[26] 颉炜, 谭文睿, 韩喜球, 等. 卡尔斯伯格脊天休洋脊段的深部岩浆过程: 来自洋中脊玄武岩中单斜辉石结晶条件的约束[J]. 岩石学报, 2024, 40(7):2203-2214 doi: 10.18654/1000-0569/2024.07.13
JIE Wei, TAN Wenrui, HAN Xiqiu, et al. Magmatic processes in the depth of Tianxiu segment, Carlsberg Ridge: implication from crystallization conditions of clinopyroxene in MORB[J]. Acta Petrologica Sinica, 2024, 40(7):2203-2214.] doi: 10.18654/1000-0569/2024.07.13
[27] Zhou P, Han X Q, Wang Y J, et al. Hydrothermal alteration of basalts in the ultramafic-associated Tianxiu Vent Field, Carlsberg Ridge[J]. Marine Geology, 2023, 463:107113. doi: 10.1016/j.margeo.2023.107113
[28] Hu H, Yu X, Han X Q, et al. Magma evolution along detachment fault-affected ridge segments: petrology and geochemistry of MORBs from the Tianxiu segment, Carlsberg Ridge[J]. Lithos, 2025, 494-495: 107917.
[29] Yi S B, Oh C W, Pak S J, et al. Geochemistry and petrogenesis of mafic-ultramafic rocks from the Central Indian Ridge, latitude 8°-17°S: denudation of mantle harzburgites and gabbroic rocks and compositional variation of basalts[J]. International Geology Review, 2014, 56(14):1691-1719. doi: 10.1080/00206814.2014.955539
[30] Mukhopadhyay R, Iyer S D, Ray D, et al. Morphotectonic and petrological variations along the southern Central Indian Ridge[J]. International Journal of Earth Sciences, 2016, 105(3):905-920. doi: 10.1007/s00531-015-1193-z
[31] 余星, 初凤友, 董彦辉, 等. 拆离断层与大洋核杂岩: 一种新的海底扩张模式[J]. 地球科学: 中国地质大学学报, 2013, 38(5):995-1004 doi: 10.3799/dqkx.2013.097
YU Xing, CHU Fengyou, DONG Yanhui, et al. Detachment fault and oceanic core complex: a new model of seafloor spreading[J]. Earth Science: Journal of China University of Geosciences, 2013, 38(5):995-1004.] doi: 10.3799/dqkx.2013.097
[32] Andreani M, Baronnet A, Boullier A M, et al. A microstructural study of a “crack seal” type serpentine vein using SEM and TEM techniques[J]. European Journal of Mineralogy, 2004, 16(4):585-595. doi: 10.1127/0935-1221/2004/0016-0585
[33] 龙雄志. 内蒙古贺根山蛇绿岩形成构造环境与流体来源研究[D]. 中国科学院广州地球化学研究所硕士学位论文, 2016: 20-35
LONG Xiongzhi. Research on the tectonic setting and fluid origin for serpentinization of the Hegenshan ophiolite, Inner Mongolia[D]. Master Dissertation of Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, 2016: 20-35.]
[34] Niu Y L. Bulk-rock Major and trace element compositions of abyssal peridotites: implications for mantle melting, melt extraction and post-melting processes beneath Mid-Ocean Ridges[J]. Journal of Petrology, 2004, 45(12):2423-2458. doi: 10.1093/petrology/egh068
[35] Paulick H, Bach W, Godard M, et al. Geochemistry of abyssal peridotites (Mid-Atlantic Ridge, 15°20′N, ODP Leg 209): implications for fluid/rock interaction in slow spreading environments[J]. Chemical Geology, 2006, 234(3-4):179-210. doi: 10.1016/j.chemgeo.2006.04.011
[36] Delacour A, Früh-Green G L, Frank M, et al. Sr- and Nd-isotope geochemistry of the Atlantis Massif (30°N, MAR): implications for fluid fluxes and lithospheric heterogeneity[J]. Chemical Geology, 2008, 254(1-2):19-35. doi: 10.1016/j.chemgeo.2008.05.018
[37] 马强. 西南印度洋超基性岩蛇纹石化的矿物地球化学及其磁化率研究[D]. 同济大学硕士学位论文, 2015
MA Qiang. Study on the mineral geochemistry and magnetic susceptibility of serpentinization in ultrabasic rocks in the Southwest Indian Ocean[D]. Master Dissertation of Tongji University, 2015.]
[38] 彭慧中. 山东蓬莱玄武岩中橄榄石伊丁石化特征及其成因[D]. 中国地质大学(北京)硕士学位论文, 2021
PENG Huizhong. Characteristics and genesis of iddingsite alteration from Penglai basalt, Shandong[D]. Master Dissertation of China University of Geosciences (Beijing), 2021.]
[39] Wicks F J, Plant A G. Electron-microprobe and X-ray microbeam studies of serpentine textures[J]. The Canadian Mineralogist, 1979, 17(4):785-830.
[40] Allen D E, Seyfried Jr W E. Compositional controls on vent fluids from ultramafic-hosted hydrothermal systems at mid-ocean ridges: an experimental study at 400 °C, 500 bars[J]. Geochimica et Cosmochimica Acta, 2003, 67(8):1531-1542. doi: 10.1016/S0016-7037(02)01173-0
[41] Andreani M, Muñoz M, Marcaillou C, et al. μXANES study of iron redox state in serpentine during oceanic serpentinization[J]. Lithos, 2013, 178:70-83. doi: 10.1016/j.lithos.2013.04.008
[42] Rouméjon S, Cannat M, Agrinier P, et al. Serpentinization and fluid pathways in tectonically exhumed peridotites from the Southwest Indian Ridge (62-65°E)[J]. Journal of Petrology, 2015, 56(4):703-734. doi: 10.1093/petrology/egv014
[43] Fauguerolles C, Castelain T, Villeneuve J, et al. H2 mobility and redox control in open vs. closed hydrothermal oceanic systems-evidence from serpentinization experiments[J]. European Journal of Mineralogy, 2024, 36(4):555-579. doi: 10.5194/ejm-36-555-2024
[44] Klein F, Bach W, McCollom T M. Compositional controls on hydrogen generation during serpentinization of ultramafic rocks[J]. Lithos, 2013, 178:55-69. doi: 10.1016/j.lithos.2013.03.008
[45] Lee M R, Daly L, Cohen B E, et al. Aqueous alteration of the Martian meteorite Northwest Africa 817: probing fluid–rock interaction at the Nakhlite launch site[J]. Meteoritics & Planetary Science, 2018, 53(11):2395-2412.
-