Cenozoic seismic stratigraphic and sedimentary evolution of the Eastern Sunda Shelf
-
摘要:
巽他陆架是全球最大低纬陆架之一,在连接亚洲大陆与赤道海洋系统、调控热带气候变化与物质输运过程中具有重要意义。其东部地区新生代地层保存较为完整,系统地记录了陆相与海相沉积体系在垂向上的频繁交替充填过程,是研究巽他陆架沉积演化与古环境变迁的重要载体。然而,目前针对该区域的地震地层学研究仍较为薄弱,导致对盆地内部地震地层特征与沉积演化过程尚不清晰。基于总长度约
12000 km、覆盖面积约80000 km2的高质量二维反射地震数据,通过识别关键地质界面,构建区域性地震地层格架,开展地震相–沉积相综合分析,从而揭示了新生代沉积充填与构造演化过程。自晚始新世至今,研究区共识别出8个关键地震反射界面(H0–海底)与相应的7个地震地层单元(SU1–SU7),识别出分别代表陆相和海相的10种典型地震相(SF1–SF10)。地震地层与地震相分析表明,巽他陆架东部新生代充填演化历经了4个主要阶段:晚始新世—早渐新世的断陷期(SU1)、晚渐新世—早中新世的断拗期(SU2)、早中新世—晚中新世的构造反转期(SU3)以及自晚中新世以来的区域沉降期(SU4–SU7)。演化过程受到构造活动与海平面升降的双重控制:单元SU1–SU3的形成主要受控于区域构造格局的转变,经历了伸展断陷、稳定热沉降到挤压反转的演化过程,沉积环境由陆地逐渐向浅海演变。而单元SU4–SU7的形成则与大规模海平面下降事件关系密切,沉积环境由浅海—半深海逐步转变为河流、三角洲与浅海体系频繁交替发育的沉积格局。本研究建立的区域性地震地层格架,揭示了巽他陆架东部沉积–构造充填演化历史,为区域古气候重建和未来大洋钻探站位优选提供了来自反射地震的关键依据。Abstract:The Sunda Shelf, one of the world's largest low-latitude continental shelves, plays an important role in bridging the Asian continent and equatorial ocean systems, regulating tropical climate dynamics and sediment-mass transport. Its eastern region preserved exceptionally complete Cenozoic strata that systematically documented frequent vertical alternations between terrestrial and marine depositional systems. This succession formed a critical archive for investigating sedimentary evolution and paleo-environmental changes across the Sunda Shelf. However, the seismic stratigraphy of this region remains poorly constrained, resulting in poorly understanding of basin-internal seismic characteristics and depositional evolutionary processes. We adopted high-resolution 2D seismic reflection data (~
12000 km,80000 km2) to identify key stratigraphic interface, analyzed conduct seismic-to-sedimentary facies, and established the regional seismic stratigraphic framework, based on which the Cenozoic infill history and tectonic evolution were clarified. Eight major seismic horizons (H0-seabed), seven seismic stratigraphic units (SU1-SU7), and 10 typical seismic facies representing terrestrial and marine facies were identified from the Late Eocene to present. The analysis of seismic stratigraphy and seismic facies showed that the Eastern Sunda Shelf experienced four evolutionary phases: Syn-rift (SU1: Late Eocene-Early Oligocene), Post-rift (SU2: Late Oligocene-Early Miocene), Syn-inversion (SU3: Early-Late Miocene), and Post-inversion (SU4-SU7: Late Miocene-present). Deposition was jointly controlled by tectonics and eustasy: SU1-SU3 was controlled by regional tectonic transformation. The study area underwent an evolutionary process from rifting and faulting, stable thermal subsidence, to compressional transition. Meanwhile, the depositional environment transitioned from terrestrial to shallow marine. In contrast, the formation of SU4-SU7 was closely linked to an extensive sea-level fall event. Their depositional environment evolved from shallow-marine to bathyal sea into fluvial-deltaic sedimentation. The established seismic stratigraphic framework resolved the depositional-tectonic evolution of the Eastern Sunda Shelf, and provided key constraints to the paleo-climate reconstruction and future site selection of international ocean drilling. -
-
[1] Ben-Avraham Z, Emery K O. Structural framework of Sunda Shelf[J]. AAPG Bulletin, 1973, 57(12):2323-2366.
[2] Hall R. Southeast Asia’s changing palaeogeography[J]. Blumea - Biodiversity, Evolution and Biogeography of Plants, 2009, 54(1-3):148-161.
[3] 姚伯初. 南海海盆新生代的构造演化史[J]. 海洋地质与第四纪地质, 1996, 16(2):1-13
YAO Bochu. Tectonic evolution of the South China Sea in Cenozoic[J]. Marine Geology & Quaternary Geology, 1996, 16(2):1-13.]
[4] Hutchison C S. Marginal basin evolution: the southern South China Sea[J]. Marine and Petroleum Geology, 2004, 21(9):1129-1148. doi: 10.1016/j.marpetgeo.2004.07.002
[5] Tjia H D, Liew K K. Changes in tectonic stress field in northern Sunda Shelf basins[J]. Geological Society, London, Special Publications, 1996, 106(1):291-306. doi: 10.1144/GSL.SP.1996.106.01.19
[6] Leknettip S , Chawchai S , Alexander Fülling, et al. et al. Pleistocene sea-level and environmental changes during glacial-interglacial cycles recorded in beach ridges of the Thai-Malay Peninsula[J]. Quaternary Science Reviews, 2025, 364: 109464.
[7] Hanebuth T J J, Stattegger K. Depositional sequences on a late Pleistocene–Holocene tropical siliciclastic shelf (Sunda Shelf, southeast Asia)[J]. Journal of Asian Earth Sciences, 2004, 23(1):113-126. doi: 10.1016/S1367-9120(03)00100-7
[8] Zhong G F, Geng J H, Wong H K, et al. A semi-quantitative method for the reconstruction of eustatic sea level history from seismic profiles and its application to the southern South China Sea[J]. Earth and Planetary Science Letters, 2004, 223(3-4):443-459. doi: 10.1016/j.jpgl.2004.04.039
[9] 李丽, 徐沁. 上新世以来巽他陆架海平面变化研究[J]. 地球科学进展, 2017, 32(11):1126-1136 doi: 10.11867/j.issn.1001-8166.2017.11.1126
LI Li, XU Qin. Review of studies in sea level change of Sunda Shelf since Pliocene[J]. Advances in Earth Science, 2017, 32(11):1126-1136.] doi: 10.11867/j.issn.1001-8166.2017.11.1126
[10] Lunt P. A new view of integrating stratigraphic and tectonic analysis in South China Sea and north Borneo basins[J]. Journal of Asian Earth Sciences, 2019, 177:220-239. doi: 10.1016/j.jseaes.2019.03.009
[11] Lunt P. A reappraisal of the Cenozoic stratigraphy of the Malay and West Natuna Basins[J]. Journal of Asian Earth Sciences: X, 2021, 5:100044. doi: 10.1016/j.jaesx.2020.100044
[12] Morley R J, Morley H P, Restrepo-Pace P. Unravelling the tectonically controlled stratigraphy of the West Natuna Basin by means of palaeo-derived mid Tertiary climate changes[J]. 2003: 1-24.
[13] Madon M, Ly K C, Wong R. The structure and stratigraphy of deepwater Sarawak, Malaysia: Implications for tectonic evolution[J]. Journal of Asian Earth Sciences, 2013, 76:312-333. doi: 10.1016/j.jseaes.2013.04.040
[14] Surjono S S, Afandi M, Arifianto I, et al. Sedimentology and reservoir characteristics of syn-rift to syn-inversion succession in Anoa half-graben, West Natuna basin, Indonesia[J]. Marine and Petroleum Geology, 2023, 152:106258. doi: 10.1016/j.marpetgeo.2023.106258
[15] Catuneanu O, Abreu V, Bhattacharya J P, et al. Towards the standardization of sequence stratigraphy[J]. Earth-Science Reviews, 2009, 92(1-2):1-33. doi: 10.1016/j.earscirev.2008.10.003
[16] Catuneanu O. Principles of Sequence Stratigraphy[M]. Amsterdam: Elsevier, 2006.
[17] 姚永坚, 吴能友, 夏斌, 等. 南海南部海域曾母盆地油气地质特征[J]. 中国地质, 2008, 35(3):503-513 doi: 10.3969/j.issn.1000-3657.2008.03.015
YAO Yongjian, WU Nengyou, XIA Bin, et al. Petroleum geology of the Zengmu basin in the southern South China Sea[J]. Geology in China, 2008, 35(3):503-513.] doi: 10.3969/j.issn.1000-3657.2008.03.015
[18] 周蒂, 孙珍, 杨少坤, 等. 南沙海区曾母盆地地层系统[J]. 地球科学——中国地质大学学报, 2011, 36(5):789-797
ZHOU Di, SUN Zhen, YANG Shaokun, et al. The stratigraphic system of the Zengmu Basin, southern South China Sea[J]. Earth Science——Journal of China University of Geosciences, 2011, 36(5):789-797.]
[19] 姚永坚, 杨楚鹏, 李学杰, 等. 南海南部海域中中新世(T3界面)构造变革界面地震反射特征及构造含义[J]. 地球物理学报, 2013, 56(4):1274-1286 doi: 10.6038/cjg20130422
YAO Yongjian, YANG Chupeng, LI Xuejie, et al. The seismic reflection characteristics and tectonic significance of the tectonic revolutionary surface of mid-Miocene (T3 seismic interface) in the southern South China Sea[J]. Chinese Journal of Geophysics, 2013, 56(4):1274-1286.] doi: 10.6038/cjg20130422
[20] 骆帅兵, 张莉, 王笑雪, 等. 南海南部南安盆地新生代以来构造-沉积演化特征及区域成藏模式[J]. 海洋地质与第四纪地质, 2023, 43(4):116-128
LUO Shuaibing, ZHANG Li, WANG Xiaoxue, et al. The tectono-sedimentary evolution characteristics and regional reservoir-forming model of Nan’an Basin in the Cenozoic[J]. Marine Geology & Quaternary Geology, 2023, 43(4):116-128.]
[21] 徐俊杰, 徐宏根, 刘道涵, 等. 南海南部曾母盆地的原型盆地划分及其形成演化过程[J]. 华南地质与矿产, 2020, 36(3):221-231
XU Junjie, XU Honggen, LIU Daohan, et al. Division, formation and evolution of the prototypes of the Zengmu Basin in southern South China Sea[J]. South China Geology, 2020, 36(3):221-231.]
[22] Mat-Zin I C, Tucker M E. An alternative stratigraphic scheme for the Sarawak Basin[J]. Journal of Asian Earth Sciences, 1999, 17(1-2):215-232. doi: 10.1016/S0743-9547(98)00042-7
[23] Raharja M, Carmody S, Cherdasa J R, et al. Dual Paleogene and Neogene petroleum systems in east Natuna Basin: identification of a new exploration play in the South Sokang area[C]//Proceedings, Indonesian Petroleum Association Thirty-Seventh Annual Convention & Exhibition. Indonesia: Indonesian Petroleum Association (IPA), 2013.
[24] Madon M, Jong J. The crustal structure and evolution of the Bunguran Trough, offshore Sarawak, Malaysia[J]. Marine and Petroleum Geology, 2022, 139:105608. doi: 10.1016/j.marpetgeo.2022.105608
[25] Indranadi V B, Djunaedi D. Depositional model of Muda Formation, East Natuna Basin[C]//Proceedings, Indonesian Petroleum Association, Forty-Sixth Annual Convention & Exhibition, 2022. Indonesia: Indonesian Petroleum Association, 2022: 1-15.
[26] 雷振宇, 张莉, 苏明, 等. 南海南部北康盆地中中新世深水沉积体类型、特征及意义[J]. 海洋地质与第四纪地质, 2017, 37(6):110-118
LEI Zhenyu, ZHANG Li, SU Ming, et al. Middle Miocene deep-water sediments in the Beikang Basin, southern South China Sea: types, characteristics and implications[J]. Marine Geology & Quaternary Geology, 2017, 37(6):110-118.
[27] Hutchison C S. The ‘Rajang accretionary prism’ and ‘Lupar Line’ problem of Borneo[J]. Geological Society, London, Special Publications, 1996, 106(1):247-261. doi: 10.1144/GSL.SP.1996.106.01.16
[28] 赵帅, 李学杰, 姚永坚, 等. 南海南部造山运动及其与古南海俯冲的成因联系[J]. 海洋地质与第四纪地质, 2019, 39(5):147-162
ZHAO Shuai, LI Xuejie, YAO Yongjian, et al. Orogenic events in Southern South China Sea and their relationship with the subduction of the Proto South China Sea[J]. Marine Geology & Quaternary Geology, 2019, 39(5):147-162.]
[29] 解习农, 赵帅, 任建业, 等. 南海后扩张期大陆边缘闭合过程及成因机制[J]. 地球科学, 2022, 47(10):3524-3542
XIE Xinong, ZHAO Shuai, REN Jianye, et al. Marginal sea closure process and genetic mechanism of South China Sea during post-spreading period[J]. Earth Science, 2022, 47(10):3524-3542.]
[30] 张翀, 吴世敏, 丘学林. 南海南部海区前陆盆地形成与演化[J]. 海洋地质与第四纪地质, 2007, 27(1):61-70
ZHANG Chong, WU Shimin, QIU Xuelin. Formation of foreland basins in the south of the South China Sea[J]. Marine Geology & Quaternary Geology, 2007, 27(1):61-70.]
[31] HUTCHISON C S. Geological Evolution of South-East Asia[M]. Oxford: Clarendon Press, 1989.
[32] 栾锡武, 张亮. 南海构造演化模式: 综合作用下的被动扩张[J]. 海洋地质与第四纪地质, 2009, 29(6):59-74
LUAN Xiwu, ZHANG Liang. Tectonic evolution modes of South China sea: passive spreading under complex actions[J]. Marine Geology & Quaternary Geology, 2009, 29(6):59-74.]
[33] Hall R. Reconstructing Cenozoic SE Asia[J]. Geological Society, London, Special Publications, 1996, 106(1):153-184. doi: 10.1144/GSL.SP.1996.106.01.11
[34] Hall R. Sundaland and Wallacea: geology, plate tectonics and palaeogeography[M]//Gower D J, Richardson J E, Rosen B R, et al. Biotic Evolution and Environmental Change in Southeast Asia. Cambridge: Cambridge University Press, 2012: 32-78.
[35] Darman H. Seismic expression of key geological features in the East Natuna Basin[J]. Berita Sedimentologi, 2017, 38(1):50-61.
[36] Cullen A B. Transverse segmentation of the Baram-Balabac Basin, NW Borneo: refining the model of Borneo’s tectonic evolution[J]. Petroleum Geoscience, 2010, 16(1):3-29. doi: 10.1144/1354-079309-828
[37] Meirita M F. Structural and depositional evolution, KH field, West Natuna Basin, offshore Indonesia[D]. Texas: Texas A&M University, 2003.
[38] Ginger D C, Ardjakusumah W O, Hedley R J, et al. Inversion history of the West Natuna Basin: examples from the Cumi-Cumi PSC[C]//22nd Annual Convention Proceedings, Proceedings of Indonesian Petroleum Association. Indonesia: Indonesian Petroleum Association, 1993: 635-658.
[39] ARDHIE M N. An inversion structure and its implication for structural trapping mechanism: Study of Kakap PSC West Natuna basin, Indonesia[D]. Arlington: University of Texas at Arlington, 2004.
[40] Morley R J, Swiecicki T, Pham D T T. A sequence stratigraphic framework for the Sunda region, based on integration of biostratigraphic, lithological and seismic data from Nam Con Son Basin, Vietnam[C]//Proceedings, Indonesian Petroleum Association Thirty-Fifth Annual Convention & Exhibition. Indonesia: Indonesian Petroleum Association (IPA), 2011.
[41] Yakzan A M, Harun A, Nasib B M, et al. Integrated biostratigraphic zonation for the Malay Basin[J]. Bulletin of the Geological Society of Malaysia, 1996, 39:157-184. doi: 10.7186/bgsm39199615
[42] Tjia H D. Wrench-slip reversals and structural inversions: Cenozoic slide-rule tectonics in Sundaland[J]. Indonesian Journal on Geoscience, 2014, 1(1):35-52. doi: 10.17014/ijog.1.1.35-52
[43] 赵斐宇, 姜素华, 李三忠, 等. 曾母拉分盆地的油气成藏规律: 廷贾-西巴兰线断裂的控制[J]. 海洋地质与第四纪地质, 2017, 37(4):209-220
ZHAO Feiyu, JIANG Suhua, LI Sanzhong et al. Hydrocarbon accumulation in Zengmu Pull-Apart Basin: insights from the control of Tin Jar-West Baram line[J]. Marine Geology & Quaternary Geology, 2017, 37(4):209-220.]
[44] 杨木壮, 吴进民. 南海南部新生代构造应力场特征与构造演化[J]. 热带海洋, 1996, 15(2):45-52
YANG Muzhuang, WU Jinmin. Tectonic stress field and tectonic evolution in the south of South China Sea[J]. Tropic Oceanology, 1996, 15(2):45-52.]
[45] 贺华瑞, 栾锡武, 魏新元, 等. 南昆嵩地区断裂-构造演化特征及其控制因素[J]. 海洋学报, 2022, 44(12):95-108
HE Huarui, LUAN Xiwu, WEI Xinyuan, et al. Characteristics of fault-tectonic evolution and its controlling factors in the South Kunsong area[J]. Haiyang Xuebao, 2022, 44(12):95-108.]
[46] Haq B U, Hardenbol J, Vail P R. Chronology of fluctuating sea levels since the Triassic[J]. Science, 1987, 235(4793):1156-1167. doi: 10.1126/science.235.4793.1156
[47] Dalrymple R W, Boyd R, Zaitlin B A. Incised-Valley Systems: Origin and Sedimentary Sequences[M]. Tulsa: SEPM, 1994.
[48] Darmadi Y, Willis B J, Dorobek S L. Three-dimensional seismic architecture of fluvial sequences on the low-gradient Sunda Shelf, Offshore Indonesia[J]. Journal of Sedimentary Research, 2007, 77(3):225-238. doi: 10.2110/jsr.2007.024
[49] Hanebuth T J J, Stattegger K, Bojanowski A. Termination of the Last Glacial Maximum sea-level lowstand: the Sunda-Shelf data revisited[J]. Global and Planetary Change, 2009, 66(1-2):76-84. doi: 10.1016/j.gloplacha.2008.03.011
[50] Miller K G, Kominz M A, Browning J V, et al. The Phanerozoic record of global sea-level change[J]. Science, 2005, 310(5752):1293-1298. doi: 10.1126/science.1116412
[51] Miller K G, Browning J V, Schmelz W J, et al. Cenozoic sea-level and cryospheric evolution from deep-sea geochemical and continental margin records[J]. Science Advances, 2020, 6(20):eaaz1346. doi: 10.1126/sciadv.aaz1346
[52] Dash B P, Shepstone C M, Dayal S, et al. Seismic investigation on the northern part of the Sunda Shelf south and east of Great Natuna Island[J]. Technical Bulletin of the Committee for Coordination of Joint Prospecting for Mineral Resources in Asian Offshore Areas (CCOP), United Nations Economic Commission for Asia and the Far East, 1972, 6(9):179-196.
[53] 邱燕. 南沙海域曾母盆地构造样式特征及其与油气聚集和圈闭的关系[J]. 地质通报, 2005, 24(1):16-22 doi: 10.3969/j.issn.1671-2552.2005.01.003
QIU Yan. Typical structural styles and their relationships with hydrocarbon accumulation and traps in the Zengmu basin, Nansha sea area[J]. Geological Bulletin of China, 2005, 24(1):16-22.] doi: 10.3969/j.issn.1671-2552.2005.01.003
[54] 解习农, 任建业, 王振峰, 等. 南海大陆边缘盆地构造演化差异性及其与南海扩张耦合关系[J]. 地学前缘, 2015, 22(1):77-87
XIE Xinong, REN Jianye, WANG Zhenfeng, et al. Difference of tectonic evolution of continental marginal basins of South China Sea and relationship with SCS spreading[J]. Earth Science Frontiers, 2015, 22(1):77-87.]
[55] Hall R. The palaeogeography of Sundaland and Wallacea since the Late Jurassic[J]. Journal of Limnology, 2013, 72(S2):1-17.
[56] 贺华瑞, 栾锡武, 魏新元, 等. 万安盆地西部南昆嵩地区渐新世以来构造事件的沉积响应[J]. 地质科学, 2022, 57(3):653-670 doi: 10.12017/dzkx.2022.038
HE Huarui, LUAN Xiwu, WEI Xinyuan, et al. Sedimentary responses to tectonic events since the Oligocene in the South Kunsong area of the western Wan’an Basin[J]. Chinese Journal of Geology, 2022, 57(3):653-670.] doi: 10.12017/dzkx.2022.038
[57] Morley R J, Morley H P. Mid Cenozoic freshwater wetlands of the Sunda region[J]. Journal of Limnology, 2013, 72(S2):18-35.
[58] 陈建宏, 肖菲, 栾锡武. 东南亚地区裂谷作用对油气成藏组合的控制[J]. 海洋地质前沿, 2023, 39(3):20-29
CHEN Jianhong, XIAO Fei, LUAN Xiwu. Control of rifting on hydrocarbon plays in Southeast Asia[J]. Marine Geology Frontiers, 2023, 39(3):20-29.]
[59] 肖鸿议, 何云龙, 解习农, 等. 南海万安盆地构造-层序发育特征与构造-沉积充填演化[J]. 地球科学, 2021, 46(9):3338-3351
XIAO Hongyi, HE Yunlong, XIE Xinong, et al. Characteristics of structural-sequence and evolution of tectonic and sedimentary of Wan’an Basin in South China Sea[J]. Earth Science, 2021, 46(9):3338-3351.]
[60] 姚永坚, 夏斌, 徐行. 南海南部海域主要沉积盆地构造演化特征[J]. 南海地质研究, 2005(1):1-11
YAO Yongjian, XIA Bin, XU Xing. Tectonic evolution of the main sedimentary basins in southern area of the South China Sea[J]. Gresearch of Eological South China Sea, 2005(1):1-11.]
[61] Hassan M H A, Johnson H D, Allison P A, et al. Sedimentology and stratigraphic architecture of a Miocene retrogradational, tide-dominated delta system: Balingian Province, offshore Sarawak, Malaysia[J]. Geological Society, London, Special Publications, 2017, 444:215-250. doi: 10.1144/SP444.12
[62] Webb M, Gough A, Endinanda F. Depositional environments and sedimentary provenance of the Cenozoic deposits of Natuna Island, Indonesia: Implications for basin evolution in central Sundaland[J]. Gondwana Research, 2024, 134:298-325. doi: 10.1016/j.gr.2024.06.022
[63] Song X X, Li C F, Yao Y J, et al. Magmatism in the evolution of the South China Sea: geophysical characterization[J]. Marine Geology, 2017, 394:4-15. doi: 10.1016/j.margeo.2017.07.021
[64] 姚伯初, 刘振湖. 南沙海域沉积盆地及油气资源分布[J]. 中国海上油气, 2006, 18(3):150-160 doi: 10.3969/j.issn.1673-1506.2006.03.002
YAO Bochu, LIU Zhenhu. Sedimentary basins and petroleum resources in Nansha offshore area, South China Sea[J]. China Offshore Oil and Gas, 2006, 18(3):150-160.] doi: 10.3969/j.issn.1673-1506.2006.03.002
[65] 解习农, 张成, 任建业, 等. 南海南北大陆边缘盆地构造演化差异性对油气成藏条件控制[J]. 地球物理学报, 2011, 54(12):3280-3291 doi: 10.3969/j.issn.0001-5733.2011.12.026
XIE Xinong, ZHANG Cheng, REN Jianye, et al. Effects of distinct tectonic evolutions on hydrocarbon accumulation in northern and southern continental marginal basins of South China Sea[J]. Chinese Journal of Geophysics, 2011, 54(12):3280-3291.] doi: 10.3969/j.issn.0001-5733.2011.12.026
[66] 谢晓军, 张功成, 赵志刚, 等. 曾母盆地油气地质条件、分布特征及有利勘探方向[J]. 中国海上油气, 2015, 27(1):19-26
XIE Xiaojun, ZHANG Gongcheng, ZHAO Zhigang, et al. Hydrocarbon geology, distribution and favorable exploration direction in Zengmu basin, South China Sea[J]. China Offshore Oil and Gas, 2015, 27(1):19-26.]
[67] 苏海霞, 刘姗, 张莉, 等. 南海南部北康盆地晚中新世以来深水沉积单元时空分布特征及其控制因素[J]. 地质科技通报, 2023, 42(6):129-139
SU Haixia, LIU Shan, ZHANG Li, et al. Spatiotemporal distribution characteristics and controlling factors of deep-water sediments in the Beikang Basin since the Late Miocene, southern South China Sea[J]. Bulletin of Geological Science and Technology, 2023, 42(6):129-139.]
[68] 武强, 解习农, 姜涛. 陆架边缘三角洲的研究现状及其意义[J]. 海洋地质动态, 2005, 21(3):1-5 doi: 10.3969/j.issn.1009-2722.2005.03.001
WU Qiang, XIE Xinong, JIANG Tao. Study situation of shelf-margin delta and its significance[J]. Marine Geology Letters, 2005, 21(3):1-5.] doi: 10.3969/j.issn.1009-2722.2005.03.001
[69] 贺华瑞, 栾锡武, 龚梁轩, 等. 南昆嵩凹陷中新世以来三角洲地震响应与沉积充填演化[J]. 沉积学报, 2023, 41(5):1568-1582
HE Huarui, LUAN Xiwu, GONG Liangxuan, et al. Seismic response and sedimentary filling evolution of a delta since the Miocene in the South Kunsong Sag[J]. Acta Sedimentologica Sinica, 2023, 41(5):1568-1582.]
[70] 汤智逸, 解习农, 徐俊杰, 等. 曾母盆地古拉让三角洲发育演化定量表征及其控制因素分析[J]. 西南石油大学学报: 自然科学版, 2025, 47(1): 147-162
TANG Zhiyi, XIE Xinong, XU Junjie, et al. Quantitative characterization of evolution and controlling factors of Paleo-Rajang Delta in the Zengmu Basin[J]. Journal of Southwest Petroleum University: Science & Technology Edition, 2025, 47(1): 147-162.]
[71] 徐燕东. 串珠状缝洞型储层油藏产能指示曲线解析[J]. 油气井测试, 2023, 32(6):65-71
XU Yandong. Analysis of productivity indicator curves for bead-shaped fractured-vuggy oil reservoirs[J]. Well Testing, 2023, 32(6):65-71.]
[72] Molengraaff G A F. Modern deep-sea research in the East Indian archipelago[J]. The Geographical Journal, 1921, 57(2):95-118. doi: 10.2307/1781559
[73] Voris H K. Maps of Pleistocene sea levels in Southeast Asia: shorelines, river systems and time durations[J]. Journal of Biogeography, 2000, 27(5):1153-1167. doi: 10.1046/j.1365-2699.2000.00489.x
[74] Hanebuth T J J, Stattegger K, Schimanski A. Late Pleistocene forced-regressive deposits on the Sunda Shelf (Southeast Asia)[J]. Marine Geology, 2003, 199(1-2):139-157. doi: 10.1016/S0025-3227(03)00129-4
[75] Hanebuth T J, Stattegger K, Saito Y. The stratigraphic architecture of the central Sunda Shelf (SE Asia) recorded by shallow-seismic surveying[J]. Geo-Marine Letters, 2002, 22(2):86-94. doi: 10.1007/s00367-002-0102-1
[76] Hanebuth T J J, Voris H K, Yokoyama Y, et al. Formation and fate of sedimentary depocentres on Southeast Asia’s Sunda Shelf over the past sea-level cycle and biogeographic implications[J]. Earth-Science Reviews, 2011, 104(1-3):92-110. doi: 10.1016/j.earscirev.2010.09.006
[77] Huang E Q, Yuan Z J, Wang S H, et al. Expansion of grasslands across glacial Sundaland caused by enhanced precipitation seasonality[J]. Quaternary Science Reviews, 2024, 337:108824. doi: 10.1016/j.quascirev.2024.108824
[78] Liu Z F, Zhao Y L, Colin C, et al. Source-to-sink transport processes of fluvial sediments in the South China Sea[J]. Earth-Science Reviews, 2016, 153:238-273. doi: 10.1016/j.earscirev.2015.08.005
[79] 张伯达, 雷振宇, 郑文义, 等. 地震资料中柱状流体运移通道形态参数及其地质意义[J]. 海洋地质与第四纪地质, 2019, 39(3):171-181
ZHANG Boda, LEI Zhenyu, ZHENG Wenyi, et al. Morphological parameters and geological significance of the columnar fluid migration pathways in seismic profiles[J]. Marine Geology & Quaternary Geology, 2019, 39(3):171-181.]
[80] 骆迪, 蔡峰. 大陆边缘沉积盆地流体逸散管道地震特征及其成因机制[J]. 海洋地质前沿, 2017, 33(1):1-10
LUO Di, CAI Feng. Seismic characteristic and genetic mechanism of fluid escape pipes in sedimentary basins of continental margin[J]. Marine Geology Frontiers, 2017, 33(1):1-10.]
-