Study on the mineralogical characteristics of crystalline graphite from Xiangshan graphite deposit in Huaining County, Anhui Province
-
摘要:
文章运用多种分析测试方法及研究手段,首次对安徽怀宁地区象山石墨矿床开展了晶质石墨矿物学特征研究。象山矿床的晶质石墨具有完整的晶型,呈鳞片状集合体;能谱分析结果显示,晶质石墨中的碳原子含量为91.99%~92.74%;激光拉曼分析结果显示,石墨具有较高的结晶度和有序且完整的碳原子结构,其激光拉曼特征图谱缺失D1峰和D2峰,与石墨烯的激光拉曼图谱具有较高的相似性;粉晶衍射分析结果反映了晶质石墨具有2H型石墨特征,轴长a=0.246 1~0.246 6 nm,c=0.669 3~0.670 0 nm,晶胞体积V=0.035 1~0.035 29 nm3。石墨鳞片厚度为37.1~43.3 nm,石墨化度为82~96,估算其成矿变质温度为542.4~587.2 ℃,3R多型含量为9.03%~10.37%,δ13C值为−29.223‰~−26.926‰,表明石墨碳质来源于地层中同源沉积的生物有机碳质,更接近泥碳及现代有机质的含量水平,可能不存在岩浆带入的含碳流体及碳酸盐岩分解的无机碳。
Abstract:In this paper, the researchers have employed a variety of analytical testing methods and research techniques to conduct the first study on the crystalline graphite mineralogical characteristics of Xiangshan graphite deposit in Huaining County, Anhui Province. The crystalline graphite of the Xiangshan deposit has a relatively complete crystal form and appears as flake aggregates. Energy spectrum analysis shows that the content of C atom in the crystalline graphite ranges from 91.99% to 92.74%. Laser Raman spectroscopy shows that graphite has a high degree of crystallinity and an orderly complete carbon atomic structure. Its laser Raman characteristic spectrum lacks D1 and D2 peaks, similar to the Raman spectroscopy in graphene. Powder X-ray diffraction (XRD) reveals that the crystalline graphite exhibits characteristics of 2H type graphite, with an axis length a=0.246 1~0.246 6 nm, c=0.669 3~0.670 0 nm, and a unit cell volume V=0.035 1~0.035 29 nm3. The thickness of graphite flake varies from 37.1~43.3 nm, the degree of graphitization 82~96, the estimated metamorphic temperature 542.4~587.2 ℃, the content of 3R polymorphism 9.03%~10.37% and δ13C value −29.223‰~−26.926‰. These findings all suggest that the graphite carbon derived from bio-organic carbon deposited in the strata, which is closer to the level of peat and modern organic matter. Besides, there is no evidence of carbon-containing fluid brought in by magma and inorganic carbon resulting from carbonate rock decomposition.
-
-
图 5 象山石墨与其他碳质的碳同位素组成对比(Hoefs, 2009;姜高珍, 2016;姜高珍等, 2017;兰心俨, 1981;李小东等, 2022;毋应科, 2022)
Figure 5.
表 1 怀宁象山地区与我国其他典型地区的晶质石墨拉曼特征参数对比
Table 1. Comparison of Raman characteristic parameters of crystalline graphite between Xiangshan of Huaining and other typical areas in China
地区 样品编号 G峰位置/cm−1 D峰位置/cm−1 G´峰/cm−1 R 数据来源 峰位 半高宽 峰位 半高宽 峰位 半高宽 怀宁象山 ZK201b 1 577.62 18.04 1 346.62 42.30 2 706.41 74.10 0.04 本文 ZK61b 1 575.79 15.94 — — 2 705.82 70.81 — ZK72b 1 576.27 17.97 — — 2 707.89 63.30 — ZK1001b 1 577.44 16.87 — — 2 709.28 68.74 — 内蒙古兴和 XH80G 1 581.7 15.83 1 346.38 2.26 — — 0.03 鲜海洋等,2015 黑龙江鸡西 J892G 1 581.7 15.42 1 372.52 4.84 — — 0.02 表 2 怀宁象山与我国其他地区石墨的晶胞参数对比
Table 2. Comparison of cell parameters of graphite in Xiangshan area of Huaining and other areas in China
表 3 怀宁象山与其他典型石墨矿石墨样品XRD特征及反演参数统计对比
Table 3. Statistical comparison of XRD characteristics and inversion parameters of graphite samples from Xiangshan, Huaining and other typical graphite mines
产地 样品编号 β(002)/° 2θ/° d002/ nm Lc(002)/nm DG 温度/℃ 数据来源 怀宁象山 ZK61-b 0.203 26.568 0.335 2 43.3 96 587.2 本文 ZK201-b 0.237 26.625 0.334 8 37.1 82 542.4 内蒙古大乌淀 D01 0.190 26.610 0.334 7 42.5 95 584.0 姜高珍等,2017 安徽凤阳 JSZK3506 0.213 26.487 0.336 2 28.8 74 516.0 李小东等,2022 湖南鲁塘 0.324 26.438 0.335 8 43.45 95 — 杨瑞,2021 表 4 典型石墨矿床和象山石墨样品的石墨化度与菱面体多型含量
Table 4. Graphitization degree and 3R polytype content of typical graphite deposits and Xiangshan graphite samples
表 5 怀宁象山与内蒙古大乌淀石墨的δ13C分析结果对比
Table 5. Comparison of carbon stable isotope analysis results of graphite between Xiangshan of Huaining and Dawudian of Inner Mongolia
地区 样品编号 石墨产出特征 同位素组成(δ13C/‰) 数据来源 怀宁象山 ZK61-b 角岩中鳞片状石墨 −27.867 本文 ZK201-b 角岩中鳞片状石墨 −26.926 ZK1001-b 角岩中鳞片状石墨 −29.223 ZK72-b 角岩中鳞片状石墨 −27.354 内蒙古大乌淀 鳞片状石墨 −28.6~−29.4 姜高珍等,2017 -
[1] AOYA M, KOUKETSU Y, ENDO S, SHIMIZU H, MIZUKAMI T, NAKAMURA D, WALLIS S. 2010. Extending the applicability of the Raman carbonaceous-material geothermometer using data from contact metamorphic rocks[J]. Journal of Metamorphic Geology,28(9):895-914. doi: 10.1111/j.1525-1314.2010.00896.x
[2] BACON G E. 1952. The powder diffraction intensities of graphite for X-rays and neutrons[J]. Acta Crystallographica,5(4):492-499. doi: 10.1107/S0365110X52001416
[3] BAI Q, ZHANG S T, WANG W L, WANG Z J. 2015. Variance of graphite import-export volume and price in China for 2003-2012: a time-series analysis[J]. Resources Policy,44:65-70. doi: 10.1016/j.resourpol.2015.01.004
[4] BAIJU K R, SATISH-KUMAR M, KAGI H, NAMBIAR C G, RAVISANKAR M. 2005. Mineralogical characterization of graphite deposits from Thodupuzha-Kanjirappally Belt, Madurai Granulite Block, southern India[J]. Gondwana Research,8(2):223-230. doi: 10.1016/S1342-937X(05)71120-5
[5] BEYSSAC O, GOFFÉ B, CHOPIN C, ROUZAUD J N. 2002. Raman spectra of carbonaceous material in metasediments: a new geothermometer[J]. Journal of Metamorphic Geology,20(9):859-871. doi: 10.1046/j.1525-1314.2002.00408.x
[6] CHEN W R. 1990. Crystal structure of graphite[J]. Carbon Techniques,(4):39-40 (in Chinese).
[7] COSTA S, BOROWIAK-PALEN E, KRUSZYŃSKA M, BACHMATIUK A, KALEŃCZUK R J. 2008. Characterization of carbon nanotubes by Raman spectroscopy[J]. Materials Science-Poland,26(2):433-441.
[8] CUI X J, LIU Q F, LI K, YU L, WU Y K. 2018. Mineralogical characteristics of coal-based cryptocrystalline graphite in Lutang area, Hunan Province, China[J]. Acta Mineralogica Sinica,38(2):142-151 (in Chinese with English abstract).
[9] DUAN J Q. 2017. Research on mineralogy and exploitation of microcrystalline graphite from Chenzhou, Hunan Province[D]. Mianyang: Southwest University of Science and Technology (in Chinese with English abstract).
[10] DUAN J Q, SUN H J, PENG T J. 2016. Mineralogical characteristics of microcrystalline graphite in Chenzhou, Hunan Province[J]. Journal of Mineralogy and Petrology,36(3):7-14 (in Chinese with English abstract).
[11] GENERAL ADMINISTRATION OF QUALITY SUPERVISION, INSPECTION AND QUARANTINE OF THE PEOPLE'S REPUBLIC OF CHINA, NATIONAL STANDARDIZATION ADMINISTRATION OF CHINA. 2010. GB/T 18340.2-2010 Geochemical Analysis Methods for Geological Samples Part 2: Determination of Stable Carbon Isotopes in Organic Matter by Isotope Mass Spectrometry [S]. Beijing: China Standards Press, 5-8(in Chinese).
[12] GUO H Z. 1989. Study on flake graphite in China[J]. Journal of China Building Materials Academy,(3):267-278 (in Chinese with English abstract).
[13] HOEFS J. 2009. Stable isotope geochemistry[M]. Berlin, Heidelberg: Springer.
[14] HU S Y, EVANS K, CRAW D, REMPEL K, BOURDET J, DICK J, GRICE K. 2015. Raman characterization of carbonaceous material in the Macraes orogenic gold deposit and metasedimentary host rocks, New Zealand[J]. Ore Geology Reviews,70:80-95. doi: 10.1016/j.oregeorev.2015.03.021
[15] HUANG H B, YUAN J, LING B, BAI X, LI M J, LIU J K. 2023. Technical development of arc-emission spectroscopy and its application in geological sample analysis[J]. East China Geology,44(1):103-117 (in Chinese with English abstract).
[16] JIANG G Z. 2016. Gold and graphite deposits prospecting in Bayan Obo rift, Inner Mongolia[D]. Beijing: China University of Geosciences (in Chinese with English abstract).
[17] JIANG G Z, LI Y K, WANG A J, YANG X, YANG B, MA L. 2017. Genetic features of Dawudian graphite deposit in Urad Middle Banner, Inner Mongolia[J]. Earth Science Frontiers,24(5):306-316 (in Chinese with English abstract).
[18] KOURKOUMELIS N. 2013. PowDLL, a reusable .NET component for interconverting powder diffraction data: recent developments[M]//O’NEILL L. ICDD annual spring meetings. Powder Diffraction, 28: 137-148.
[19] KUZMANY H, PFEIFFER R, HULMAN M, KRAMBERGER C. 2004. Raman spectroscopy of fullerenes and fullerene-nanotube composites[J]. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, 362(1824): 2375-2406.
[20] LAN X Y. 1981. Study on the charateristics of Precambrian graphite-bearing formation and the genesis of graphite deposits in Nanshu, Shandong Province[J]. Journal of Jilin University,(3):30-42 (in Chinese).
[21] LI X D, DU Y D, XU B, PAN Y G, TIAN J, ZHANG Y Y, XU G, WANG H. 2022. Mineralogical characteristics of crystalline graphite in the Fengyang area of Anhui Province within the eastern Bengbu uplift zone of the southeastern margin of North China Plate[J]. Bulletin of Mineralogy, Petrology and Geochemistry, 41(2): 260-273 (in Chinese with English abstract).
[22] LI Y, MA D, WU R F. 2022. Geological characteristics and prospecting target of the Xiangshan graphite deposit, Huaining, Anhui Province[J]. Geology of Anhui,32(1):33-36,92 (in Chinese with English abstract).
[23] LI M F, ZENG F G, QI F H, SUN B L. 2009. Raman spectroscopic characteristics of different rank coals and the relation with XRD structural parameters[J]. Spectroscopy and Spectral Analysis,29(9):2446-2449 (in Chinese with English abstract).
[24] LIU J. 2017. Moving toward the application and industrialization of graphene: processes of graphite formation and graphitic crystal chemistry[D]. Beijing: China University of Geosciences (Beijing) (in Chinese with English abstract).
[25] LUO G M, JUNIUM C K, KUMP L R, HUANG J H, LI C, FENG Q L, SHI X Y, BAI X, XIE S C. 2014. Shallow stratification prevailed for ∼1700 to ∼1300 Ma ocean: evidence from organic carbon isotopes in the North China Craton[J]. Earth and Planetary Science Letters,400:219-232. doi: 10.1016/j.jpgl.2014.05.020
[26] LUQUE F J, CRESPO-FEO E, BARRENECHEA J F, ORTEGA L. 2012. Carbon isotopes of graphite: implications on fluid history[J]. Geoscience Frontiers,3(2):197-207. doi: 10.1016/j.gsf.2011.11.006
[27] LUQUE F J, PASTERIS J D, WOPENKA B, RODAS M, BARRENECHEA J F. 1998. Natural fluid-deposited graphite: mineralogical characteristics and mechanisms of formation[J]. American Journal of Science,298(6):471-498. doi: 10.2475/ajs.298.6.471
[28] MAFRA D L, KONG J, SATO K, SAITO R, DRESSELHAUS M S, ARAUJO P T. 2012. Using gate-modulated Raman scattering and electron-phonon interactions to probe single-layer graphene: a different approach to assign phonon combination modes[J]. Physical Review B,86(19):195434. doi: 10.1103/PhysRevB.86.195434
[29] MIZUTANI S, SATISH-KUMAR M, YOSHINO T. 2014. Experimental determination of carbon isotope fractionation between graphite and carbonated silicate melt under upper mantle conditions[J]. Earth and Planetary Science Letters,392:86-93. doi: 10.1016/j.jpgl.2014.02.006
[30] SANYAL P, ACHARYA B C, BHATTACHARYA S K, SARKAR A, AGRAWAL S, BERA M K. 2009. Origin of graphite, and temperature of metamorphism in Precambrian eastern Ghats Mobile Belt, Orissa, India: a carbon isotope approach[J]. Journal of Asian Earth Sciences,36(2-3):252-260 doi: 10.1016/j.jseaes.2009.06.008
[31] SATISH-KUMAR M, JASZCZAK J A, HAMAMATSU T, WADA H. 2011. Relationship between structure, morphology, and carbon isotopic composition of graphite in marbles: implications for calcite-graphite carbon isotope thermometry[J]. American Mineralogist,96(4):470-485. doi: 10.2138/am.2011.3576
[32] SFORNA M C, VAN ZUILEN M A, PHILIPPOT P. 2014. Structural characterization by Raman hyperspectral mapping of organic carbon in the 3.46 billion-year-old Apex chert, western Australia[J]. Geochimica et Cosmochimica Acta,124:18-33. doi: 10.1016/j.gca.2013.09.031
[33] SHI G, GONG Z, HUANG N, YE J, ZHOU D R, SHAO W, TENG L, LIAO S B, LI J Q. 2023. The main controlling factors of the gas content in the Permian Dalong Formation of the Xuanjing area, the lower Yangtze region: a case study of Gangdi 1 Well[J]. East China Geology,44(1):93-102 (in Chinese with English abstract).
[34] SHI H, BARKER J, SAÏDI M Y, KOKSBANG R. 1996. Structure and lithium intercalation properties of synthetic and natural graphite[J]. Journal of the Electrochemical Society,143(11):3466-3472. doi: 10.1149/1.1837238
[35] SONIBARE O O, HAEGER T, FOLEY S F. 2010. Structural characterization of Nigerian coals by X-ray diffraction, Raman and FTIR spectroscopy[J]. Energy,35(12):5347-5353. doi: 10.1016/j.energy.2010.07.025
[36] SUN H J, DUAN J Q, PENG T J. 2017. Study on mineralogical characteristics of microcrystalline graphite. bulletin of mineralogy[J]. Petrology and Geochemistry,(36):37 (in Chinese).
[37] TUINSTRA F and KOENIG JL. 1970. Raman spectrum of graphite[J]. The Journal of Chemical Physics,53(3):1126-1130.
[38] VAN ZUILEN M A, FLIEGEL D, WIRTH R, LEPLAND A, QU Y G, SCHREIBER A, ROMASHKIN A E, PHILIPPOT P. 2012. Mineral-templated growth of natural graphite films[J]. Geochimica et Cosmochimica Acta,83:252-262. doi: 10.1016/j.gca.2011.12.030
[39] WANG K Q. 1989. A preliminary discussion on the basic properties of natural graphite and its relation to the metamorphic grade[J]. Nonmetallic Geology,(6):11-17 (in Chinese with English abstract).
[40] WANG K Q. 1990. A study on the structure of graphite crystals in Nanshu graphite deposit, Shandong Province[J]. Acta Mineralogica Sinica,10(2):106-114 (in Chinese with English abstract).
[41] WU J X, XU H, ZHANG J. 2014. Raman spectroscopy of graphene[J]. Acta Chimica Sinica,72(3):301-318 (in Chinese with English abstract). doi: 10.6023/A13090936
[42] WU Y K. 2022. Research on the mineralization of graphite in the Lutang coal measures of Hunan Province[D].Beijing: China University of Mining and Technology(in Chinese with English abstract).
[43] XIAN H Y, PENG T J, SUN H J, WU X. 2015. Mineralogical characteristics of some typical graphite samples in China[J]. Acta Mineralogica Sinica,35(3):395-405 (in Chinese with English abstract).
[44] YANG R. 2021. Study on the microstructure characteristics of coal bearing graphite——taking the Lutang mining area in Hunan Province as an example[D].Handan:Hebei University of Engineering (in Chinese with English abstract).
[45] ZHAO B S, LIU J J, WANG J P, ZHAI Y S, PENG R M, WANG S G, SHEN C L. 2007. Trace elements geochemistry of the black rock series from Bayan Obo Group and their geological implications[J]. Geoscience,21(1):87-94 (in Chinese with English abstract).
[46] ZHAO W Z, XIE X, ZHANG B B, ZHANG J T, HE T. 2024. Application of deep eutectic solvent extraction in eco-geological sample analysis[J]. East China Geology,45(1):78-87 (in Chinese with English abstract).
[47] 陈蔚然. 1990. 石墨的晶体结构[J]. 炭素技术, (4): 39-40.
[48] 崔先健, 刘钦甫, 李阔, 余力, 毋应科. 2018. 湖南鲁塘煤系隐晶质石墨矿物学特征[J]. 矿物学报,38(2):142-151.
[49] 段佳琪. 2017. 湖南郴州微晶石墨矿物学及开发利用研究[D]. 绵阳: 西南科技大学.
[50] 段佳琪, 孙红娟, 彭同江. 2016. 湖南郴州微晶石墨的矿物学特征[J]. 矿物岩石,36(3):7-14.
[51] 郭海珠. 1989. 中国鳞片石墨的研究[J]. 水泥与房建材料,(3):267-278.
[52] 黄海波, 袁静, 凌波, 白晓, 李民敬, 刘建坤. 2023. 电弧发射光谱技术发展及其在地质领域的应用[J]. 华东地质,44(1):103-117.
[53] 姜高珍. 2016. 内蒙古白云鄂博裂谷系金矿石墨矿成矿预测综合研究[D]. 北京: 中国地质大学.
[54] 姜高珍, 李以科, 王安建, 杨轩, 杨彪, 马莉. 2017. 内蒙古乌拉特中旗大乌淀石墨矿成因特征分析[J]. 地学前缘,24(5):306-316.
[55] 兰心俨. 1981. 山东南墅前寒武纪含石墨建造的特征及石墨矿床的成因研究[J]. 长春地质学院学报, (3): 30-42.
[56] 李小东, 杜玉雕, 徐波, 潘宇观, 田晶, 张宜勇, 徐刚, 汪欢. 2022. 华北板块东南缘蚌埠隆起带东段安徽凤阳地区晶质石墨矿物学特征研究[J]. 矿物岩石地球化学通报,41(2):260-273.
[57] 李勇, 马冬, 吴仁飞. 2022. 安徽怀宁象山石墨矿床地质特征及找矿方向[J]. 安徽地质,32(1):33-36,92. doi: 10.3969/j.issn.1005-6157.2022.01.008
[58] 李美芬, 曾凡桂, 齐福辉, 孙蓓蕾. 2009. 不同煤级煤的Raman谱特征及与XRD结构参数的关系[J]. 光谱学与光谱分析,29(9):2446-2449.
[59] 刘剑. 2017. 天然石墨的成因、晶体化学特征及对石墨烯产业化的约束[D]. 北京: 中国地质大学(北京).
[60] 石刚, 龚赞, 黄宁, 叶隽, 周道容, 邵威, 滕龙, 廖圣兵, 李建青. 2023. 下扬子宣泾地区二叠系大隆组页岩含气量主控因素分析——以港地1井为例[J]. 华东地质,44(1):93-102.
[61] 孙红娟, 段佳琪, 彭同江. 2017. 微晶石墨的矿物学特征研究[J]. 矿物岩石地球化学通报, (36)增刊: 37.
[62] 王克勤. 1989. 石墨矿物的一些基本性质及与变质程度关系初探[J]. 建材地质,(6):11-17.
[63] 王克勤. 1990. 山东南墅石墨矿石墨晶体结构的研究[J]. 矿物学报,10(2):106-114. doi: 10.3321/j.issn:1000-4734.1990.02.003
[64] 吴娟霞, 徐华, 张锦. 2014. 拉曼光谱在石墨烯结构表征中的应用[J]. 化学学报,72(3):301-318.
[65] 毋应科. 2022. 湖南鲁塘煤系石墨成矿作用研究[D]. 北京:中国矿业大学.
[66] 鲜海洋, 彭同江, 孙红娟, 吴逍. 2015. 我国若干典型石墨矿山石墨的矿物学特征[J]. 矿物学报,35(3):395-405.
[67] 杨瑞. 2021. 煤系石墨微观结构特征研究-以湖南鲁塘矿区为例[D].邯郸:河北工程大学.
[68] 赵百胜, 刘家军, 王建平, 翟裕生, 彭润民, 王守光, 沈存利. 2007. 白云鄂博群黑色岩系微量元素地球化学特征及地质意义[J]. 现代地质,21(1):87-94. doi: 10.3969/j.issn.1000-8527.2007.01.010
[69] 赵文志, 谢旭, 张兵兵, 张锦涛, 何添. 2024. 深共晶溶剂在生态地质样品分析中的应用研究[J]. 华东地质,45(1):78-87.
[70] 中华人民共和国国家质量监督检验检疫总局,中国国家标准化管理委员会. 2010. GB/T18340.2—2010 地质样品有机地球化学分析方法 第2部分:有机质稳定碳同位素测定 同位素质谱法[S]. 北京:中国标准出版社, 5-8.
-