A review of the application of stabilization remediation in heavy metal contaminated soil
-
摘要:
自然和人为活动排放到环境中的重金属可能对人类健康、生态环境、经济和社会发展产生有害影响,因此重金属污染土壤的修复近年来备受关注。在重金属污染土壤的几种修复技术(物理修复、化学修复和生物修复)中,利用土壤改进剂的金属稳定技术受到了相当大的关注,是一种很有前景的土壤化学修复方法。文章综述了近年来国内外土壤改进剂在修复重金属污染土壤方面的研究进展,包括黏土矿物、含磷材料、金属和金属氧化物等无机材料,有机质、城市固体废物和生物炭等有机材料,以及一些有机、无机材料联合施用在重金属污染土壤修复中的应用。这些改进剂通过吸附、络合、沉淀和氧化还原等多种修复过程,有效地降低了土壤中重金属的生物有效性。最后,文章展望了今后的研究方向:应继续加强改进剂的基础理论研究,明确化学稳定过程和重金属修复机制,以促进该领域的发展,为重金属在污染土壤中的稳定修复研究和实践提供有价值的参考。
Abstract:Heavy metals discharged into the environment by natural and human activities may have harmful consequences on human health, ecological environment, economy and society, so the remediation of the soil contaminated with heavy metal has attracted much attention in recent years. Among several techniques for remediation of heavy metal-contaminated soil (physical remediation, chemical remediation and biological remediation), the metal stabilization technology using soil improvers has received considerable attention and is a promising method for soil remediation. In this paper, the research progress of soil improvers in remediation of heavy metal-contaminated soil in recent years was reviewed, including inorganic materials such as clay minerals, phosphorus-containing materials, metals and metal oxides, organic materials such as organic matter, municipal solid waste and biochar, and some combined application of organic and inorganic materials in remediation of heavy metal- contaminated soil. These improvers effectively reduce the bioavailability of heavy metals in soil through various repair processes such as adsorption, complexation, precipitation and REDOX. Finally, the prospect of future research is put forward, and the basic theoretical research should be strengthened to clarify the chemical stabilization process and heavy metal repair mechanism, so as to broaden the development of this field. It provides a valuable reference for the study and practice of the stability of heavy metals in polluted soil.
-
-
表 1 各类材料在土壤修复中的应用
Table 1. Application of various materials in soil remediation
固定材料 种类 金属离子 修复机理 修复效果 参考文献 水泥 石灰石煅烧黏土水泥 Zn 形成水合物Zn(OH)2、Zn2SiO4、CaZn(SiO4)(H2O) 淋溶液中Zn的含量均<临界调节限值(100 mg /L) (Wu et al., 2023) 钙矾石和硅酸钙水合物 Pb 形成水合物、沉淀 pH值为11.4和10.2时, 浸出液浓度分别为2.3 μg/L和4.4 μg/L (Liu Y K et al., 2023) 石灰粉煤灰 Ca(OH)2和KH2PO4改性粉煤灰 Cu 提高pH值,形成水合物、沉淀,官能团的络合作用 CaCl2可萃取的Cu降低了13.5%~75% (Cui et al., 2023) 粉煤灰 Cd 以硅酸盐、磷酸盐和氢氧化物的形式沉淀 植物有效性降低60%,重
金属扩散通量减少84%(Gu et al., 2011) 粉煤灰 Sb、As 吸附,提高pH值 Sb的最高固定率为87.7%,As的最高固定率为85.9% (Ouyang et al., 2023) 石灰窑粉尘 Fe、Ni、Cu、Cd、 Hg 吸附 10%改进剂稳定效率为100% (Vandyck et al., 2023) 煤气化渣 Cd、As Cd 静电吸引和沉淀吸附,As 铁(氢)氧化物络合吸附 Cd、As的生物可利用度分别降低了41%、35% (Zhou C Z et al., 2023) 矿渣 Cd、Cu、Zn 吸附 水稻组织中Cd、Cu和Zn的浓度分别降低了82.6%~92.9%、88.4%~95.6%和67.4%~81.4% (Ning et al., 2016) 黏土矿物 膨润土 Cd、Pb 离子交换,内球配位吸附 Cd、Pb的可交换部分分别减少了11.1%~42.5%和 20.3%~49.3% (Sun et al., 2015) 高岭土 Zn 矿物边缘的离子/阳离子交换 可交换Zn下降了76%~99% (Vejvodová et al., 2020) 海泡石、凹凸棒石或蒙脱石 Cr 调控共存元素对Cd的拮抗或协同作用 渗滤液中总Cr含量分别降低了21.2%、29.2%和17.6% (Zhang et al., 2020) 海泡石 Cd、Pb 吸附,提高pH值 菠菜根系的Cd和Pb浓度分别降低了12.6%~51.0%和11.5%~46.0% (Sun et al., 2016) 巯基硅烷修饰坡缕石 Cd 形成化学共价键 土体DTPA-Cd和EXE-Cd分别降低了34.9%~49.7%、49.4%~84.8% (Zhang Y et al., 2023) 铁负载凹凸棒石 Cd 形成化学共价键 植物中Cd的含量下降了89.3% (Zhang J Q et al., 2023) 蒙脱土和外多糖改性高岭石 U 静电吸引 吸附能力分别提高了650%和60% (Zhang H M et al., 2023) 蒙脱土复合磷酸锆 Cd 内球配位吸附 Cd的吸附容量为275.6 mg/g (Zhang H J et al., 2023) 羧酸酯聚合物接枝蒙脱土 Cd 吸附 吸附量从19.55 mg/g提高到63.49 mg/g (Zeng Z L et al., 2023) 磷酸盐类 磷酸、磷酸二氢钾 Pb 不溶性磷酸铅的沉淀 水溶性、植物利用度和生物可利用度分别降低
了72%~100%、15%~86%和28%~92%(Cao et al., 2009; Yuan et al., 2016) 草酸活化磷矿、过磷 Pb 沉淀,提高pH值 Pb的浓度<5 mg/L (Huang G Y et al., 2016) 羟基磷灰石 Pb 吸附 最大吸附能力为500 mg/g (Hashimoto and Sato, 2007) 赤泥、磷灰石及其复合材料 Pb、Cd、Zn、Ni 吸附 Pb、Cd、Zn和Ni的生物可利用组分分别下降到80.2%、88.6%、81.5%和47.3% (Shin and Kim, 2016) 磷灰石纳米颗粒 Pb 表面吸附 可浸出Pb下降至3% (Liu and Zhao, 2013) 羧甲基纤维素改性磷酸盐 Cu、As、Zn、Cd、Ni 离子交换、静电吸附、沉淀 As的钝化率分别为23.5%和11.1% (Ma et al., 2023) 聚氨基聚醚亚膦酸盐双六亚甲基三胺五亚甲基膦酸 Pb、Cu 还原、吸附 Cd和Pb的最佳去除效率分别为84%和41 % (Peng et al., 2021) 金属氧化物 Fe/Mn 改性 WTR Pb、Cu 增加pH值,官能团相互作用 黑麦草对 Pb 和 Cu 的
吸收降低了60%和45%(Wang et al., 2021) 铁锰氧化物 Zn 化学键合 吸附容量为64.52 mg/g (Chon et al., 2018) 无定形氧化锰 As、Zn、Cd、Pb 表面吸附 Cd和Zn的含量分别降低了64%和77% (Michálková et al., 2016) Fe和Zr-Fe氧化物、红泥 Pb 沉淀 可萃取Pb降低了83% (Almaroai et al., 2014) 纳米材料 鼠李糖脂包裹硫化零价铁 Pb、Cd、As 离子交换、表面络合、吸附、共沉淀、化学吸附和氧化还原 Pb、Cd和As的稳定效率分别达到89%、72%和63% (Song et al., 2023) 醋渣负载纳米零价铁 Cr 降低氧化还原电位 六价铬和总铬固定效率分别为100%和92% (Pei et al., 2020) 硫化纳米级零价铁 Cd 含硫和含氧官能团 DTPA可萃取Cd下降了
95.3%和94.3%(Xue et al., 2023) 生物炭负载纳米零价铁 Pb、Cd 吸附沉淀、吸附还原沉淀 Cd的固定化率为49.2% (Qian et al., 2022) 有机质 竹柳衍生生物炭 Cd、As 吸附 Cd的吸附容量为4.5 mg/kg,
As的吸附容量为 97.1 mg/kg(Meng et al., 2023) 污泥堆肥 Cu 离子络合后吸附 Cu的固定效率为85% (Wan et al., 2022) 腐殖酸 Cu 络合作用 淋洗量降低了62.5%,
去除率为 37.5%(Wang L N et al., 2023) 现代修复材料 掺镁羟基磷灰石/壳聚糖 Cu、Cd 离子交换、静电吸附和表面络合 Cu 和Cd 的最大去除量分别为133.5 mg/g和131.8 mg/g (Sun et al., 2022) 埃洛石纳米管HNT和生物炭复合材料 Pb、Cu、
Zn、Ni含氧官能团 Pb的去除率为99%、Cu的去除率为 95%、Cd的去除率为2.5 %、Ni的去除率为 81 % (Hassan et al., 2021) 多孔纤维素/壳聚糖复合微球 Cd 沉淀、螯合作用 Cd 的最大吸附量为
110.3 mg/g(Li et al., 2022) 生物炭负载钙铁层状
双氢氧化物Cu、Pb、
Zn、Cd沉淀、离子交换、络合和Π键相互作用 Cd 、Pb 、Zn 和Cu 的最大吸附量分别为24.6 mg/g、241 mg/g、57.6 mg/g和39.4 mg/g (Liang et al., 2023) Mn/Al层状双氧化物
蟹壳生物炭Cu、Cd 沉淀、络合、离子交换 Cu和Cd的钝化率分别为
74.8%和50.8%(Lin et al., 2023) 氧化铁-木质素复合材料 Pb、Cd 吸附结合、降低相变 Cd和Pb的浸出率分别降低了58.9%和78.2% (Liu et al., 2022) 复合修复材料 水泥+石灰+粉煤灰 Pb 矿物晶格结合 固定效率提高了 80.5% (Yang Z P et al., 2023) 有机-水合铁 Cd、As 生物有效度下降了57.8% (Xu et al., 2023) 市政污泥+生黏土 Pb 氧化 绿豆中的Pb积累量为83.4% (Zhang T et al., 2023) 生物炭+堆肥 - 固碳,改善土壤理化性质 - (Qian et al., 2023) 生物炭+堆肥 有机污染物 吸附 修复效率提高了66%~95% (Tran et al., 2023) 石灰+蘑菇残渣70%硝基复合肥+石灰+锯末 Cd 协同效应 可食用部分的Cd含量
最高下降了37.3%(Wang H Y et al., 2023) 石灰+有机肥
石灰+有机肥+磷酸钙镁肥
石灰+有机肥+海泡石
石灰+有机肥+磷酸钙镁肥+海泡石Cd 协同效应 混合改良剂显著降低了土壤镉的生物利用度 (Ran et al., 2023) 二氧化锰基复合改良剂
钙镁磷肥基复合改良剂Cd 吸附/特异吸附、共沉淀和表面络合作用 Cd的有效含量降低了28.6% (Tong et al., 2023) 表 2 一般水泥的主要种类及组成
Table 2. Main types and composition of cement
种类 组成 普通硅酸盐水泥 硅酸盐水泥熟料,6%~20%混合材料,适量石膏 硅酸盐水泥(波
兰特水泥)水泥熟料,0%~5%石灰石或粒化高炉矿渣,适量石膏 矿渣硅酸盐水泥 硅酸盐水泥熟料,20%~70%粒化高炉矿渣和适量石膏 火山灰质硅酸盐水泥 硅酸盐水泥熟料,20%~40%火山灰质混合材料和适量石膏 粉煤灰硅酸盐
水泥硅酸盐水泥熟料,20%~40%粉煤灰和适量石膏 复合硅酸盐水泥 硅酸盐水泥熟料,20%~50%两种或两种以上规定的混合材料和适量石膏 表 3 常见的黏土矿物化学性质特征
Table 3. Chemical properties of common clay minerals
名称 化学成分 结构特征 性质 化学式 蒙脱石 含Al3+、Mg2+和OH-的硅酸盐 中间为铝氧八面体,上下为硅氧四面体的三层片状结构 高离子交换性、强吸附性、吸水膨胀性、多孔结构 (Na,Ca)0.33(Al,Mg)2[Si4O10](OH)2·n H2O 海泡石 富镁硅酸盐黏土 3条辉石式单链构成的 2:1 结构带和连续的硅氧四面体层 高离子交换性、强吸附性、分散性、多孔结构 (Si12)(Mg8)O30(OH)4(OH2)4·8H2O 沸石 碱金属及碱土金属铝硅酸盐 硅氧四面体、铝氧八面体骨架晶格结构 高离子交换性、表面电负性、催化性、 强吸附性 Am Bp O2p·nH2O 高岭土 硅铝酸盐 1:1型层状硅氧四面体和铝氢氧八面体 吸附性,可塑性,
电绝缘性2SiO2·Al2O3·2H2O 凹凸棒 含有不定量的Na+、Ca2+、Fe3 +、Al3+含水富镁铝硅酸盐 具有链层状结构的呈毛发状或纤维状的集合体 高离子交换性、吸附性、吸水膨胀性、多孔结构 Mg5Si8O20(OH)2(OH2)4·4H2O 表 4 不同碳源生物炭的修复实例
Table 4. Examples of remediation of biological carbon from different carbon sources
原料 碳化温度/℃ 生物质类型 老化量和时间 土壤类型 金属离子浓度 去除率 参考文献 农作物 700 ± 50 大豆壳 10%,90 天 农业土壤 Pb 1 945 mg/kg 95% (Ahmad et al., 2016) 辣椒茎 2.5%,45 天 农业土壤 Pb 1445 mg/kg65% (Igalavithana et al., 2019) 500 ± 50 玉米秸秆 30 t/ha,3 个月 稻田土 Cd 2.04 mg/kg 50.4% (Zhang et al., 2019) 玉米秸秆 2%,30 天 耕地土 Cd 2 mg/kg 91% (Gao et al., 2019) 稻壳 1%~5%,10 天 田土 Hg 1000 mg/kg>94% (O'Connor et al., 2018) 稻草 40 t/ha,4 个月 稻田土 Cr 432.8 mg/kg 22.3% (Zhou et al., 2019) 甘蔗渣 1.5%,4 个月 农业土壤 Cd 50 mg/kg;
Cr 50 mg/kgCd 40.4%
Cr 48.1%~49.6%(Bashir et al., 2018) 山核桃壳 30 t/ha,6 个月 稻田土 Cd 2.04 mg/kg 53.6% (Zhang et al., 2019) 蔬菜渣 5%,45 天 农业土壤 Pb 1445 mg/kg87% (Igalavithana et al., 2019) 甘蔗渣 60 t/ha,24 个月 休耕地土 Cu 100 mg/kg 28% (Gonzaga et al., 2020) 甘蔗渣 60 t/ha,6 个月 休耕地土 Cu 100 mg/kg 41% (Gonzaga et al., 2018) 稻草 3%,30 天 稻田土 As 120 mg/kg 234.5% (Wang N et al., 2017) 小麦秸秆 0 t/ha~40 t/ha,3 年 农场土 Cd 1.78 和 3.81 mg/kg;
Pb 118和230 mg/kgCd 16%~20%
Pb 24%~67%(Sui et al., 2018) 小麦秸秆 0 t/ha~40 t/ha, 2年 农场土 Cd 0.9 mg/kg 57%~86% (Chen et al., 2016) 玉米杆、花生壳和稻壳 0%~4%,3 年 农场土 Cd 3.98 mg/kg 28.5%~59.4% (He et al., 2017) 稻草 0 t/ha ~20 t/ha,2 年 农场土 Cd 0.85 mg/kg 8.6%~50.2% (Sui et al., 2020) 小麦秸秆 0 t/ha ~40 t/ha,5 年 农场土 Cd 22.65 mg/kg;
Pb 621.23 mg/kgCd 7.5%~23.3%
Pb 3.7%~19.8%(Cui et al., 2016) 稻草 1%~3%,96 天 稻田土 As 212 mg/kg;
Cd 10.8 mg/kgAs 26%~49%
Cd 49%~68%(Yin et al., 2017) 300 ± 50 大豆秸秆 3%,6 天 农业土壤 Cd 1.36 mg/kg 65.7% (Li Y F et al., 2018) 小麦秸秆 72 t/ha,118 天 农场土 Hg 129 mg/kg 26% (Xing et al., 2019) 坚果壳 5%,24 个月 沉积淋溶土 Cu 338 mg/kg 68% (Moore et al., 2018) 木质生
物质700 ± 50 杨树枝 5%,1 天 菜园土 Pb 434 μg/g;
Zn 353 μg/g,Pb 46.56%
Zn 24.46%(Wang N et al., 2017) 橡树 0%~4%,3 年 农场土 Cd 11 mg/kg;
Zn 298 mg/kgCd 40%~66%
Zn 48%~77%(Egene et al., 2018) 500 ± 50 杨树 0%~3%,2 年 农场土 Cd 6.65 mg/kg ~
11.0 mg/kg;
Pb1124 mg/kg ~1148 mg/kg;
Zn1151 mg/kg ~
1 852 mg/kgCd 75%
Pb 86%
Zn 92%(Karer et al., 2018) 300 ± 50 洋麻 4%,2 年 农场土 Pb 2 050 mg/kg;
Zn 495 mg/kg;
Cu 654 mg/kg;
Cd 0.705 mg/kg;Pb 34.8%~63.8%
Zn 116%~21%
Cu 22.6%~37.2%
Cd 15%~20.1%(Han et al., 2020; He E K et al., 2019; He L Z et al., 2019) 杨树枝 5%,1 天 菜园土 Pb 434 mg/kg;
Zn 353 mg/kg,Pb<3%
Zn<5%(Wang H et al., 2017) 污泥 5%,17 周 稻田土 Hg 2.1 mg/kg和Hg 65.3 mg/kg 67% 和 29% (Zhang et al., 2019) 有机废物 700 ± 50 鸡粪 5%,14 天 矿山土壤 Cu 1 805 mg/kg 79% (Park et al., 2011) 500 ± 50 污泥 5%,77 天 黏土质地,碱性pH值和高有机质含量 Ni 1000 mg/kg88% (Méndez et al., 2014) 污泥 30 t/ha,6 个月 休耕地土 Cu 100 mg/kg 14.2% (Gonzaga et al., 2018) 鸡粪 5%,14 天 沉积淋溶土 Cu 800 mg/kg 73% (Meier et al., 2017) 300 ± 50 污泥 3%,6 天 农业土壤 As 98.7 mg/kg 11.7%~28.5% (Li G et al., 2018) -
[1] MInistry of Environmental Protection, Ministry of Land and Resources. 2014. National soil pollution survey Bulletin[J]. China Environmental Protection Industry, (5): 10-11 (in Chinese)
[2] AHMAD M, OK Y S, KIM B Y, AHN J H, LEE Y H, ZHANG M, MOON D H, AL-WABEL M I, LEE S S. 2016. Impact of soybean stover- and pine needle-derived biochars on Pb and As mobility, microbial community, and carbon stability in a contaminated agricultural soil[J]. Journal of Environmental Management,166:131-139.
[3] ALMAROAI Y A, VITHANAGE M, RAJAPAKSHA A U, LEE S S, DOU X M, LEE Y H, SUNG J K, OK Y S. 2014. Natural and synthesised iron-rich amendments for As and Pb immobilisation in agricultural soil[J]. Chemistry and Ecology,30(3):267-279. doi: 10.1080/02757540.2013.861826
[4] ALPASLAN B, YUKSELEN M A. 2002. Remediation of lead contaminated soils by stabilization/solidification[J]. Water, Air, and Soil Pollution, 133(1): 253-263.
[5] BASHIR S, HUSSAIN Q, AKMAL M, RIAZ M, HU H Q, IJAZ S S, IQBAL M, ABRO S, MEHMOOD S, AHMAD M. 2018. Sugarcane bagasse-derived biochar reduces the cadmium and chromium bioavailability to mash bean and enhances the microbial activity in contaminated soil[J]. Journal of Soils and Sediments,18(3):874-886. doi: 10.1007/s11368-017-1796-z
[6] BIAN G G. 2023. Current status and prospects of environmental supervision technical specifications for soil pollution remediation[J]. Journal of Qinghai Environment,33(3):110-115 (in Chinese with English abstract).
[7] BOOSTANI H R, NAJAFI-GHIRI M, HARDIE A G, KHALILI D. 2019. Comparison of Pb stabilization in a contaminated calcareous soil by application of vermicompost and sheep manure and their biochars produced at two temperatures[J]. Applied Geochemistry,102:121-128. doi: 10.1016/j.apgeochem.2019.01.013
[8] CALGARO L, CONTESSI S, BONETTO A, BADETTI E, FERRARI G, ARTIOLI G, MARCOMINI A. 2021. Calcium aluminate cement as an alternative to ordinary Portland cement for the remediation of heavy metals contaminated soil: mechanisms and performance[J]. Journal of Soils and Sediments,21(4):1755-1768. doi: 10.1007/s11368-020-02859-x
[9] CAMPOS P, KNICKER H, LÓPEZ R, De la ROSA J M. 2021. Application of biochar produced from crop residues on trace elements contaminated soils: effects on soil properties, enzymatic activities and brassica rapa growth[J]. Agronomy,11(7):1394. doi: 10.3390/agronomy11071394
[10] CAO X D, WAHBI A, MA L N, LI B, YANG Y L. 2009. Immobilization of Zn, Cu, and Pb in contaminated soils using phosphate rock and phosphoric acid[J]. Journal of Hazardous Materials,164(2-3):555-564. doi: 10.1016/j.jhazmat.2008.08.034
[11] CHEN D, GUO H, LI R Y, LI L Q, PAN G X, CHANG A, JOSEPH S. 2016. Low uptake affinity cultivars with biochar to tackle Cd-tainted rice - A field study over four rice seasons in Hunan, China[J]. Science of the Total Environment,541:1489-1498. doi: 10.1016/j.scitotenv.2015.10.052
[12] CHEN Y Q, SHU H S, HONG H F, REN D T, WANG J. 2023. Study on the influence of lead-zinc tailings on farmland pollution in downstream areas[J]. Journal of Agricultural Catastrophology,13(8):289-291 (in Chinese with English abstract).
[13] CHEN Z, ZENG C Y, ZHANG Y H. 2023. Application of humic acid in soil pollution prevention and remediation technology[J]. Humic Acid,(4):1-6,57 (in Chinese with English abstract).
[14] CHEN Z X, ZHANG Z C, WANG P, LIU T Y. 2022. Pivotal roles of nanoscale zerovalent iron supported on metal-organic framework material in cadmium (II) migration and transformation in soil[J]. Journal of Environmental Science and Health, Part B, 57(5): 430-440.
[15] CHIRENJE T, MA L Q. 1999. Effects of acidification on metal mobility in a papermill-ash amended soil[J]. Journal of Environmental Quality,28(3):760-766.
[16] CHON C M, CHO D W, NAM I H, KIM J G, SONG H. 2018. Fabrication of Fe/Mn oxide composite adsorbents for adsorptive removal of zinc and phosphate[J]. Journal of Soils and Sediments,18(3):946-956. doi: 10.1007/s11368-017-1784-3
[17] CLEMENTE R, BERNAL M P. 2006. Fractionation of heavy metals and distribution of organic carbon in two contaminated soils amended with humic acids[J]. Chemosphere,64(8):1264-1273. doi: 10.1016/j.chemosphere.2005.12.058
[18] CUI L Q, PAN G X, LI L Q, BIAN R J, LIU X Y, YAN J L, QUAN G X, DING C, CHEN T M, LIU Y, LIU Y M, YIN C T, WEI C P, YANG Y G, HUSSAIN Q. 2016. Continuous immobilization of cadmium and lead in biochar amended contaminated paddy soil: A five-year field experiment[J]. Ecological Engineering,93:1-8. doi: 10.1016/j.ecoleng.2016.05.007
[19] CUI H B, SHENG X, HU S J, LI S, ZHANG S W, ZHOU J. 2023. Impacts of modified fly ash on soil available lead and copper and their accumulation by ryegrass[J]. Agronomy,13(9):2194. doi: 10.3390/agronomy13092194
[20] DARMAWAN, WADA S I. 2002. Effect of clay mineralogy on the feasibility of electrokinetic soil decontamination technology[J]. Applied Clay Science,20(6):283-293. doi: 10.1016/S0169-1317(01)00080-1
[21] DERMATAS D, MENG X G. 2003. Utilization of fly ash for stabilization/solidification of heavy metal contaminated soils[J]. Engineering Geology,70(3-4):377-394. doi: 10.1016/S0013-7952(03)00105-4
[22] DI PALMA L, GUEYE M T, PETRUCCI E. 2015. Hexavalent chromium reduction in contaminated soil: a comparison between ferrous sulphate and nanoscale zero-valent iron[J]. Journal of Hazardous Materials,281:70-76. doi: 10.1016/j.jhazmat.2014.07.058
[23] DU Y, ZHANG Y Y, ZHANG J F, YANG Q, LIU B Y. 2023. Study on the stakeholder issues in the treatment and restoration of polluted sites[J]. China Resources Comprehensive Utilization,41(8):123-129 (in Chinese with English abstract).
[24] EGENE C E, VAN POUCKE R, OK Y S, MEERS E, TACK F M G. 2018. Impact of organic amendments (biochar, compost and peat) on Cd and Zn mobility and solubility in contaminated soil of the Campine region after three years[J]. Science of the Total Environment,626:195-202. doi: 10.1016/j.scitotenv.2018.01.054
[25] EGERIĆ M, SMIČIKLAS I, DOJČINOVIĆ B, SIKIRIĆ B, JOVIĆ M, ŠLJIVIĆ-IVANOVIĆ M, ČAKMAK D. 2019. Interactions of acidic soil near copper mining and smelting complex and waste-derived alkaline additives[J]. Geoderma,352:241-250. doi: 10.1016/j.geoderma.2019.06.015
[26] FANG Z, GAO Y R, BOLAN N, SHAHEEN S M, XU S, WU X L, XU X Y, HU H Y, LIN J H, ZHANG F B, LI J H, RINKLEBE J, WANG H L. 2020. Conversion of biological solid waste to graphene-containing biochar for water remediation: a critical review[J]. Chemical Engineering Journal,390:124611. doi: 10.1016/j.cej.2020.124611
[27] FANG B, LI S F, LIU J K, XUE E J, MA J, LU M. 2023. In-situ immobilization remediation effect of biochar and bentonite on Cr-polluted soil[J]. Recyclable Resources and Circular Economy,16(11):40-42 (in Chinese with English abstract).
[28] FIJALKOWSKA G, WIŚNIEWSKA M, SZEWCZUK-KARPISZ K. 2019. The structure of electrical double layer formed on the kaolinite surface in the mixed system of cationic polyacrylamide and lead(II) ions[J]. Physicochemical Problems of Mineral Processing,55(6):1339-1349.
[29] GAO X, PENG Y T, ZHOU Y Y, ADEEL M, CHEN Q. 2019. Effects of magnesium ferrite biochar on the cadmium passivation in acidic soil and bioavailability for packoi (Brassica chinensis L. )[J]. Journal of Environmental Management,251:109610. doi: 10.1016/j.jenvman.2019.109610
[30] GASPARATOS D. 2013. Sequestration of heavy metals from soil with Fe-Mn concretions and nodules[J]. Environmental Chemistry Letters,11(1):1-9. doi: 10.1007/s10311-012-0386-y
[31] GONZAGA M I S, DE ALMEIDA SILVA MATIAS M I, ANDRADE K R, DE JESUS A N, DA COSTA CUNHA G, DE ANDRADE R S, DE JESUS SANTOS J C. 2020. Aged biochar changed copper availability and distribution among soil fractions and influenced corn seed germination in a copper-contaminated soil[J]. Chemosphere,240:124828. doi: 10.1016/j.chemosphere.2019.124828
[32] GONZAGA M I S, MACKOWIAK C, DE ALMEIDA A Q, WISNIEWSKI A, DE SOUZA D F, DA SILVA LIMA I, DE JESUS A N. 2018. Assessing biochar applications and repeated Brassica juncea L. production cycles to remediate Cu contaminated soil[J]. Chemosphere,201:278-285. doi: 10.1016/j.chemosphere.2018.03.038
[33] GU H H, QIU H, TIAN T, ZHAN S S, DENG T H B, CHANEY R L, WANG S Z, TANG Y T, MOREL J L, QIU R L. 2011. Mitigation effects of silicon rich amendments on heavy metal accumulation in rice (Oryza sativa L. ) planted on multi-metal contaminated acidic soil[J]. Chemosphere,83(9):1234-1240. doi: 10.1016/j.chemosphere.2011.03.014
[34] HAFSTEINSDÓTTIR E G, FRYIRS K A, STARK S C, GORE D B. 2014. Remediation of metal-contaminated soil in polar environments: phosphate fixation at casey station, East Antarctica[J]. Applied Geochemistry,51:33-43. doi: 10.1016/j.apgeochem.2014.08.011
[35] HAN L F, SUN K, YANG Y, XIA X H, LI F B, YANG Z F, XING B S. 2020. Biochar's stability and effect on the content, composition and turnover of soil organic carbon[J]. Geoderma,364:114184. doi: 10.1016/j.geoderma.2020.114184
[36] HASHIMOTO Y, SATO T. 2007. Removal of aqueous lead by poorly-crystalline hydroxyapatites[J]. Chemosphere,69(11):1775-1782. doi: 10.1016/j.chemosphere.2007.05.055
[37] HASSAN M, LIU Y J, NAIDU R, DU J H, QI F J, DONNE S W, ISLAM M M. 2021. Mesoporous biopolymer architecture enhanced the adsorption and selectivity of aqueous heavy-metal ions[J]. Acs Omega,6(23):15316-15331. doi: 10.1021/acsomega.1c01642
[38] HE T Y, MENG J, CHEN W F, LIU Z Q, CAO T, CHENG X Y, HUANG Y W, YANG X. 2017. Effects of biochar on cadmium accumulation in rice and cadmium fractions of soil: a three-year pot experiment[J]. BioResources,12(1):622-642.
[39] HE E K, YANG Y X, XU Z B, QIU H, YANG F, PEIJNENBURG W J G M, ZHANG W H, QIU R L, WANG S Z. 2019. Two years of aging influences the distribution and lability of metal(loid)s in a contaminated soil amended with different biochars[J]. Science of the Total Environment,673:245-253. doi: 10.1016/j.scitotenv.2019.04.037
[40] HE L Z, ZHONG H, LIU G X, DAI Z M, BROOKES P C, XU J M. 2019. Remediation of heavy metal contaminated soils by biochar: mechanisms, potential risks and applications in China[J]. Environmental Pollution,252:846-855. doi: 10.1016/j.envpol.2019.05.151
[41] HSU J H, LO S L. 2000. Characterization and extractability of copper, manganese, and zinc in swine manure composts[J]. Journal of Environmental Quality,29(2):447-453.
[42] HUANG G Y, SU X J, RIZWAN M S, ZHU Y F, HU H Q. 2016. Chemical immobilization of Pb, Cu, and Cd by phosphate materials and calcium carbonate in contaminated soils[J]. Environmental Science and Pollution Research,23(16):16845-16856. doi: 10.1007/s11356-016-6885-9
[43] HUANG D L, XUE W J, ZENG G M, WAN J, CHEN G M, HUANG C, ZHANG C, CHENG M, XU P. 2016. Immobilization of Cd in river sediments by sodium alginate modified nanoscale zero-valent iron: Impact on enzyme activities and microbial community diversity[J]. Water Research,106:15-25. doi: 10.1016/j.watres.2016.09.050
[44] HWANG A, JI W, KWEON B, KHIM J. 2008. The physico-chemical properties and leaching behaviors of phosphatic clay for immobilizing heavy metals[J]. Chemosphere,70(6):1141-1145. doi: 10.1016/j.chemosphere.2007.07.082
[45] IGALAVITHANA A D, KWON E E, VITHANAGE M, RINKLEBE J, MOON D H, MEERS E, TSANG D C W, OK Y S. 2019. Soil lead immobilization by biochars in short-term laboratory incubation studies[J]. Environment International,127:190-198. doi: 10.1016/j.envint.2019.03.031
[46] JIANG T Y, JIANG J, XU R K, LI Z. 2012. Adsorption of Pb(II) on variable charge soils amended with rice-straw derived biochar[J]. Chemosphere,89(3):249-256. doi: 10.1016/j.chemosphere.2012.04.028
[47] JING F, CHEN X M, WEN X, LIU W, HU S M, YANG Z J, GUO B L, LUO Y, YU Q X, XU Y L. 2020. Biochar effects on soil chemical properties and mobilization of cadmium (Cd) and lead (Pb) in paddy soil[J]. Soil Use and Management,36(2):320-327. doi: 10.1111/sum.12557
[48] KARER J, ZEHETNER F, DUNST G, FESSL J, WAGNER M, PUSCHENREITER M, STAPKĒVIČA M, FRIESL-HANL W, SOJA G. 2018. Immobilisation of metals in a contaminated soil with biochar-compost mixtures and inorganic additives: 2-year greenhouse and field experiments[J]. Environmental Science and Pollution Research,25(3):2506-2516. doi: 10.1007/s11356-017-0670-2
[49] KO I, CHANG Y Y, LEE C H, KIM K W. 2005. Assessment of pilot-scale acid washing of soil contaminated with As, Zn and Ni using the BCR three-step sequential extraction[J]. Journal of Hazardous Materials,127(1/3):1-13. doi: 10.1016/j.jhazmat.2005.06.041
[50] KYPRITIDOU Z, ARGYRAKI A. 2021. Geochemical interactions in the trace element-soil-clay system of treated contaminated soils by Fe-rich clays[J]. Environmental Geochemistry and Health,43(7):2483-2503. doi: 10.1007/s10653-020-00542-1
[51] LEBRUN M, MIARD F, NANDILLON R, MORABITO D, BOURGERIE S. 2021. Biochar application rate: improving soil fertility and Linum usitatissimum growth on an arsenic and lead contaminated technosol[J]. International Journal of Environmental Research,15(1):125-134. doi: 10.1007/s41742-020-00302-0
[52] LI Y F, HU S D, CHEN J H, MÜLLER K, LI Y C, FU W J, LIN Z W, WANG H L. 2018. Effects of biochar application in forest ecosystems on soil properties and greenhouse gas emissions: a review[J]. Journal of Soils and Sediments,18(2):546-563. doi: 10.1007/s11368-017-1906-y
[53] LI G, KHAN S, IBRAHIM M, SUN T R, TANG J F, COTNER J B, XU Y Y. 2018. Biochars induced modification of dissolved organic matter (DOM) in soil and its impact on mobility and bioaccumulation of arsenic and cadmium[J]. Journal of Hazardous Materials,348:100-108. doi: 10.1016/j.jhazmat.2018.01.031
[54] LI B, LI M, ZHANG P P, PAN Y F, HUANG Z H, XIAO H N. 2022. Remediation of Cd (II) ions in aqueous and soil phases using novel porous cellulose/chitosan composite spheres loaded with zero-valent iron nanoparticles[J]. Reactive and Functional Polymers,173:105210. doi: 10.1016/j.reactfunctpolym.2022.105210
[55] LI Q, YIN J, WU L L, LI S L, CHEN L. 2023. Effects of biochar and zero valent iron on the bioavailability and potential toxicity of heavy metals in contaminated soil at the field scale[J]. Science of the Total Environment,897:165386. doi: 10.1016/j.scitotenv.2023.165386
[56] LIANG X, SU Y L, WANG X N, LIANG C T, TANG C J, WEI J Y, LIU K H, MA J M, YU F M, LI Y. 2023. Insights into the heavy metal adsorption and immobilization mechanisms of CaFe-layered double hydroxide corn straw biochar: synthesis and application in a combined heavy metal-contaminated environment[J]. Chemosphere,313:137467. doi: 10.1016/j.chemosphere.2022.137467
[57] LIMA J Z, DA SILVA E F, PATINHA C, RODRIGUES V G S. 2022. Sorption and post-sorption performances of Cd, Pb and Zn onto peat, compost and biochar[J]. Journal of Environmental Management,321:115968. doi: 10.1016/j.jenvman.2022.115968
[58] LIN P C, LIU H, YIN H, ZHU M H, LUO H Y, DANG Z. 2023. Remediation performance and mechanisms of Cu and Cd contaminated water and soil using Mn/Al-layered double oxide-loaded biochar[J]. Journal of Environmental Sciences,125:593-602. doi: 10.1016/j.jes.2022.03.023
[59] LING W T, SHEN Q, GAO Y Z, GU X H, YANG Z P. 2007. Use of bentonite to control the release of copper from contaminated soils[J]. Australian Journal of Soil Research,45(8):618-623. doi: 10.1071/SR07079
[60] LIU Y Z, LU Y, LIU S Y. 2023. Study on chemical compatibility of amended cement-soil vertical cutoff wall permeated with heavy metal solutions[J]. Rock and Soil Mechanics,44(2):497-506. (in Chinese with English abstract
[61] LIU Q J, LUO J Y, TANG J P, CHEN Z L, CHEN Z W, LIN Q T. 2022. Remediation of cadmium and lead contaminated soils using Fe-OM based materials[J]. Chemosphere,307:135853. doi: 10.1016/j.chemosphere.2022.135853
[62] LIU Y K, MOLINARI S, DALCONI M C, VALENTINI L, BELLOTTO M P, FERRARI G, PELLAY R, RILIEVO G, VIANELLO F, SALVIULO G, CHEN Q S, ARTIOLI G. 2023. Mechanistic insights into Pb and sulfates retention in ordinary portland cement and aluminous cement: assessing the contributions from binders and solid waste[J]. Journal of Hazardous Materials,458:131849. doi: 10.1016/j.jhazmat.2023.131849
[63] LIU J J, ZHA F S, XU L, DENG Y F, CHU C F. 2018. Engineering properties of heavy metal contaminated soil solidified/stabilized with high calcium fly ash and soda residue[C]//Proceedings of GeoShanghai 2018 International Conference: Geoenvironment and Geohazard. GSIC 2018. Springer, Singapore, 442-449.
[64] LIU R Q, ZHAO D Y. 2013. Synthesis and characterization of a new class of stabilized apatite nanoparticles and applying the particles to in situ Pb immobilization in a fire-range soil[J]. Chemosphere,91(5):594-601. doi: 10.1016/j.chemosphere.2012.12.034
[65] MA M Y, XU X Q, HA Z H, SU Q M K, LV C Y, LI J, DU D Y, CHI R. 2023. Deep insight on mechanism and contribution of arsenic removal and heavy metals remediation by mechanical activation phosphogypsum[J]. Environmental Pollution,336:122258. doi: 10.1016/j.envpol.2023.122258
[66] MCBRIDE M B, MARTÍNEZ C E. 2000. Copper phytotoxicity in a contaminated soil: remediation tests with adsorptive materials[J]. Environmental Science & Technology,34(20):4386-4391.
[67] MEIER S, CURAQUEO G, KHAN N, BOLAN N, CEA M, EUGENIA G M, CORNEJO P, OK Y S, BORIE F. 2017. Chicken-manure-derived biochar reduced bioavailability of copper in a contaminated soil[J]. Journal of Soils and Sediments,17(3):741-750. doi: 10.1007/s11368-015-1256-6
[68] MÉNDEZ A, PAZ-FERREIRO J, ARAUJO F, GASCÓ G. 2014. Biochar from pyrolysis of deinking paper sludge and its use in the treatment of a nickel polluted soil[J]. Journal of Analytical and Applied Pyrolysis,107:46-52. doi: 10.1016/j.jaap.2014.02.001
[69] MENG F D, HUANG Q X, CAI Y B, XIAO L, WANG T, LI X L, WU W G, YUAN G D. 2023. A comparative assessment of humic acid and biochar altering cadmium and arsenic fractions in a paddy soil[J]. Journal of Soils and Sediments,23(2):845-855. doi: 10.1007/s11368-022-03385-8
[70] MICHÁLKOVÁ Z, KOMÁREK M, VÍTKOVÁ M, ŘEČÍNSKÁ M, ETTLER V. 2016. Stability, transformations and stabilizing potential of an amorphous manganese oxide and its surface-modified form in contaminated soils[J]. Applied Geochemistry,75:125-136. doi: 10.1016/j.apgeochem.2016.10.020
[71] MIN T, LUO T, CHEN L L, LU W D, WANG Y, CHENG L Y, RU S B, LI J H. 2021. Effect of dissolved organic matter on the phytoremediation of Cd-contaminated soil by cotton[J]. Ecotoxicology and Environmental Safety,226:112842. doi: 10.1016/j.ecoenv.2021.112842
[72] MOORE F, GONZÁLEZ M E, KHAN N, CURAQUEO G, SANCHEZ-MONEDERO M, RILLING J, MORALES E, PANICHINI M, MUTIS A, JORQUERA M, MEJIAS J, HIRZEL J, MEIER S. 2018. Copper immobilization by biochar and microbial community abundance in metal-contaminated soils[J]. Science of the Total Environment,616-617:960-969. doi: 10.1016/j.scitotenv.2017.10.223
[73] NAZEER M, KHAN M J, MUHAMMAD D, KHAN A. 2023. Biochar application stabilized the heavy metals in coal mined soil[J]. Canadian Journal of Soil Science,103(2):297-304. doi: 10.1139/cjss-2022-0073
[74] NING D F, LIANG Y C, SONG A L, DUAN A W, LIU Z D. 2016. In situ stabilization of heavy metals in multiple-metal contaminated paddy soil using different steel slag-based silicon fertilizer[J]. Environmental Science and Pollution Research,23(23):23638-23647. doi: 10.1007/s11356-016-7588-y
[75] O'CONNOR D, PENG T Y, ZHANG J L, TSANG D C W, ALESSI D S, SHEN Z T, BOLAN N S, HOU D Y. 2018. Biochar application for the remediation of heavy metal polluted land: a review of in situ field trials[J]. Science of the Total Environment,619-620:815-826. doi: 10.1016/j.scitotenv.2017.11.132
[76] OUYANG J D, LUO G F, HAN Z W, XIAO H, YANG M. 2023. Release mechanism and stabilization effect of Sb and As: A case study of the antimony mine in karst area, southwestern China[J]. Polish Journal of Environmental Studies,32(2):1743-1754. doi: 10.15244/pjoes/157574
[77] PARK J H, CHOPPALA G K, BOLAN N S, CHUNG J W, CHUASAVATHI T. 2011. Biochar reduces the bioavailability and phytotoxicity of heavy metals[J]. Plant and Soil,348(1-2):439-451. doi: 10.1007/s11104-011-0948-y
[78] PEI G P, ZHU Y E, WEN J G, PEI Y X, LI H. 2020. Vinegar residue supported nanoscale zero-valent iron: Remediation of hexavalent chromium in soil[J]. Environmental Pollution,256:113407. doi: 10.1016/j.envpol.2019.113407
[79] PENG Y X, ZHANG S R, ZHONG Q M, WANG G Y, FENG C, XU X X, PU Y L, GUO X. 2021. Removal of heavy metals from abandoned smelter contaminated soil with poly-phosphonic acid: two-objective optimization based on washing efficiency and risk assessment[J]. Chemical Engineering Journal,421:129882. doi: 10.1016/j.cej.2021.129882
[80] PIATAK N M, PARSONS M B, SEAL R R. 2015. Characteristics and environmental aspects of slag: a review[J]. Applied Geochemistry,57:236-266. doi: 10.1016/j.apgeochem.2014.04.009
[81] QIAN W, LIANG J Y, ZHANG W X, HUANG S T, DIAO Z H. 2022. A porous biochar supported nanoscale zero-valent iron material highly efficient for the simultaneous remediation of cadmium and lead contaminated soil[J]. Journal of Environmental Sciences,113:231-241. doi: 10.1016/j.jes.2021.06.014
[82] QIAN S X, ZHOU X R, FU Y K, SONG B, YAN H C, CHEN Z X, SUN Q, YE H Y, QIN L, LAI C. 2023. Biochar-compost as a new option for soil improvement: application in various problem soils[J]. Science of the Total Environment,870:162024. doi: 10.1016/j.scitotenv.2023.162024
[83] RAN H Z, GUO Z H, SHI L, FENG W L, XIAO X Y. 2023. Cadmium bioavailability in agricultural soil after mixed amendments combined with rice-rape cropping: a five-season field experiment[J]. Journal of Soils and Sediments,23(11):3879-3890. doi: 10.1007/s11368-023-03575-y
[84] RASHEED T, ADEEL M, NABEEL F, BILAL M, IQBAL H M N. 2019. TiO2/SiO2 decorated carbon nanostructured materials as a multifunctional platform for emerging pollutants removal[J]. Science of the Total Environment,688:299-311. doi: 10.1016/j.scitotenv.2019.06.200
[85] REDDY A S, CHAVALI R V P. 2023. Solidification/stabilization of copper-contaminated soil using magnesia-activated blast furnace slag[J]. Innovative Infrastructure Solutions,8(2):79. doi: 10.1007/s41062-023-01036-6
[86] REDDY V A, SOLANKI C H, KUMAR S, REDDY K R, DU Y J. 2020. Pb-Zn smelter residue (LZSR) stabilized using low-carbon, low-cost limestone-calcined clay cement: leachability, chemical speciation, strength, and microstructure[J]. Journal of Hazardous, Toxic, and Radioactive Waste, 24(4): 4020054.
[87] SHANABLEH A, ABU-ZER M O. 2001. Lime-based immobilization and leaching of Cr, Cd, Pb, and Ni as soil contaminants[J]. Arabian Journal for Science and Engineering, 26: 69-79.
[88] SHAO X, YU J, CHANG J H, HUANG Z, JIANG Y Y, DENG S W. 2023. Effect of vermiculite modified with nano-iron-based material on stabilization of lead in lead contaminated soil[J]. Environmental Science and Pollution Research,30(35):83821-83833. doi: 10.1007/s11356-023-28205-5
[89] SHARIATMADARI N, WENG C H, DARYAEE H. 2009. Enhancement of hexavalent chromium [Cr(VI)] remediation from clayey soils by electrokinetics coupled with a nano-sized zero-valent iron barrier[J]. Environmental Engineering Science,26(6):1071-1079. doi: 10.1089/ees.2008.0257
[90] SHI W Y, LI H, DU S, WANG K B, SHAO H B. 2013. Immobilization of lead by application of zeolite: Leaching column and rhizobox incubation studies[J]. Applied Clay Science,85:103-108. doi: 10.1016/j.clay.2013.08.022
[91] SHIN W, KIM Y K. 2016. Stabilization of heavy metal contaminated marine sediments with red mud and apatite composite[J]. Journal of Soils and Sediments,16(2):726-735. doi: 10.1007/s11368-015-1279-z
[92] SINGH J, KALAMDHAD A S. 2013. Reduction of bioavailability and leachability of heavy metals during vermicomposting of water hyacinth[J]. Environmental Science and Pollution Research,20(12):8974-8985. doi: 10.1007/s11356-013-1848-x
[93] SIVARANJANEE R, KUMAR P S, RANGASAMY G. 2023. A critical review on biochar for environmental applications[J]. Carbon Letters,33(5):1407-1432. doi: 10.1007/s42823-023-00527-x
[94] SONG H H, LIANG W Y, LUO K L, WANG G H, LI Q N, JI X W, WAN J, SHAO X C, GONG K L, ZHANG W, PENG C. 2023. Simultaneous stabilization of Pb, Cd, and As in soil by rhamnolipid coated sulfidated nano zero-valent iron: effects and mechanisms[J]. Journal of Hazardous Materials,443:130259. doi: 10.1016/j.jhazmat.2022.130259
[95] SUI F F, WANG J B, ZUO J, JOSEPH S, MUNROE P, DROSOS M, LI L Q, PAN G X. 2020. Effect of amendment of biochar supplemented with Si on Cd mobility and rice uptake over three rice growing seasons in an acidic Cd-tainted paddy from central South China[J]. Science of the Total Environment,709:136101. doi: 10.1016/j.scitotenv.2019.136101
[96] SUI F F, ZUO J, CHEN D, LI L Q, PAN G X, CROWLEY D E. 2018. Biochar effects on uptake of cadmium and lead by wheat in relation to annual precipitation: a 3-year field study[J]. Environmental Science and Pollution Research,25(4):3368-3377. doi: 10.1007/s11356-017-0652-4
[97] SUN Y B, LI Y, XU Y M, LIANG X F, WANG L. 2015. In situ stabilization remediation of cadmium (Cd) and lead (Pb) co-contaminated paddy soil using bentonite[J]. Applied Clay Science,105-106:200-206. doi: 10.1016/j.clay.2014.12.031
[98] SUN Y B, ZHAO D, XU Y M, WANG L, LIANG X F, SHEN Y. 2016. Effects of sepiolite on stabilization remediation of heavy metal-contaminated soil and its ecological evaluation[J]. Frontiers of Environmental Science & Engineering,10(1):85-92.
[99] SUN L G, ZHOU G Z, YANG R C, LI Y M, TENG S C, ZHANG L Y, YU P P. 2022. Synthesis of novel magnesium-doped hydroxyapatite/chitosan nanomaterial and mechanisms for enhanced stabilization of heavy metals in soil[J]. Journal of Inorganic and Organometallic Polymers and Materials,32(9):3601-3620. doi: 10.1007/s10904-022-02391-0
[100] TANG H, CHEN M, WU P, FAHEEM M, FENG Q W, LEE X Q, WANG S S, WANG B. 2023. Engineered biochar effects on soil physicochemical properties and biota communities: a critical review[J]. Chemosphere,311:137025. doi: 10.1016/j.chemosphere.2022.137025
[101] TANG Y Q, WANG C, HOLM P E, HANSEN H C B, BRANDT K K. 2023. Impacts of biochar materials on copper speciation, bioavailability, and toxicity in chromated copper arsenate polluted soil[J]. Journal of Hazardous Materials,459:132067. doi: 10.1016/j.jhazmat.2023.132067
[102] TAO C J, LI M H, MA M H, ZHANG X R, DU G Q, LIANG H X. 2023. Ecological risk assessment of heavy metals in soil-rice in a typical selenium-rich area of southern Anhui province[J]. East China Geology,44(2):160-171 (in Chinese with English abstract).
[103] TONG F, HUANG Q, LIU L Z, FAN G P, SHI G L, LU X, GAO Y. 2023. Interactive effects of inorganic-organic compounds on passivation of cadmium in weakly alkaline soil[J]. Agronomy,13(10):2647. doi: 10.3390/agronomy13102647
[104] TRAN H T, BOLAN N S, LIN C, BINH Q A, NGUYEN M K, LUU T A, LE V G, PHAM C Q, HOANG H G, VO D V N. 2023. Succession of biochar addition for soil amendment and contaminants remediation during co-composting: a state of art review[J]. Journal of Environmental Management,342:118191. doi: 10.1016/j.jenvman.2023.118191
[105] TRIPTI, KUMAR A, MALEVA M, BORISOVA G, RAJKUMAR M. 2023. Amaranthus biochar-based microbial cell composites for alleviation of drought and cadmium stress: A novel bioremediation approach[J]. Plants,12(10):1973. doi: 10.3390/plants12101973
[106] VAN POUCKE R, AINSWORTH J, MAESEELE M, OK Y S, MEERS E, TACK F M G. 2018. Chemical stabilization of Cd-contaminated soil using biochar[J]. Applied Geochemistry,88:122-130. doi: 10.1016/j.apgeochem.2017.09.001
[107] VANDYCK M M, ARTHUR E K, GIKUNOO E, AGYEMANG F O, KOOMSON B, FOLI G, BAAH D S. 2023. Use of limekiln dust in the stabilization of heavy metals in Ghanaian gold oxide ore mine tailings[J]. Environmental Monitoring and Assessment,195(6):711-719. doi: 10.1007/s10661-023-11306-6
[108] VEJVODOVÁ K, DRÁBEK O, ASH C, TEJNECKÝ V, NĚMEČEK K, BORŮVKA L. 2020. Effect of clay on the fractions of potentially toxic elements in contaminated soil[J]. Soil and Water Research,16(1):1-10. doi: 10.17221/13/2020-SWR
[109] WAN J P, ZENG Y F, WANG M, DONG B, XU Z X. 2022. New mechanism of FA in composted sludge inducing Cu fixation on Albite in open-pit mine soil[J]. Journal of Environmental Sciences,116:142-150. doi: 10.1016/j.jes.2021.08.029
[110] WANG G F, CAO W S, LIANG G C, XIANG J, CHEN Y L, LIU H Y. 2023. Leaching behavior of heavy metals from Pb-Zn tailings and remediation by Ca- or Na-montmorillonite[J]. Water, Air, & Soil Pollution, 234(2): 101.
[111] WANG J X, FU H Y, XU D M, MU Z Q, FU R B. 2022. The remediation mechanisms and effects of chemical amendments for heavy metals in contaminated soils: a review of literature[J]. Polish Journal of Environmental Studies,31(5):4511-4522. doi: 10.15244/pjoes/146705
[112] WANG H Y, GAO Z, LI X, DUAN Z Q. 2023. Cadmium accumulation and immobilization by Artemisia selengensis under different compound amendments in cadmium-contaminated soil[J]. Agronomy,13(4):1011. doi: 10.3390/agronomy13041011
[113] WANG F, MIAO L J, WANG Y F, ZHANG M Y, ZHANG H J, DING Y, ZHU W Q. 2022. Using cow dung and mineral vermireactors to produce vermicompost for use as a soil amendment to slow Pb2+ migration[J]. Applied Soil Ecology,170:104299. doi: 10.1016/j.apsoil.2021.104299
[114] WANG Q, SHAHEEN S M, JIANG Y H, LI R H, SLANÝ M, ABDELRAHMAN H, KWON E, BOLAN N, RINKLEBE J, ZHANG Z Q. 2021. Fe/Mn- and P-modified drinking water treatment residuals reduced Cu and Pb phytoavailability and uptake in a mining soil[J]. Journal of Hazardous Materials,403:123628. doi: 10.1016/j.jhazmat.2020.123628
[115] WANG L N, WEI J, YANG L, CHEN Y, WANG M J, XIAO L, YUAN G D. 2023. Enhancing soil remediation of copper-contaminated soil through washing with a soluble humic substance and chemical reductant[J]. Agronomy,13(7):1754. doi: 10.3390/agronomy13071754
[116] WANG Q, WEN J, YANG L S, CUI H S, ZENG T J, HUANG J. 2023. Exploration on the role of different iron species in the remediation of As and Cd co-contamination by sewage sludge biochar[J]. Environmental Science and Pollution Research,30(13):39154-39168. doi: 10.1007/s11356-022-24952-z
[117] WANG H, XIA W, LU P. 2017. Study on adsorption characteristics of biochar on heavy metals in soil[J]. Korean Journal of Chemical Engineering,34(6):1867-1873. doi: 10.1007/s11814-017-0048-7
[118] WANG Y, XU Y A, LI D, TANG B C, MAN S L, JIA Y F, XU H. 2018. Vermicompost and biochar as bio-conditioners to immobilize heavy metal and improve soil fertility on cadmium contaminated soil under acid rain stress[J]. Science of the Total Environment,621:1057-1065. doi: 10.1016/j.scitotenv.2017.10.121
[119] WANG N, XUE X M, JUHASZ A L, CHANG Z Z, LI H B. 2017. Biochar increases arsenic release from an anaerobic paddy soil due to enhanced microbial reduction of iron and arsenic[J]. Environmental Pollution,220:514-522. doi: 10.1016/j.envpol.2016.09.095
[120] WU Y F, CHEN G G. 2022. Assessment on soil conservation service based on InVEST model——a case study of Yindingge mining area[J]. East China Geology,43(2):184-195 (in Chinese with English abstract).
[121] WU H L, SONG H, SUN X P, BI Y Z, FU S J, YANG N. 2023. Geo-environmental properties and microstructural characteristics of sustainable limestone calcined clay cement (LC3) binder treated Zn-contaminated soils[J]. Journal of Zhejiang University-SCIENCE A,24(10):898-911. doi: 10.1631/jzus.A2200531
[122] XING Y, WANG J X, XIA J C, LIU Z M, ZHANG Y H, DU Y, WEI W L. 2019. A pilot study on using biochars as sustainable amendments to inhibit rice uptake of Hg from a historically polluted soil in a Karst region of China[J]. Ecotoxicology and Environmental Safety,170:18-24. doi: 10.1016/j.ecoenv.2018.11.111
[123] XU Z L, NIE N, LIU K Y, LI Q, CUI H J, DU H H. 2023. Analog soil organo-ferrihydrite composites as suitable amendments for cadmium and arsenic stabilization in co-contaminated soils[J]. Science of the Total Environment,877:162929. doi: 10.1016/j.scitotenv.2023.162929
[124] XUE W J, WEN S Q, ZHU Y L, GAO Y, WANG R Z, XU Y Q. 2023. Immobilization of cadmium in river sediments using sulfidized nanoscale zero-valent iron synthesized with different iron precursors: performance and mechanism[J]. Journal of Soils and Sediments,23(9):3550-3566. doi: 10.1007/s11368-023-03606-8
[125] YANG S X, CAO J B, HU W Y, ZHANG X J, DUAN C. 2013. An evaluation of the effectiveness of novel industrial by-products and organic wastes on heavy metal immobilization in Pb-Zn mine tailings[J]. Environmental Science: Processes & Impacts, 15(11): 2059-2067.
[126] YANG J, JIN C H, LI J, GAO X H, WANG Y L, WANG J S, TENG Y G. 2023 Remediation of vanadium contaminated soils in a waste smelter by eco-friendly chitosan@mineral composites[J]. Environmental Technology & Innovation, 32: 103291.
[127] YANG Z P, ZHANG K S, LI X Y, REN S P, LI P. 2023. The effects of long-term freezing-thawing on the strength properties and the chemical stability of compound solidified/stabilized lead-contaminated soil[J]. Environmental Science and Pollution Research,30(13):38185-38201.
[128] YAO S X, ZHOU B B, DUAN M L, CAO T, WEN Z Q, CHEN X P, WANG H, WANG M, CHENG W, ZHU H Y, YANG Q, LI Y J. 2023. Combination of biochar and trichoderma harzianum can improve the phytoremediation efficiency of Brassica juncea and the rhizosphere micro-ecology in cadmium and arsenic contaminated soil[J]. Plants,12(16):2939. doi: 10.3390/plants12162939
[129] YIN D X, WANG X, PENG B, TAN C Y, MA L Q. 2017. Effect of biochar and Fe-biochar on Cd and As mobility and transfer in soil-rice system[J]. Chemosphere,186:928-937. doi: 10.1016/j.chemosphere.2017.07.126
[130] YUAN Z M, ZHAO Y, GUO Z W, YAO J. 2016. Chemical and ecotoxicological assessment of multiple heavy metal-contaminated soil treated by phosphate addition[J]. Water, Air, & Soil Pollution, 227(11): 403.
[131] ZENG G M, HE Y, WANG F, LUO H, LIANG D, WANG J, HUANG J S, YU C Y, JIN L B, SUN D. 2023. Toxicity of nanoscale zero-valent iron to soil microorganisms and related defense mechanisms: a review[J]. Toxics,11(6):514. doi: 10.3390/toxics11060514
[132] ZENG Z L, YU C, LIAO R P, CAI X Q, CHEN Z H, YU Z K, WU Z X. 2023. Preparation and characterization of sodium polyacrylate grafted montmorillonite nanocomposite for the adsorption of cadmium ions form aqueous solution[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects,656:130389. doi: 10.1016/j.colsurfa.2022.130389
[133] ZHANG H J, DONG X B, YANG H M. 2023. Montmorillonite-mediated electron distribution of zirconium phosphate for accelerating remediation of cadmium-contaminated water and soil[J]. Applied Clay Science,236:106883. doi: 10.1016/j.clay.2023.106883
[134] ZHANG H M, LARSON S, BALLARD J, NIE J, ZHANG Q Q, KAZERY J A, DASARI S, PRADHAN N, DAI Q L, OLAFUYI O M, ZHU X C, MA Y H, HAN F X. 2023. Interaction of exopolysaccharide with clay minerals and their effects on U(VI) adsorption[J]. Journal of Soils and Sediments,23(11):4002-4016. doi: 10.1007/s11368-023-03589-6
[135] ZHANG T, LI Q, YANG X, ZHENG D M, DENG H L, ZENG Z J, YU J H, WANG Q Z, SHI Y F, WANG S L, PI K W, GERSON A R. 2023. Pb contaminated soil from a lead-acid battery plant immobilized by municipal sludge and raw clay[J]. Environmental Technology,45(14):2796-2808. doi: 10.1080/09593330.2023.2187319
[136] ZHANG M, SHAN S D, CHEN Y G, WANG F, YANG D Y, REN J K, LU H Y, PING L F, CHAI Y J. 2019. Biochar reduces cadmium accumulation in rice grains in a tungsten mining area-field experiment: effects of biochar type and dosage, rice variety, and pollution level[J]. Environmental Geochemistry and Health,41(1):43-52. doi: 10.1007/s10653-018-0120-1
[137] ZHANG J Q, WANG Z, LUO Y, JIA W J, WANG Z Y, CHENG Q Q, ZHANG Z L, FENG X Y, ZENG Q P. 2023. A preparation method of Fe(II/III)loaded attapulgite-biochar to passivate Cd(II) in soil[J]. Soil and Sediment Contamination: An International Journal,32(8):1012-1032. doi: 10.1080/15320383.2022.2161471
[138] ZHANG J, CHEN G G, WANG S X, NIU X N, SHUAI S , CHEN S , YU J J, CAO X Q. 2022. Distribution status and restoration suggestions on shelter forests in sandy shoreline of Fujian Province[J]. East China Geology,43(1):72-78. (in Chinese with English abstract).
[139] ZHANG D D, XU Y Q, LI X F, WANG L N, HE X W, MA Y, ZOU D X. 2020. The immobilization effect of natural mineral materials on Cr(VI) remediation in water and soil[J]. International Journal of Environmental Research and Public Health,17(8):2832. doi: 10.3390/ijerph17082832
[140] ZHANG Y, XU Y M, LIANG X F, WANG L, SUN Y B, HUANG Q Q, QIN X. 2023. Ionomic analysis reveals the mechanism of mercaptosilane-modified palygorskite on reducing Cd transport from soil to wheat[J]. Environmental Science and Pollution Research,30(43):98091-98105. doi: 10.1007/s11356-023-29376-x
[141] ZHENG X J, CHEN M, WANG J F, LIU Y, LIAO Y Q, LIU Y C. 2020. Assessment of zeolite, biochar, and their combination for stabilization of multimetal-contaminated soil[J]. ACS Omega,5(42):27374-27382. doi: 10.1021/acsomega.0c03710
[142] ZHOU P F, ADEEL M, GUO M L, GE L, SHAKOOR N, LI M S, LI Y B, WANG G Y, RUI Y K. 2023. Characterisation of biochar produced from two types of chestnut shells for use in remediation of cadmium- and lead-contaminated soil[J]. Crop & Pasture Science,74(1-2):147-156.
[143] ZHOU J M, CHEN H L, TAO Y L, THRING R W, MAO J L. 2019. Biochar amendment of chromium-polluted paddy soil suppresses greenhouse gas emissions and decreases chromium uptake by rice grain[J]. Journal of Soils and Sediments,19(4):1756-1766. doi: 10.1007/s11368-018-2170-5
[144] ZHOU C Z, WANG J H, WANG Q, LENG Z, GENG Y, SUN S R, HOU H. 2023. Simultaneous adsorption of Cd and As by a novel coal gasification slag based composite: characterization and application in soil remediation[J]. Science of the Total Environment,882:163374. doi: 10.1016/j.scitotenv.2023.163374
[145] ZHOU Y C, ZHAO X Q, JIANG Y, DING C C, LIU J G, ZHU C. 2023. Synergistic remediation of lead pollution by biochar combined with phosphate solubilizing bacteria[J]. Science of the Total Environment,861:160469.
[146] ZHOU Y, ZOU Z K, WANG M F, WANG Y Q, LI J L, QIU L Z, CHENG Y X, DAI Z Y. 2023. Biochar and nano-ferric oxide synergistically alleviate cadmium toxicity of muskmelon[J]. Environmental Science and Pollution Research,30(20):57945-57959. doi: 10.1007/s11356-023-26369-8
[147] ZUO W G, WANG S J, ZHOU Y X, MA S, YIN W Q, SHAN Y H, WANG X Z. 2023. Conditional remediation performance of wheat straw biochar on three typical Cd-contaminated soils[J]. Science of the Total Environment,863:160998. doi: 10.1016/j.scitotenv.2022.160998
[148] 环境保护部, 国土资源部. 2014. 全国土壤污染状况调查公报[J]. 中国环保产业, (5): 10-11.
[149] 边归国. 2023. 土壤污染修复环境监理技术规范的现状与展望[J]. 青海环境,33(3):110-115. doi: 10.3969/j.issn.1007-2454.2023.03.002
[150] 陈毓遒, 舒红锁, 洪荷芳, 任典挺, 王江. 2023. 铅锌尾矿对下游区域农田污染的影响研究[J]. 农业灾害研究,13(8):289-291. doi: 10.3969/j.issn.2095-3305.2023.08.095
[151] 陈臻, 曾翠云, 张永合. 2023. 腐植酸在土壤污染防治修复技术中的应用[J]. 腐植酸,(4):1-6,57.
[152] 杜芸, 张岩岩, 张家峰, 杨青, 刘碧云. 2023. 污染场地治理修复中的利益主体问题研究[J]. 中国资源综合利用,41(8):123-129. doi: 10.3969/j.issn.1008-9500.2023.08.035
[153] 房彬, 李书锋, 刘建阔, 薛二军, 马劲, 路明. 2023. 生物炭组配膨润土对铬污染土壤原位钝化修复效果[J]. 再生资源与循环经济,16(11):40-42. doi: 10.3969/j.issn.1674-0912.2023.11.014
[154] 刘宜昭, 陆阳, 刘松玉. 2023. 重金属作用下改性水泥系隔离墙化学相容性研究[J]. 岩土力学,44(2):497-506.
[155] 陶春军, 李明辉, 马明海, 张笑蓉, 杜国强, 梁红霞. 2023. 皖南某典型富硒区土壤-水稻重金属生态风险评估[J]. 华东地质,44(2):160-171.
[156] 武翼飞, 陈国光. 2022. 基于InVEST模型的矿区土壤保持功能评估——以银顶格矿区为例[J]. 华东地质,43(2):184-195.
[157] 张洁, 陈国光, 王尚晓, 牛晓楠, 帅爽, 陈思, 于俊杰, 曹新晴. 2022. 福建省沿海砂质岸线防护林分布特征及生态修复探讨[J]. 华东地质,43(1):72-78.
-