Identification and significance of fluid exsolution in high silica granite
-
摘要: 高硅花岗岩以暗色矿物含量低,富SiO2、Rb,贫MgO、FeO、Sr、Ba为特征,富集稀有金属元素,其研究对于理解花岗岩成因演化、稀有金属元素富集和成矿过程至关重要。岩相学和地球化学特征指示其经历高程度的分异演化,H2O等挥发分作为不相容组分在残余熔体中逐渐富集饱和,导致流体出溶在高硅花岗质熔体中,但如何识别这一过程是难点。文章从岩相学、地球化学、矿物学、金属稳定同位素(Li、Ba、Fe)等角度总结了高硅花岗岩中流体出溶作用的证据和指标。岩相学方面,晶洞构造、雪球结构、单向固结结构等特殊结构、构造的出现是流体出溶的重要标志;地球化学方面,极低的Nb/Ta值(<5)、Zr/Hf值、稀土元素四分组效应是流体-熔体相互作用的有效识别标志;矿物学方面,锆石蜕晶化作用、轻稀土元素富集及钾长石富Pb指示存在热液流体参与;金属稳定同位素方面,相对于普通花岗岩,高硅花岗岩通常富集重Li、轻Ba和重Fe同位素,流体-熔体相互作用很可能是主要控制因素。但部分地球化学指标还存在较大争论,在实际使用过程中需结合不同指标进行综合分析。经过岩浆演化和流体出溶两阶段的富集过程,稀有金属元素得以在出溶流体中极度富集进而成矿。Abstract: High silica granite is characterized with low content of dark minerals, abundant SiO2, Rb, poor MgO, FeO, Sr, Ba, and enrichment of rare metal elements. Research on it is crucial to understand the petrogenesis of granite, the enrichment of rare metal elements and mineralization process. The petrographic and geochemical characteristics indicate that it has undergone a high degree of differentiation evolution. Volatile components such as H2O, as incompatible components, are gradually enriched and eventually saturated in the residual melt, resulting in inevitable fluid dissolution in high silica granitic melts, but how to identify it is difficult. This paper summarizes the evidence and indicators for fluid exsolution in high silica granite from the perspectives of petrography, whole-rock geochemistry, mineralogy, and metal stable isotopes (Li, Ba, Fe). The appearance of miarolitic structure, snowball texture and unidirectional solidification texture are important petrographic signs of fluid exsolution. In terms of whole-rock geochemistry, extremely low Nb/Ta values (<5), Zr/Hf values and the tetrad effect of rare earth elements are effective identifiers of fluid-melt interaction. In mineralogy, metamictization and LREE enrichment of zircon and high Pb content in K-feldspar indicate the involvement of hydrothermal fluids. Compared to common granite, high silica granite is usually enriched with heavy Li, light Ba, and heavy Fe isotopes. Fluid-melt interaction is probably the major factor in isotope fractionation of high silica granite. However, some geochemical evidence remains controversial, so we recommend to use together the various lines of evidence. After the two-stage enrichment process of magma evolution and fluid exsolution, rare metal elements can be extremely enriched in the exsolved fluid and then mineralized.
-
-
[1] CAMPBELL I H, TAYLOR S R. No water, no granites-No oceans, no continents[J]. Geophysical Research Letters, 1983, 10(11):1061-1064.
[2] GLAZNER A F, COLEMAN D S, BARTLEY J M. The tenuous connection between high-silica rhyolites and granodiorite plutons[J]. Geology, 2008, 36(2):183-186.
[3] CHEN S C, YU J J, BI M F. Extraction of fractionated interstitial melt from a crystal mush system generating the Late Jurassic high-silica granites from the Qitianling composite pluton, South China:implications for greisen-type tin mineralization[J]. Lithos, 2021, 382:105952.
[4] BACHMANN O, BERGANTZ G W. On the origin of crystal-poor rhyolites:extracted from batholithic crystal mushes[J]. Journal of Petrology, 2004, 45(8):1565-1582.
[5] CASHMAN K V, SPARKS R S J, BLUNDY J D. Vertically extensive and unstable magmatic systems:a unified view of igneous processes. Science, 2017, 355(6331):1-11.
[6] 马昌前,李艳青.花岗岩体的累积生长与高结晶度岩浆的分异[J].岩石学报, 2017, 33(5):1479-1488.
MA C Q, LI Y Q. Incremental growth of granitoid plutons and highly crystalline magmatic differentiation[J]. Acta Petrologica Sinica, 2017, 33(5):1479-1488.
[7] 吴福元,刘小驰,纪伟强,等.高分异花岗岩的识别与研究[J].中国科学(地球科学), 2017, 47(7):745-765.
WU F Y, LIU X C, JI W Q, et al. Highly fractionated granites:recognition and research[J]. Science China (Earth Sciences), 2017, 47(7):745-765.
[8] 吴福元,郭春丽,胡方泱,等.南岭高分异花岗岩成岩与成矿[J].岩石学报, 2023, 39(1):1-36.
WU F Y, GUO C L, HU F Y, et al. Petrogenesis of the highly fractionated granites and their mineralizations in Nanling Range[J]. Acta Petrologica Sinica, 2023, 39(1):1-36.
[9] THOMAS R, DAVIDSON P. Water in granite and pegmatite-forming melts[J]. Ore Geology Reviews, 2012, 46:32-46.
[10] EDMONDS M, WOODS A W. Exsolved volatiles in magma reservoirs[J]. Journal of Volcanology and Geothermal Research, 2018, 368:13-30.
[11] THOMAS R, DAVIDSON P, APPEL K. The enhanced element enrichment in the supercritical states of granite-pegmatite systems[J]. Acta Geochimica, 2019, 38:335-349.
[12] 王国光,倪培,潘君屹.花岗质岩石相关成矿系统的流体作用[J].矿物岩石地球化学通报, 2020, 39(3):463-471.
WANG G G, NI P, PAN J Y. Fluid characteristics of granite-related ore forming systems[J]. Bulletin of Mineralogy, Petrology and Geochemistry, 2020, 39(3):463-471.
[13] AUDÉTAT A. The metal content of magmatic-hydrothermal fluids and its relationship to mineralization potential[J]. Economic Geology, 2019, 114(6):1033-1056.
[14] 郭素淑,李曙光.淡色花岗岩的岩石学和地球化学特征及其成因[J].地学前缘, 2007, 14(6):290-298.
GUO S S, LI S G. Petrological and geochemical constraints on the origin of leucogranites[J]. Earth Science Frontiers, 2007, 14(6):290-298.
[15] 吴福元,刘志超,刘小驰,等.喜马拉雅淡色花岗岩[J].岩石学报, 2015, 31(1):1-36.
WU F Y, LIU Z C, LIU X C, et al. Himalayan leucogranite:petrogenesis and implications to orogenesis and plateau uplift[J]. Acta Petrologica Sinica, 2015, 31(1):1-36.
[16] 刘鹏,张德会,吴鸣谦,等.浅谈花岗岩浆热液的形成及成矿作用[J].地质论评, 2020, 66(3):699-719.
LIU P, ZHANG D H, WU M Q, et al. Discussion on magma-hydrothermal formation and mineralization of granites[J]. Geological Review, 2020, 66(3):699-719.
[17] WU F Y, LIU X C, LIU Z C, et al. Highly fractionated Himalayan leucogranites and associated rare-metal mineralization[J]. Lithos, 2020, 352/353:1-24
[18] CAO H W, PEI Q M, SANTOSH M, et al. Himalayan leucogranites:a review of geochemical and isotopic characteristics, timing of formation, genesis, and rare metal mineralization[J]. Earth-Science Reviews, 2022, 234:1-28.
[19] CANDELA P A. A review of shallow, ore-related granites:textures, volatiles, and ore metals[J]. Journal of Petrology, 1997, 38(12):1619-1633.
[20] WANG Z Q, CHEN B, MA X H. Petrogenesis of the Late Mesozoic Guposhan composite plutons from the Nanling Range, South China:implications for W-SN mineralization[J]. American Journal of Science, 2014, 314(1):235-277.
[21] SUN K K, CHEN B, DENG J. Biotite in highly evolved granites from the Shimensi W-Cu-Mo polymetallic ore deposit, China:insights into magma source and evolution[J]. Lithos, 2019, 350/351:105245.
[22] 王汝成,谢磊,诸泽颖,等.云母:花岗岩-伟晶岩稀有金属成矿作用的重要标志矿物[J].岩石学报, 2019, 35(1):69-75.
WANG R C, XIE L, ZHU Z Y, et al. Micas:important indicators of granite-pegmatite-related rare-metal mineralization[J]. Acta Petrologica Sinica, 2019, 35(1):69-75.
[23] XIE L, WANG Z J, WANG R C, et al. Mineralogical constraints on the genesis of W-Nb-Ta mineralization in the Laiziling granite (Xianghualing district, South China)[J]. Ore Geology Reviews, 2018, 95:695-712.
[24] LI J, HUANG X L, FU Q, et al. Tungsten mineralization during the evolution of a magmatic-hydrothermal system:mineralogical evidence from the Xihuashan rare-metal granite in South China[J]. American Mineralogist, 2021, 106(3):443-460.
[25] YIN R, HUANG X L, WANG R C, et al. Rare-metal enrichment and Nb-Ta fractionation during magmatic-hydrothermal processes in rare-metal granites:evidence from zoned micas from the Yashan pluton, South China[J]. Journal of Petrology, 2022, 63(10):1-28.
[26] 李洁,黄小龙.江西雅山花岗岩岩浆演化及其Ta-Nb富集机制[J].岩石学报, 2013, 29(12):4311-4322.
LI J, HUANG X L. Mechanism of Ta-Nb enrichment and magmatic evolution in the Yashan granites, Jiangxi Province, South China[J]. Acta Petrologica Sinica, 2013, 29(12):4311-4322.
[27] ZHU J C, LI R K, LI F C, et al. Topaz-albite granites and rare-metal mineralization in the Limu district, Guangxi Province, southeast China[J]. Mineralium Deposita, 2001, 36:393-405.
[28] HUANG F F, WANG R C, XIE L, et al. Differentiated rare-element mineralization in an ongonite-topazite composite dike at the Xianghualing tin district, Southern China:an electron-microprobe study on the evolution from niobium-tantalum-oxides to cassiterite[J]. Ore Geology Reviews, 2015, 65:761-778.
[29] LEE C T A, MORTON D M. High silica granites:terminal porosity and crystal settling in shallow magma chambers[J]. Earth and Planetary Science Letters, 2015, 409:23-31.
[30] CHEN B, MA X H, WANG Z Q. Origin of the fluorine-rich highly differentiated granites from the Qianlishan composite plutons (South China) and implications for polymetallic mineralization[J]. Journal of Asian Earth Sciences, 2014, 93:301-314.
[31] 孙建东,徐敏成,谭桂丽,等.赣东北黄山铌钽矿床成矿岩体地球化学特征及成矿意义[J].华东地质,2023,44(1):28-38.
SUN J D,XU M C,TAN G L,et al.Geochemical characteristics and metallogenic significance of Huangshan Nb-Ta deposit in northeast Jiangxi Province[J].East China Geology,2023,44(1):28-38.
[32] 王汝成,吴福元,谢磊,等.藏南喜马拉雅淡色花岗岩稀有金属成矿作用初步研究[J].中国科学(地球科学), 2017, 47(8):871-880.
WANG R C, WU F Y, XIE L, et al. A preliminary study of rare-metal mineralization in the Himalayan leucogranite belts, South Tibet[J]. Science China (Earth Sciences), 2017, 47(8):871-880.
[33] HALLIDAY A N, DAVIDSON J P, HILDRETH W, et al. Modelling the petrogenesis of high Rb/Sr silicic magmas[J]. Chemical Geology, 1991, 92(1/3):107-114.
[34] BAU M. Controls on the fractionation of isovalent trace elements in magmatic and aqueous systems:evidence from Y/Ho, Zr/Hf, and lanthanide tetrad effect[J]. Contributions to Mineralogy and Petrology, 1996, 123(3):323-333.
[35] 王烱辉,马星华,李毅,等.花岗质复式岩体成因及其与W-Mo成矿的关系——以广西油麻坡岩体为例[J].地质学报, 2014, 88(7):1219-1235.
WANG J H, MA X H, LI Y, et al. Petrogenesis of granitic complexes and implications for the W-Mo mineralization:a case study from the Youmapo Pluton, Guangxi Province[J]. Acta Geologica Sinica, 2014, 88(7):1219-1235.
[36] JAHN B, WU F Y, CAPDEVILA R, et al. Highly evolved juvenile granites with tetrad REE patterns:the Woduhe and Baerzhe granites from the Great Xing'an Mountains in NE China[J]. Lithos, 2001, 59(4):171-198.
[37] WU F Y, JAHN B, WILDE S A, et al. Highly fractionated I-type granites in NE China (I):geochronology and petrogenesis[J]. Lithos, 2003, 66(3-4):241-273.
[38] CHEN B, GU H O, CHEN Y J, et al. Lithium isotope behaviour during partial melting of metapelites from the Jiangnan Orogen, South China:implications for the origin of REE tetrad effect of F-rich granite and associated rare-metal mineralization[J]. Chemical Geology, 2018, 483:372-384.
[39] BALLOUARD C, POUJOL M, BOULVAIS P, et al. Nb-Ta fractionation in peraluminous granites:a marker of the magmatic-hydrothermal transition[J]. Geology, 2016, 44(3):231-234.
[40] GUO C L, CHEN Y C, ZENG Z L, et al. Petrogenesis of the Xihuashan granites in Southeastern China:constraints from geochemistry and in-situ analyses of zircon U-Pb-Hf-O isotopes[J]. Lithos, 2012, 148:209-227.
[41] 陈伟,陈斌,孙克克.江西彭山锡多金属矿集区曾家垄锡矿相关的铝质花岗岩成因[J].地球化学, 2018, 47(5):554-574.
CHEN W, CHEN B, SUN K K. Petrogenesis of the Zengjialong highly differentiated granite in the Pengshan Sn-polymetallic ore field, Jiangxi Province[J]. Geochimica, 2018, 47(5):554-574.
[42] WEINBERG R F. Himalayan leucogranites and migmatites:nature, timing and duration of anatexis[J]. Journal of Metamorphic Geology, 2016, 34(8):821-843.
[43] HOPKINSON T N, HARRIS N B W, WARREN C J, et al. The identification and significance of pure sediment-derived granites[J]. Earth and Planetary Science Letters, 2017, 467:57-63.
[44] 曾令森,高利娥.喜马拉雅碰撞造山带新生代地壳深熔作用与淡色花岗岩[J].岩石学报, 2017, 33(05):1420-1444.
ZENG L S, GAO L E. Cenozoic crustal anatexis and the leucogranites in the Himalayan collisional orogenic belt[J]. Acta Petrologica Sinica, 2017, 33(5):1420-1444.
[45] 朱金初,王汝成,陆建军,等.湘南癞子岭花岗岩体分异演化和成岩成矿[J].高校地质学报, 2011, 17(3):381-392.
ZHU J C, WANG R C, LU J J, et al. Fractionation, evolution, petrogenesis and mineralization of Laiziling granite pluton, Southern Hunan Province[J]. Geological Journal of China Universities, 2011, 17(3):381-392.
[46] 周新民,陈培荣,徐夕生,等.南岭地区晚中生代花岗岩成因与岩石圈动力学演化[M].北京:科学出版社, 2007.ZHOU X M, CHEN P R, XU X S, et al. Gensis of Late Mesozoic granites and lithospheric dynamic evolution in Nanling area. Beijing:Science Press, 2007.
[47] GUO N X, ZHAO Z, GAO J F, et al. Magmatic evolution and W-Sn-U-Nb-Ta mineralization of the Mesozoic Jiulongnao granitic complex, Nanling Range, South China[J]. Ore Geology Reviews, 2018, 94:414-434.
[48] 张旗.花岗质岩浆能够结晶分离和演化吗?[J].岩石矿物学杂志, 2012, 31(2):252-260.
ZHANG Q. Could granitic magmas experience fractionation and evolution?[J]. Acta Petrologica et Mineralogica, 2012, 31(2):252-260.
[49] 张旗,潘国强,李承东,等.花岗岩结晶分离作用问题——关于花岗岩研究的思考之二.岩石学报, 2007, 23(6):1239-1251
.ZHANG Q, PAN G Q, LI C D, et al. Does fractional crystallization occur in granitic magma some crucial questions on granite study (2)[J]. Acta Petrologica Sinica, 2007, 23(6):1239-1251
[50] PUTIRKA K D, CANCHOLA J, RASH J, et al. Pluton assembly and the genesis of granitic magmas:insights from the GIC pluton in cross section, Sierra Nevada Batholith, California[J]. American Mineralogist, 2014, 99(7):1284-1303.
[51] FIEDRICH A M, BACHMAMANN O, ULMER P, et al. Mineralogical, geochemical, and textural indicators of crystal accumulation in the Adamello Batholith (Northern Italy)[J]. American Mineralogist, 2017, 102(12):2467-2483.
[52] GELMAN S E, DEERING C D, BACHMANN O, et al. Identifying the crystal graveyards remaining after large silicic eruptions[J]. Earth and Planetary Science Letters, 2014, 403:299-306.
[53] BARNES C G, ERNST W G, BERRY R, et al. Petrology and geochemistry of an upper crustal pluton:a view into crustal-scale magmatism during arc to retro-arc transition[J]. Journal of Petrology, 2016, 57(7):1361-1388.
[54] ANNEN C. From plutons to magma chambers:thermal constraints on the accumulation of eruptible silicic magma in the upper crust[J]. Earth and Planetary Science Letters, 2009, 284(3/4):409-416.
[55] HILDRETH W. Volcanological perspectives on Long Valley, Mammoth Mountain, and Mono Craters:several contiguous but discrete systems[J]. Journal of Volcanology and Geothermal Research, 2004, 136(3/4):169-198.
[56] DEERING C D, BACHMANN O. Trace element indicators of crystal accumulation in silicic igneous rocks[J]. Earth and Planetary Science Letters, 2010, 297(1/2):4-331.
[57] BACHMANN O, BERGANTZ G W. Rhyolites and their source mushes across tectonic settings[J]. Journal of Petrology, 2008, 49(12):2277-2285.
[58] HOLNESS M B. Melt segregation from silicic crystal mushes:a critical appraisal of possible mechanisms and their microstructural record[J]. Contributions to Mineralogy and Petrology, 2018, 173(6):48.
[59] ANDERSON J R A T, SWIHART G H, ARTIOLI G, et al. Segregation vesicles, gas filter-pressing, and igneous differentiation[J]. The Journal of Geology, 1984, 92(1):55-72.
[60] SISSON T W, BACON C R. Gas-driven filter pressing in magmas[J]. Geology, 1999, 27(7):613-616.
[61] BROWN M, SOLAR G S. Shear-zone systems and melts:feedback relations and self-organization in orogenic belts[J]. Journal of Structural Geology, 1998, 20(2/3):211-227.
[62] ROSENBERG C L. Deformation of partially molten granite:a review and comparison of experimental and natural case studies[J]. International Journal of Earth Sciences, 2001, 90:60-76.
[63] NASIPURI P, BHATTACHARYA A, SATYANARAYANAN M. Localized pluton deformation and linked focused flow of low-volume fraction residual melt in deforming plagioclase cumulates[J]. Bulletin, 2011, 123(3/4):669-680.
[64] WEBBER J R, KLEPEIS K A, WEBB L E, et al. Deformation and magma transport in a crystallizing plutonic complex, Coastal Batholith, central Chile[J]. Geosphere, 2015, 11(5):1401-1426.
[65] ALLAN A S R, BARKER S J, MILLET M A, et al. A cascade of magmatic events during the assembly and eruption of a super-sized magma body[J].Contrib Mineral Petrol, 2017,172:49
[66] LIU X C, KOHN M J, WANG J M, et al. Formation of lithium-rich pegmatites via rapid crystallization and shearing-case study from the South Tibetan Detachment, Himalaya[J]. Earth and Planetary Science Letters, 2024, 629:118598.
[67] STEPANOV A, MAVROGENES J A, MEFFRE S, et al. The key role of mica during igneous concentration of tantalum[J]. Contributions to Mineralogy and Petrology, 2014, 167(6):1-8.
[68] SUN K K, CHEN B, DENG J. Ore genesis of the Zhuxi supergiant W-Cu skarn polymetallic deposit, South China:evidence from scheelite geochemistry[J]. Ore Geology Reviews, 2019, 107:14-29.
[69] DUFEK J, BACHMANN O. Quantum magmatism:magmatic compositional gaps generated by melt-crystal dynamics[J]. Geology, 2010, 38(8):687-690.
[70] PETRELLI M, OMARI K E, SPINA L, et al. Timescales of water accumulation in magmas and implications for short warning times of explosive eruptions[J]. Nature Communications, 2018, 9(1):1-14.
[71] ZHAO P L, YUAN S D, WILLIAMS-JONES A E, et al. Temporal separation of W and Sn mineralization by temperature-controlled incongruent melting of a single protolith:evidence from the Wangxianling area, Nanling region, South China. Economic Geology, 2022, 117(3):667-682.
[72] IRBER W. The lanthanide tetrad effect and its correlation with K/Rb, Eu/Eu*, Sr/Eu, Y/Ho, and Zr/Hf of evolving peraluminous granite suites[J]. Geochimica et Cosmochimica Acta, 1999, 63(3/4):489-508.
[73] LI J, HUANG X L, WEI G J, et al. Lithium isotope fractionation during magmatic differentiation and hydrothermal processes in rare-metal granites[J]. Geochimica et Cosmochimica Acta, 2018, 240:64-79.
[74] KAMENETSKY M B, SOBOLEV A V, KAMENETSKY V S, et al. Kimberlite melts rich in alkali chlorides and carbonates:a potent metasomatic agent in the mantle[J]. Geology, 2004, 32(10):845-848.
[75] DENG G X, JIANG D S, ZHANG R Q, et al. Barium isotopes reveal the role of deep magmatic fluids in magmatic-hydrothermal evolution and tin enrichment in granites[J]. Earth and Planetary Science Letters, 2022, 594:1-10.
[76] FREZZOTTI M L, GHEZZO C, STEFANINI B. The calabona intrusive complex (Sardinia, Italy):evidence for a porphyry copper system[J]. Economic Geology, 1992, 87(2):425-436.
[77] ZHANG D H, AUDÉTAT A. Magmatic-hydrothermal evolution of the barren Huangshan pluton, Anhui Province, China:a melt and fluid inclusion study[J]. Economic Geology, 2018, 113(4):803-824.
[78] WHITNEY J A. The origin of granite:the role and source of water in the evolution of granitic magmas[J]. Geological Society of America Bulletin, 1988, 100(12):1886-1897.
[79] WATERS L E, LANGE R A. Why aplites freeze and rhyolites erupt:controls on the accumulation and eruption of high-SiO2(eutectic) melts[J]. Geology, 2017, 45(11):1019-1022.
[80] 王德滋,彭亚鸣,袁朴.福建魁岐花岗岩的岩石学和地球化学特征及成因探讨[J].地球化学, 1985(3):197-205.
WANG D Z, PENG Y M, YUAN P. Petrology, geochemistry and genesis of Kuiqi granite batholith[J]. Geochimica, 1985(3):197-205.
[81] 徐夕生.华南花岗岩-火山岩成因研究的几个问题[J].高校地质学报, 2008, 14(3):283-294.
XU X S. Several problems worthy to be noticed in the research of granites and volcanic rocks in SE China[J]. Geological Journal of China Universities, 2008, 14(3):283-294.
[82] 黄小勇,张辉,唐勇,等.广西银屏富B花岗岩及其晶洞中电气石的化学组成特征以及对岩浆-热液演化的指示[J].矿物学报, 2008, 28(1):25-34.
HUANG X Y, ZHANG H, TANG Y, et al. Chem-ical composition of tourmailines from the B-rich graniteand miarolitic cavities in Yinping, Guangxi and its implications for evolution of the magmatic hydrothermal system[J]. Acta Mineralogica Sinica, 2008, 28(1):25-34.
[83] LIU X H, LI B, LAI J Q, et al. Multistage in situ fractional crystallization of magma produced a unique rare metal enriched quartz-zinnwaldite-topaz rock[J]. Ore Geology Reviews, 2022, 151:105203.
[84] ZHOU J, JIANG Y H, XING G F, et al. Geochronology and petrogenesis of Cretaceous A-type granites from the NE Jiangnan Orogen, SE China[J]. International Geology Review, 2013, 55(11):1359-1383.
[85] XIANG L, ROMER R L, GLODNY J, et al. Li and B isotopic fractionation at the magmatic-hydrothermal transition of highly evolved granites[J]. Lithos, 2020, 376:105753.
[86] SONG S W, MAO J W, XIE G Q, et al. Petrogenesis of scheelite-bearing albitite as an indicator for the formation of a world-class scheelite skarn deposit:a case study of the Zhuxi tungsten deposit[J]. Economic Geology, 2021, 116(1):91-121.
[87] WATERS L E, LANGE R A. Why aplites freeze and rhyolites erupt:controls on the accumulation and eruption of high-SiO2(eutectic) melts[J]. Geology, 2017, 45(11):1019-1022.
[88] MVLLER A, SELTMANN R. The genetic significance of snowball quartz in high fractionated tin granites of the Krušne Hory/Erzgebirge[J]. Mineral deposits, 1999(1):409-412.
[89] YANG J, SIEBERT C, BARLING J, et al. Absence of molybdenum isotope fractionation during magmatic differentiation at Hekla volcano, Iceland[J]. Geochimica et Cosmochimica Acta, 2015, 162:126-136.
[90] 李福春,朱金初,金章东,等.钠长石花岗岩中雪球结构形成机理的研究[J].岩石矿物学杂志, 2000, 19(1):27-35.
LI F C, ZHU J C, JIN Z D, et al. Formation mechanism of snowball texture in albite granite[J]. Acta Petrologica et Mineralogica, 2000, 19(1):27-35.
[91] 杨飞,武广,陈公正,等.维拉斯托稀有金属-锡多金属矿床铌铁矿族矿物特征及其对岩浆-热液演化的指示[J].矿床地质, 2023, 42(3):463-480.
YANG F, WU G, CHEN G Z, et al. Compositional and textural variations of columbite group minerals from Weilasituo rare metal-tin polymetallic deposit:implications for tracing magmatic-hydrothermal evolution[J]. Mineral Deposits, 2023, 42(3):463-480.
[92] 邹海波,徐洪武,周新民.钽花岗岩中雪球结构的成因研究[J].科学通报, 1991, 36(16):1245-1247.
ZOU H B, XU H W, ZHOU X M. A study of the genesis of snowball structures in tantalum granites[J]. Chinese Science Bulletin, 1991, 36(16):1245-1247.
[93] WU M Q, SAMSON I M, ZHANG D H. Textural features and chemical evolution in Ta-Nb oxides:implications for deuteric rare-metal mineralization in the Yichun granite-marginal pegmatite, Southeastern China[J]. Economic Geology, 2018, 113(4):937-960.
[94] WANG D Z, LIU J J, CARRANZA E J M, et al. Formation and evolution of snowball quartz phenocrysts in the Dongping porphyritic granite, Hebei Province, China:insights from fluid inclusions, cathodoluminescence, trace elements, and crystal size distribution study[J]. Lithos, 2019, 340:239-254.
[95] LU T Y, HE Z Y, KLEMD R. Identifying crystal accumulation and melt extraction during formation of high-silica granite[J]. Geology, 2022, 50(2):216-221.
[96] POLLARD P J. The Yichun Ta-Sn-Li deposit, South China:evidence for extreme chemical fractionation in F-Li-P-rich magma[J]. Economic Geology, 2021, 116(2):453-469.
[97] SHANNON J R, WALKER B M, CARTEN R B, et al. Unidirectional solidification textures and their significance in determining relative ages of intrusions at the Henderson Mine, Colorado[J]. Geology, 1982, 10(6):293-297.
[98] YANG Z M, LU Y J, HOU Z Q, et al. High-Mg diorite from Qulong in southern Tibet:implications for the genesis of adakite-like intrusions and associated porphyry Cu deposits in collisional orogens[J]. Journal of Petrology, 2015, 56(2):227-254.
[99] HÖNIG S, LEICHMANN J, NOVAK M. Unidirectional solidification textures and garnet layering in Y-enriched garnet-bearing aplite-pegmatites in the Cadomian Brno Batholith, Czech Republic[J]. Journal of Geosciences, 2010, 55(2):113-129.
[100] SILLITOE R H. Porphyry copper systems. Economic Geology,2010, 105:3-41.
[101] MVLLER A, KIRWIN D, SELTMANN R. Textural characterization of unidirectional solidification textures related to Cu-Au deposits and their implication for metallogenesis and exploration[J]. Mineralium Deposita, 2023:1-25.
[102] PEPPARD D F, MASON G W, LEWEY S. A tetrad effect in the liquid-liquid extraction ordering of lanthanides (III)[J]. Journal of Inorganic and Nuclear Chemistry, 1969, 31(7):2271-2272.
[103] MASUDA A, IKEUCHI Y. Lanthanide tetrad effect observed in marine environment[J]. Geochemical Journal, 1979, 13(1):19-22.
[104] HIDAKA H, HOLLIGER P, SHIMIZU H, et al. Lanthanide tetrad effect observed in the Oklo and ordinary uraninites and its implication for their forming processes[J]. Geochemical Journal, 1992, 26(6):337-346.
[105] AKAGI T, SHABANI M B, MASUDA A. Lanthanide tetrad effect in kimuraite[CaY2(CO3)4·6H2O]:implication for a new geochemical index[J]. Geochimica et Cosmochimica Acta, 1993, 57(12):2899-2905.
[106] TAKAHASHI T, SUTHERLAND S C, SWEENEY C, et al. Global sea-air CO2 flux based on climatological surface ocean pCO2, and seasonal biological and temperature effects[J]. Deep Sea Research Part II:Topical Studies in Oceanography, 2002, 49(9/10):1601-1622.
[107] 赵振华.花岗岩中发现稀土元素四重分布效应的初步报道[J].地质地球化学, 1988(1):71-72.
ZHAO Z H. A preliminary report on the discovery of the quadruple distribution effect of rare earth elements in granites[J]. Geological Geochemistry, 1988(1):71-72.
[108] 赵振华,包志伟,乔玉楼.一种特殊的"M "与" W"复合型稀土元素四分组效应:以水泉沟碱性正长岩为例[J].科学通报, 2010, 55(15):1474-1488.
ZHAO Z H, BAO Z W, QIAO Y L. A peculiar composite M-and W-type REE tetrad effect:evidence from the Shuiquangou alkaline syenite complex, Hebei Province, China. Chinese Science Bulletin, 2010, 55(15):1474-1488.
[109] SUN S S, MCDONOUGH W F. Chemical and isotopic systematics of oceanic basalts:implications for mantle composition and processes[J]. Geological Society, 1989, 42(1):313-345.
[110] MCLENNAN S M. Rare earth element geochemistry and the"tetrad"effect[J]. Geochimica et Cosmochimica Acta, 1994, 58(9):2025-2033.
[111] PAN Y W, BREAKS F W. Rare-earth elements in fluorapatite, Separation Lake area, Ontario:evidence for S-type granite-rare-element pegmatite linkage[J]. The Canadian Mineralogist, 1997, 35(3):659-671.
[112] DUC-TIN Q, KEPPLER H. Monazite and xenotime solubility in granitic melts and the origin of the lanthanide tetrad effect[J]. Contributions to Mineralogy and Petrology, 2015, 169:1-26.
[113] 赵振华,熊小林,韩小东.花岗岩稀土元素四分组效应形成机理探讨——以千里山和巴尔哲花岗岩为例[J].中国科学(D辑), 1999, 29(4):331-338.
ZHAO Z H, XIONG X L, HAN X D. Exploration of the formation mechanism of the four-grouping effect of rare earth elements in granite-taking Qianli Mountain and Balzhe granite as an example[J]. Science in China (Series D), 1999, 29(4):331-338.
[114] MONECKE T, KEMPE U, GÖTZE J. Genetic significance of the trace element content in metamorphic and hydrothermal quartz:a reconnaissance study[J]. Earth and Planetary Science Letters, 2002, 202(3/4):709-724.
[115] BARTH M C, RASCH P J, KIEHL J T, et al. Sulfur chemistry in the national center for atmospheric research community climate model:description, evaluation, features, and sensitivity to aqueous chemistry[J]. Journal of Geophysical Research, 2000, 105(D1):1387-1415.
[116] 谭东波,李东永,肖益林."孪生元素"铌-钽的地球化学特性和研究进展[J].地球科学, 2018, 43(1):317-332.
TAN D B, LI D Y, XIAO Y L. Geochemical characteristics of niobium and tantalum:a review of twin elements[J]. Earth Science, 2018, 43(1):317-332.
[117] RAIMBAULT L, CUNEY M, AZENCOTT C, et al. Geochemical evidence for a multistage magmatic genesis of Ta-Sn-Li mineralization in the granite at Beauvoir, French Massif Central[J]. Economic Geology, 1995, 90(3):548-576.
[118] LINNEN R L, LICHTERVELDE M V,ČERNY'P. Granitic pegmatites as sources of strategic metals[J]. Elements, 2012, 8(4):275-280.
[119] STEPANOV A S, HERMANN J. Fractionation of Nb and Ta by biotite and phengite:implications for the"missing Nb paradox"[J]. Geology, 2013, 41(3):303-306.
[120] LINNEN R L, KEPPLER H. Columbite solubility in granitic melts:consequences for the enrichment and fractionation of Nb and Ta in the Earth's crust[J]. Contributions to Mineralogy and Petrology, 1997, 128:213-227.
[121] LINNEN R L. The solubility of Nb-Ta-Zr-Hf-W in granitic melts with Li and Li+F:constraints for mineralization in rare metal granites and pegmatites[J]. Economic Geology, 1998, 93(7):1013-1025.
[122] BARTELS A, HOLTZ F, LINNEN R L. Solubility of manganotantalite and manganocolumbite in pegmatitic melts[J]. American Mineralogist, 2010, 95(4):537-544.
[123] CHEVYCHELOV V Y, BORODULIN G P, ZARAISKY G P. Solubility of columbite,(Mn, Fe)(Nb, Ta)2O6, in granitoid and alkaline melts at 650-850 ℃ and 30-400 MPa:an experimental investigation[J]. Geochemistry International, 2010, 48:456-464.
[124] GAO M D, XIONG X L, HUANG F F, et al. Key factors controlling biotite-silicate melt Nb and Ta partitioning:implications for Nb-Ta enrichment and fractionation in granites. Journal of Geophysical Research:Solid Earth, 2023, 128(7):e2022JB025889.
[125] VIGNERESSE J L, BARBEY P, CUNEY M. Rheological transitions during partial melting and crystallization with application to felsic magma segregation and transfer[J]. Journal of Petrology, 1996, 37(6):1579-1600.
[126] LINNEN R L, CUNEY M. Granite-related rare-element deposits and experimental constraints on Ta-Nb-W-Sn-Zr-Hf mineralization//LINNEN R L, SAMSON I M.Rare-element geochemistry and mineral deposits. Canada:Geological Association of Canada short course, 2005.
[127] ZARAISKY G P, KORZHINSKAYA V, KOTOVA N. Experimental studies of Ta2O5 and columbite-tantalite solubility in fluoride solutions from 300 to 550 ℃ and 50 to 100 MPa[J]. Mineralogy and Petrology, 2010, 99(3/4):287-300.
[128] DOSTAL J, CHATTERJEE A K. Contrasting behaviour of Nb/Ta and Zr/Hf ratios in a peraluminous granitic pluton (Nova Scotia, Canada)[J]. Chemical Geology, 2000, 163(1/4):207-218.
[129] NI P, WANG X D, WANG G G, et al. An infrared microthermometric study of fluid inclusions in coexisting quartz and wolframite from Late Mesozoic tungsten deposits in the Gannan metallogenic belt, South China[J]. Ore Geology Reviews, 2015, 65:1062-1077.
[130] 吴元保,郑永飞.锆石成因矿物学研究及其对U-Pb年龄解释的制约[J].科学通报, 2004, 49(16):1589-1604.
WU Y B, ZHENG Y F. Mineralogical study of zircon genesis and its constraints on U-Pb age interpretation[J]. Chinese Science Bulletin, 2004, 49(16):1589-1604.
[131] CHAKOUMAKOS B C, MURAKAMI T, LUMPKIN G R, et al. Alpha-decay-induced fracturing in zircon:the transition from the crystalline to the metamict state[J]. Science, 1987, 236(4808):1556-1559.
[132] EWING R C, WANG L M, WEBER W J. Amorphization of complex ceramics by heavy-particle irradiations[J]. MRS Online Proceedings Library (OPL), 1994, 373:347.
[133] WILLIAMS I S, HERGT JM. U-Pb dating of Tasmanian dolerites:a cautionary tale of SHRIMP analysis of high-U zircon[C]//WOODHEAD J D, HERGT J M, NOBLE N P. Beyond 2000:New frontiers in isotope geoscience. Lorne, 2000:185-188.
[134] WHITE L T, IRELAND T R. High-uranium matrix effect in zircon and its implications for SHRIMP U-Pb age determinations[J]. Chemical Geology, 2012, 306/307:78-91.
[135] SILVER L T, DEUTSCH S. Uranium-lead isotopic variations in zircons:a case study[J]. The Journal of Geology, 1963, 71(6):721-758.
[136] SHANNON R D. Revised effective ionic radii and systematic studies of interatomic distances in Halides and Chalcogenides[J]. Acta Crystallographica Section A, 1976, 32(5):751-767.
[137] YANG W B, NIU H C, SHAN Q, et al. Geochemistry of magmatic and hydrothermal zircon from the highly evolved Baerzhe alkaline granite:implications for Zr-REE-Nb mineralization[J]. Mineralium Deposita, 2014, 49:451-470.
[138] LI H, HU X J, ELATIKPO S M, et al. Zircon as a pathfinder for ore exploration[J]. Journal of Geochemical Exploration, 2023, 249:107216.
[139] REED R, LEMAK D J, MERO N P. Total quality management and sustainable competitive advantage[J]. Journal of Quality Management, 2000, 5(1):5-26.
[140] HOSKIN P W O. Trace-element composition of hydrothermal zircon and the alteration of Hadean zircon from the Jack Hills, Australia[J]. Geochimica et Cosmochimica Acta, 2005, 69(3):637-648.
[141] JIANG W C, LI H, EVANS N J, et al. Zircon records multiple magmatic-hydrothermal processes at the giant Shizhuyuan W-Sn-Mo-Bi polymetallic deposit, South China[J]. Ore Geology Reviews, 2019, 115:103160.
[142] HERMANN J. Allanite:thorium and light rare earth element carrier in subducted crust[J]. Chemical Geology, 2002, 192(3/4):289-306.
[143] NOZHKIN A D, TURKINA O M. Radiogeochemistry of the charnockite-granulite complex, Sharyzhalgay Window, Siberian Platform[J]. Geochemistry International, 1995, 32(2):62-78.
[144] 笪昊翔,王志强,袁峰,等.皖南伏岭岩体钾长石地球化学特征及其成因意义[J].合肥工业大学学报(自然科学版), 2024,待刊.DA H X, WANG Z Q, YUAN F, et al. Geochemical characteristics of K-feldspar from the Fuling pluton in southern Anhui and its genetic significance[J]. Journal of Hefei University of Technology (Natural Science), 2024, accepted.
[145] ZAJACZ Z, HALTER W E, PETTKE T, et al. Determination of fluid/melt partition coefficients by LA-ICPMS analysis of co-existing fluid and silicate melt inclusions:controls on element partitioning[J]. Geochimica et Cosmochimica Acta, 2008, 72(8):2169-2197.
[146] 黄方.高温下非传统稳定同位素分馏[J].岩石学报, 2011, 27(2):365-382.
HUANG F. Non-traditional stable isotope fractionation at high teperatures[J]. Acta Petrologica Sinica, 2011, 27(2):365-382.
[147] 朱祥坤,孙剑,王跃.岩浆过程中铁同位素的地球化学行为[J].地球科学与环境学报, 2016, 38(1):1-10.
ZHU X K, SUN J, WANG Y. Fe isotope geochemistry of magmatic system[J]. Journal of Earth Sciences and Environment, 2016, 38(1):1-10.
[148] 王昆,李伟强,李石磊.钾稳定同位素研究综述[J].地学前缘, 2020, 27(3):104-122.
WANG K, LI W Q, LI S L. Stable potassium isotope geochemistry and cosmochemistry[J]. Earth Science Frontiers, 2020, 27(3):104-122.
[149] 陆一敢,肖益林,王洋洋,等. Li同位素在矿床学中的应用:现状与展望[J].地球科学, 2021, 46(12):4346-4365.
LU Y G, XIAO Y L, WANG Y Y, et al. Exploration of Li isotope in application of ore deposits[J]. Earth Science, 2021, 46(12):4346-4365.
[150] 顾海欧,刘倩,孙贺.钾同位素的高精度分析及深部过程的示踪应用[J].地质学报, 2022, 96(12):4331-4339.
GU H O, LIU Q, SUN H. High precision potassium isotope analysis and its application in tracing deep earth processes[J]. Acta Geologica Sinica, 2022, 96(12):4331-4339.
[151] TOMASCAK P B, TERA F, HELZ R T, et al. The absence of lithium isotope fractionation during basalt differentiation:new measurements by multicollector sector ICP-MS[J]. Geochimica et Cosmochimica Acta, 1999, 63(6):907-910.
[152] CHAN L H, FREY F A. Lithium isotope geochemistry of the Hawaiian plume:results from the Hawaii scientific drilling project and Koolau volcano[J]. Geochemistry, Geophysics, Geosystems, 2003, 4(3):1-20.
[153] JEFFCOATE A B, ELLIOTT T, KASEMANN S A, et al. Li isotope fractionation in peridotites and mafic melts[J]. Geochimica et Cosmochimica Acta, 2007, 71(1):202-218.
[154] TENG F Z, MCDONOUGH W F, RUDNICK R L, et al. Lithium isotopic systematics of granites and pegmatites from the Black Hills, South Dakota[J]. American Mineralogist, 2006, 91(10):1488-14
-
计量
- 文章访问数: 965
- PDF下载数: 157
- 施引文献: 0