The detection system based on ultrasonic synthetic aperture imaging and multi-frequency scanning
-
摘要:
通过地下岩体的结构特征和深部空区的勘测技术研究,查明岩体的缺陷区域及地下空间形态的精细化结构特征,对岩溶发育区的地下工程设计及施工具有重要作用。为了进一步了解深部地下岩体的“黑匣子”结构,攻破地下空间精细化勘探的关键技术,文章介绍了一种孔内超声波合成孔径成像与多频扫描探测系统。该系统在钻孔内光学与声学协同作用的基础上,建立了适用于探测复杂地质钻孔岩体结构的多频超声波扫描技术体系,以及具有智能感知和识别能力的钻孔岩体结构综合勘测装备。此外,该系统还能够实现复杂地质环境下钻孔岩壁、孔内溶洞和近场围岩的同步勘测,结合其配套的分析方法,构建了1套集“观察、测量、表征”于一体的钻孔岩体结构综合勘测体系。测试结果表明:孔内超声波合成孔径成像与多频扫描探测系统能够沿钻孔深入到难以触及的地下空间进行360°精细探测,能够丰富地下空间开发与建设中的岩体结构勘测数据,具有较好的前瞻性和广泛的应用前景。
Abstract:It is particularly important for the underground engineering design and construction in karst development areas to identify the refined structure of hollow areas and underground morphology based on the structural characteristics of underground rock mass and survey techniques in deep voids. In order to further understand the “black box” structure of deep underground rock mass and master key technology of accurate exploration in underground space, this article introduces a detection system by borehole ultrasonic synthetic aperture imaging and multi-frequency scanning. According to the synergistic effect of optics and acoustics inside the borehole, this system derived a multi-frequency ultrasonic scanning technology suitable for detecting complex geological borehole rock mass, and designed a comprehensive survey equipment for borehole rock mass structure with intelligent perception and recognition capabilities. In addition, the system can synchronously survey borehole rock walls, caves inside the borehole, and near-field surrounding rocks in complex geological environments. Combined with its supporting analysis methods, we have constructed a comprehensive survey system for borehole rock mass structure integrating “observation, measurement, and characterization”. The test results show that the ultrasonic synthetic aperture imaging and multi-frequency scanning detection inside the borehole can perform 360° precise detection by going into inaccessible underground spaces along the borehole, enriching the survey data of rock structure in underground space development and construction, which has forward-looking and wide application prospects.
-
-
[1] HE J S, LI D Q, HU Y F, LING F, WANG J H. 2022. Geophysical exploration methods for strong interference urban underground space[J]. Chinese Journal of Engineering Geophysics,19(5):559-567 (in Chinese with English abstract).
[2] HU L L, HUANG D J, HE H, YANG R. 2022a. Application of comprehensive geophysical exploration method in geological disaster of karst collapse in Northwest Guangxi[J]. Mineral Resources and Geology,36(1):165-171 (in Chinese with English abstract).
[3] HU L L, HUANG D J, XIE S B, ZENG X Y, YANG R. 2022b. Application of comprehensive geophysical exploration technology on karst cave detection at a limestone mine: an example of Dingxiangshan limestone mine in Guigang city of Guangxi[J]. Mineral Resources and Geology,36(6):1182-1189 (in Chinese with English abstract).
[4] LIN X C, SU W S, CHEN Z G. 2012. Acoustic borehole televiewer and its application to the site investigation of underground building[J]. Chinese Journal of Engineering Geophysics,9(3):263-268 (in Chinese with English abstract).
[5] LIU Y X, GAO M S, ZHAO H S, HE S L, LI Z G, ZHANG Z C. 2020. Detection of overlying rock structure and identification of key stratum by drilling and logging technology[J]. Journal of Mining and Strata Control Engineering,2(2):81-89 (in Chinese with English abstract).
[6] LONG X, SUN Z Y, ZHOU A G, LIU D L. 2015. Hydrogeochemical and isotopic evidence for flow paths of karst waters collected in the Heshang Cave, Central China[J]. Journal of Earth Science,26(1):149-156.
[7] MA L H, ZHAO H S, YIN Y L, WANG Y L, HE S L, LI B W. 2019. Lithological identification and rock structure analysis based on axial acceleration logging of inclined boreholes[J]. China Metal Bulletin, (10): 201-203 (in Chinese with English abstract).
[8] SHANG L N, PAN J, CAO R, ZHOU Q C, KONG X H. 2024.Structural characteristics of the Binhai Fault Zone in Jiangsu offshore -implications from gravity and magnetic data[J]. East China Geology, 45(1): 101-114(in Chinese with English abstract).
[9] SUN P, WANG Q, WANG C Y, LIU J B, CHEN F, ZHANG J. 2023. Application of geophysical method in the interface exploration between backfill soil rock and bedrock of the mine pit[J]. East China Geology,44(4):439-447 (in Chinese with English abstract).
[10] WANG L, CHEN Y, YU D Y, HU J P, XU Y H, YANG W, WANG T. 2022. Seismic airgun-the key technology of future urban underground space exploration[J]. Chinese Journal of Geophysics,65(12):4750-4759 (in Chinese with English abstract).
[11] WANG L F, LIU H S, TONG S Y, YIN Y X, XING L, ZOU Z H, XU X G. 2015. Retrieving drill bit seismic signals using surface seismometers[J]. Journal of Earth Science,26(4):567-576. doi: 10.1007/s12583-015-0568-1
[12] WANG J C, TAO D X, HUANG Y Q, WANG C Y, HAN Z Q, HU S. 2019. Borehole imaging method based on ultrasonic synthetic aperture technology[J]. Rock and Soil Mechanics,40(S1):557-564 (in Chinese with English abstract).
[13] WANG J C, WANG C Y, DU Q, LUO P, HUANG J F. 2023. Research on 3D visualization of geological boreholes based on photo-acoustic combination measurement[J]. Chinese Journal of Rock Mechanics and Engineering,42(3):649-660 (in Chinese with English abstract).
[14] WANG J C, WANG C Y, HAN Z Q. 2020a. Multi-frequency ultrasonic underground cavity scanning detection technology in borehole[J]. Measurement,161:107889. doi: 10.1016/j.measurement.2020.107889
[15] WANG J C, WANG C Y, HAN Z Q, JIAO Y Y, ZOU J P. 2020b. Study of hidden structure detection for tunnel surrounding rock with pulse reflection method[J]. Measurement,159:107791. doi: 10.1016/j.measurement.2020.107791
[16] WANG J C, XU H H, CHEN W, WANG C Y, HAN Z Q. 2022. Evaluation method for rock mass structure integrity based on borehole multivariate data[J]. International Journal of Geomechanics,22(1):04021248. doi: 10.1061/(ASCE)GM.1943-5622.0002232
[17] ZHANG X L, XIE T, ZHOU W, GAO H, DENG D, QU J Y. 2023. The application of the opposing coils transient electromagnetic method and microtremor survey method in shallow karst detection[J]. Coal Geology & Exploration,51(12):157-166 (in Chinese with English abstract).
[18] ZHANG H, ZHOU Q P, JIANG Y H, JIN Y, CHEN Z, JIA Z Y, MEI S J. 2023. Sublacustrine sedimentary topography detection and analysis of Poyang Lake based on sub-bottom profiler[J]. East China Geology,44(3):313-322 (in Chinese with English abstract).
[19] ZHOU L M, WANG F G, XIAO G Q, FU D G, LUO R. 2016. Experimental investigations of rock mass for south bank expansion project of Kariba power station by comprehensive logging[J]. Journal of Yangtze River Scientific Research Institute,33(12):109-112 (in Chinese with English abstract).
[20] ZOU C C, SHI G, PAN L Z. 2004. Acoustic borehole images for fracture extraction and analysis in second pre-pilot Drillhole of CCSD[J]. Journal of Earth Science,15(1):123-127.
[21] 何继善, 李帝铨, 胡艳芳, 凌帆, 王金海. 2022. 城市强干扰环境地下空间探测技术与应用[J]. 工程地球物理学报,19(5):559-567.
[22] 胡磊磊, 黄德军, 何辉, 杨荣. 2022a. 综合物探在桂西北岩溶塌陷地质灾害中的应用[J]. 矿产与地质,36(1):165-171.
[23] 胡磊磊, 黄德军, 谢绍彬, 曾宣源, 杨荣. 2022b. 综合物探技术在石灰石矿山溶洞探测的应用研究——以广西贵港市定祥山石灰石矿山为例[J]. 矿产与地质,36(6):1182-1189.
[24] 林孝城, 苏文生, 陈宗刚. 2012. 声学钻孔电视及在地下建筑物选址调查中的应用[J]. 工程地球物理学报,9(3):263-268. doi: 10.3969/j.issn.1672-7940.2012.03.003
[25] 刘垚鑫, 高明仕, 赵华山, 何双龙, 李振国, 张志聪. 2020. 钻孔测井技术探测覆岩结构及其关键层判识[J]. 采矿与岩层控制工程学报,2(2):81-89.
[26] 马良慧, 赵华山, 尹杨林, 王言龙, 何双龙, 李笔文. 2019. 基于仰斜钻孔轴向加速度测井的岩性识别与岩体结构分析[J]. 中国金属通报,(10):201-203. doi: 10.3969/j.issn.1672-1667.2019.10.123
[27] 尚鲁宁, 潘军, 曹瑞, 周青春, 孔祥淮. 2024.基于重磁数据研究江苏岸外滨海断裂带及邻区构造特征[J]. 华东地质, 45(1): 101-114.
[28] 孙平, 王谦, 王重阳, 刘俊伯, 陈峰, 张建. 2023. 物探方法在采矿坑回填土石与基岩分界面勘探中的应用[J]. 华东地质,44(4):439-447.
[29] 王栎, 陈颙, 于大勇, 胡久鹏, 徐逸鹤, 杨微, 王涛. 2022. 未来城市地下空间探测的关键技术——大陆气枪震源[J]. 地球物理学报,65(12):4750-4759. doi: 10.6038/cjg2022P0782
[30] 汪进超, 陶东新, 黄燕庆, 王川婴, 韩增强, 胡胜. 2019. 基于超声波合成孔径技术的钻孔成像方法[J]. 岩土力学,40(S1):557-564.
[31] 汪进超, 王川婴, 杜琦, 罗鹏, 黄俊峰. 2023. 基于光声组合测量的地质钻孔三维可视化研究[J]. 岩石力学与工程学报,42(3):649-660.
[32] 张学亮, 谢涛, 周炜, 高辉, 邓冬, 曲靖祎. 2023. 等值反磁通瞬变电磁和微动勘探在浅部岩溶探测中的应用[J]. 煤田地质与勘探,51(12):157-166. doi: 10.12363/issn.1001-1986.23.05.0287
[33] 张鸿, 周权平, 姜月华, 金阳, 陈孜, 贾正阳, 梅世嘉. 2023. 基于浅地层剖面仪的鄱阳湖水下沉积地形探测与分析[J]. 华东地质,44(3):313-322.
[34] 周黎明, 王法刚, 肖国强, 付代光, 罗荣. 2016. 卡里巴电站南岸扩机工程岩体特性综合测井试验[J]. 长江科学院院报,33(12):109-112. doi: 10.11988/ckyyb.20160174
-