沉积盆地洪水异重流研究进展

章诚诚, 方朝刚, 刘桃, 吴通, 邵威, 廖圣兵, 徐锦龙. 2024. 沉积盆地洪水异重流研究进展. 华东地质, 45(1): 49-61. doi: 10.16788/j.hddz.32-1865/P.2024.01.004
引用本文: 章诚诚, 方朝刚, 刘桃, 吴通, 邵威, 廖圣兵, 徐锦龙. 2024. 沉积盆地洪水异重流研究进展. 华东地质, 45(1): 49-61. doi: 10.16788/j.hddz.32-1865/P.2024.01.004
ZHANG Chengcheng, FANG Chaogang, LIU Tao, WU Tong, SHAO Wei, LIAO Shengbing, XU Jinlong. 2024. Research progress on flood-triggered hyperpycnal flows in sedimentary basins. East China Geology, 45(1): 49-61. doi: 10.16788/j.hddz.32-1865/P.2024.01.004
Citation: ZHANG Chengcheng, FANG Chaogang, LIU Tao, WU Tong, SHAO Wei, LIAO Shengbing, XU Jinlong. 2024. Research progress on flood-triggered hyperpycnal flows in sedimentary basins. East China Geology, 45(1): 49-61. doi: 10.16788/j.hddz.32-1865/P.2024.01.004

沉积盆地洪水异重流研究进展

  • 基金项目:

    国家自然科学基金"下扬子地区奥陶纪—志留纪转折期开放型海盆古海洋氧化还原环境演变(编号:42302124)"、国家重点研发计划课题"东亚陆缘中生代构造过程及盆地形成演化(编号:2022YFF0800401)"和中国地质调查局"苏皖沿江凹陷带油气页岩气调查评价(编号:DD20221662)"项目联合资助。

详细信息
    作者简介: 章诚诚,1989生,男,高级工程师,博士,主要从事沉积地质研究工作。Email:1007557887@qq.com。
    通讯作者: 方朝刚,1987生,男,高级工程师,硕士,主要从事油气地质调查工作。Email:fangchaogang206@163.com。
  • 中图分类号: P53

Research progress on flood-triggered hyperpycnal flows in sedimentary basins

More Information
  • 洪水触发形成的异重流(hyperpycnal flow)是盆地中一种重要的深水重力流沉积体系,是当前沉积学研究的热点。基于大量文献调研,文章对异重流的发育条件、演化过程以及沉积特征的研究现状与进展进行了归纳和总结。异重流是由洪泛期河流携带大量沉积物颗粒从河口直接注入的,流体密度大于环境水体密度且受浮力影响小并沿盆底流动的流体。异重流的形成受到多种因素的影响,主要包括地形、气候和物源条件。异重流的演化经历了回流区、深度有限流区和潜入区,在流动过程中流量振荡频繁,但总体表现出先增强后减弱的水动力学演化特征。异重流形成的沉积产物被称为异重岩,以发育流水成因交错层理、层内冲刷接触面、异地植物碎片、逆粒序-正粒序二元结构而区别于其他重力流沉积。根据异重流沉积物的搬运负载方式,可将异重岩划分为底载成因、悬载成因和漂浮物成因3种主要岩性类型。异重岩的沉积特征与其能量演化过程密切相关,不同空间位置形成的沉积序列及沉积单元存在一定差异。深入研究异重流沉积有助于完善深水重力流理论,对认识地表地质过程、重建古环境以及指导油气勘探具有重要意义。今后可以从构建多种沉积模式、多因素耦合研究和多尺度观测监测等方面展开研究,为异重流沉积学发展和实际地质应用提供更准确的理论依据。
  • 加载中
  • [1]

    WEIMER P, SLATT R M. Introduction to the petroleum geology of deep-water settings[M]. Tulsa:AAPG, 2006:816.

    [2]

    MULDER T, SYVITSKI J P M, MIGEON S,et al. Marine hyperpycnal flows:initiation, behavior and related deposits. A review[J]. Marine and Petroleum Geology, 2003, 20(6/8):861-882.

    [3]

    BATES C. Rational theory of delta formation[J]. AAPG Bulletin, 1953, 37(9):2119-2162.

    [4]

    GWIAZDA R,PAULL C K,USSLER III W,et al. Evidence of modern fine-grained sediment accumulation in the Monterey Fan from measurements of the pesticide DDT and its metabolites[J]. Marine Geology, 2015, 363:125-133.

    [5]

    KAO S J,DAI M,SELVARAJ K,et al. Cyclone-driven deep sea injection of freshwater and heat by hyperpycnal flow in the subtropics[J]. Geophysical Research Letters, 2010, 37(21):389-400.

    [6]

    潘树新,刘化清, ZAVALA C,等.大型坳陷湖盆异重流成因的水道-湖底扇系统——以松辽盆地白垩系嫩江组一段为例[J].石油勘探与开发, 2017, 44(6):860-870.

    PAN S X, LIU H Q, ZAVALA C, et al. Sublacustrine hyperpycnal channel-fan system in a large depression basin:a case study of Nen 1 member, Cretaceous Nenjiang Formation in the Songliao Basin, NE China[J]. Petroleum Exploration and Development, 2017, 44(6):860-870.

    [7]

    TALLING P J, BAKER M L, POPE E L, et al. Longest sediment flows yet measured show how major rivers connect efficiently to deep sea[J]. Nature Communications, 2022, 13:4193.

    [8]

    PIPER D J W, NORMARK W R. Processes that initiate turbidity currents and their influence on turbidities:a marine geology perspective[J]. Journal of Sedimentary Research, 2009, 79:347-362.

    [9]

    MULDER T, MIGEON S. Twentieth century floods recorded in the deep Mediterranean sediments[J]. Geology, 2001, 29:1011-1014.

    [10]

    MULDER T, MIGEON S, SAVOYE B, et al. Inversely graded turbidite sequences in the deep Mediterranean:a record of deposits from flood-generated turbidity currents?[J]. Geo-Marine Letters, 2001, 21:86-93.

    [11]

    MULDER T, ALEXANDER J. The physical character of subaqueous sedimentary density flows and their deposits[J]. Sedimentology, 2001, 48:269-299.

    [12]

    PLINK-BJÖRKLUND P, STEEL R J. Initiation of turbidite currents:Outcrop evidence for Eocene hyperpycnal flow turbidites[J]. Sedimentary Geology, 2004, 165(1/2):29-52.

    [13]

    PARSONS J D, BUSH J, SYVITSKI J P M. Hyperpycnal plume formation from riverine outflows with small sediment concentrations[J]. Sedimentology, 2001, 48(2):465-478.

    [14]

    黄学勇,高茂生,侯国华,等.莱州湾海洋沉积物粒度特征及其环境响应分析[J].华东地质,2023,44(4):402-414.

    HUANG X Y,GAO M S,HOU G H,et al.Grain size characteristics and environmental response of marine sediments in Laizhou Bay[J].East China Geology,2023,44(4):402-414.

    [15]

    ZAVALA C, ARCURI M, MEGLIO M D, et al. A genetic facies tract for the analysis of sustained hyperpycnal flow deposits[G]//ZAVALA C, SLATT R. Sediment transfer from shelf to deep water-revisiting the delivery system. AAPG Studies in Geology, 2011, 61:31-51.

    [16]

    FOREL F. Les ravins sous-lacustres des fleuves glaciaires[J]. Comptes Rendus de l'Academie des Sciences, 1881, 101(16):725-728.

    [17]

    MULDER T, SYVITSKI J P M. Turbidity current generated at river mouths during exceptional discharges to the world oceans[J]. Journal of Geology, 1995, 103(3):285-299.

    [18]

    WRIGHT L, WISEMAN W, BORNHOLD B, et al. Marine dispersal and deposition of Yellow River silts by gravity-driven underflows[J]. Nature,1988, 332:629-632.

    [19]

    SOYINKA O A, SLATT R M. Identification and micro-stratigraphy of hyperpycnites and turbidites in Cretaceous Lewis Shale, Wyoming[J]. Sedimentology, 2008, 55:1117-1133.

    [20]

    赵澂林,刘孟慧.湖底扇模式及其在油气预测中的应用[J].华东石油学院学报, 1984, 8(4):323-334.

    ZHAO Z L, LIU M H. Facies model of the sublake-fan and its application to oil and gas exploration[J]. Journal of Huadong Petroleum Institute, 1984, 8(4):323-334.

    [21]

    赵国连,赵澄林,叶连俊.渤海湾盆地"四扇一沟"沉积体系及其油气意义[J].地质力学学报, 2005, 11(3):245-258.

    ZHAO G L, ZHAO C L, YE L J. Sedimentary system of "four fans and one channel" in the Bohai Gulf Basin and its significance for petroleum exploration[J]. Journal of Geomechanics, 2005, 11(3):245-258.

    [22]

    ZAVALA C, ARCURI M. Intrabasinal and extrabasinal turbidites:originand distinctive characteristics[J]. Sedimentary Geology, 2016, 337:36-54.

    [23]

    MULDER T, MIGEON S, SAVOYE B, et al. Reply to discussion by Shanmugam on Mulder et al.(2001, Geo-Marine Letters 21:86-93) Inversely graded turbidite sequences in the deep Mediterranean. A record of deposits from flood-generated turbidity currents?[J]. Geo-Marine Letters. 2002, 22:112-120.

    [24]

    MULDER T, CHAPRON E. Flood deposits in continental and marine environments:Character and significance[G]//ZAVALA C, SLATT R. Sediment transfer from shelf to deep water-revisiting the delivery system. AAPG Studies in Geology, 2011, 61:1-30.

    [25]

    YANG T, CAO Y C, LIU K Y, et al. Gravity-flow deposits caused by different initiation processes in a deep-lake system[J]. AAPG Bulletin, 2020, 104(7):1463-1499.

    [26]

    PATTISON S J, AINSWORTH R B, HOFFMAN T A. Evidence of across shelf transport of fine-grained sediments:turbidite-filled shelf channels in the Campanian Aberdeen Member, Book Cliffs, Utah, USA[J]. Sedimentology, 2007, 54:1033-1064.

    [27]

    ALEXANDER J AND MULDER T. Experimental quasi-steady density current[J]. Marine Geology, 2002, 186:195-210.

    [28]

    STEVENSON C J, PEAKALL J. Effects of topography on lofting gravity flows:implications for the deposition of deep-water massive sands[J]. Marine and Petroleum Geology, 2010, 27:1366-1378.

    [29]

    伍剑波,孙强,张泰丽,等.地形起伏度与滑坡发育的相关性——以丽水市滑坡为例[J].华东地质,2022,43(2):235-244.

    WU J B,SUN Q,ZHANG T L,et al.Research for the correlation between relief amplitude and landslides:a case study of Lishui City[J].East China Geology,2022,43(2):235-244.

    [30]

    MUTI E, BERNOULLI D,LUCCHI F R, et al. Turbidites and turbidity currents from Alpine flysch to the exploration of continental margins[J]. Sedimentology, 2009, 56:267-318.

    [31]

    PETTER A L, STEEL R J. Hyperpycnal low variability and slope organization on an Eocene shelf margin, Central Basin, Spitsbergen[J]. AAPG Bulletin, 2006, 90:1451-1472.

    [32]

    WARRICK J A, XU J P, NOBLE M A, et al. Rapid formation of hyperpycnal sediment gravity currents offshore of a semi-arid California river[J]. Continental Shelf Research, 2008, 28:991-1009.

    [33]

    HUNEKE H, MULDER T. Deep-sea Sediments[M]. London:Elsevier, 2011, 46-54.

    [34]

    WRIGHT L D, YANG Z S, BORNHOLD B D, et al. Hyperpycnal plumes and plume fronts over the Huanghe (Yellow River) delta front[J]. Geo-Marine Letters, 1986, 6:97-105.

    [35]

    WANG H J, BI N S, SAITO Y, et al. Recent changes in sediment delivery by the Huanghe (Yellow River) to the sea:causes and environmental implications in its estuary[J]. Journal of Hydrology, 2010, 391(3/4):302-313.

    [36]

    LAMB M P, MOHRIG D. Do hyperpycnal-low deposits record river-flood dynamics?[J]. Geology, 2009, 37:1067-1070.

    [37]

    LAMB M P, MCELROY B, KOPRIVA B, et al. Linking river-flood dynamics to hyperpycnal-plume deposits:experiments, theory, and geological implications[J]. GSA Bulletin, 2010, 122(9/10):1389-1400.

    [38]

    余斌.浊流和泥石流的异重流初期潜入点的实验研究[J].水科学进展, 2008, 19(1):27-35.

    YU B. Experimental study on the incipient plunging point of stratified flow of turbidity currents and debris flows[J]. Advances in Water Science, 2008, 19(1):27-35.

    [39]

    KHAN S M, IMRAN J, BRADFORD S. Numerical modeling of hyperpycnal plume[J]. Marine Geology, 2005, 222/223:193-211.

    [40]

    ZAVALA C, PONCE J, ARCURI M, et al. Ancient lacustrine hyperpycnites:a depositional model from a case study in the Rayoso Formation (Cretaceous) from West-Central Argentina[J]. Journal of Sedimentary Research, 2006, 76:41-59.

    [41]

    KASSEM A, IMRAN J. Simulation of turbid underflow generated by the plunging of a river[J]. Geology, 2001, 29(7):655-658.

    [42]

    ZAVALA C,潘树新.异重流成因和异重岩沉积特征[J].岩性油气藏,2018, 30(1):1-18.

    ZAVALA C, PAN S X. Hyperpycnal flows and hyperpycnites:origin and distinctive characteristics[J]. Lithologic Reservoirs, 2018, 30(1):1-18.

    [43]

    谈明轩,朱筱敏,朱世发.异重流沉积过程和沉积特征研究[J].高校地质学报, 2015, 21(1):94-104.

    TAN M X, ZHU X M, ZHU S F. Research on sedimentary process and characteristics of hyperpycnal flows[J]. Geological Journal of China Universities, 2015, 21(1):94-104.

    [44]

    栾国强,董春梅,林承焰,等.异重流发育条件、演化过程及沉积特征[J].石油与天然气地质,2018,39(3):438-453.

    LUAN G Q, DONG C M, LIN C Y, et al. Development conditions, evolution process and depositional features of hyperpycnal flow[J]. Oil&Gas Geology, 2018, 39(3):438-453.

    [45]

    HAUGHTON P, DAVIS C, MCCAFFREY W, et al. Hybrid sediment gravity flow deposits-classification, origin and significance[J]. Marine and Petroleum Geology, 2009, 26:1900-1918.

    [46]

    TALLING P J. Hybrid submarine flows comprising turbidity cur-rent and cohesive debris flow:deposits, theoretical and experimental analyses, and generalized models[J]. Geosphere, 2013, 9(3):460-488.

    [47]

    TALLING P J, MASSON D G, SUMNER E J, et al. Subaqueous sediment density flows:depositional processes and deposit types[J]. Sedimentology, 2012, 59(7):1937-2003.

    [48]

    GIRARD F, GHIENNE J, RUBINO J. Occurrence of hyperpycnal flows and hybrid event beds related to glacial outburst events in a late Ordovician Proglacial delta (Murzuq Basin, SW Libya)[J]. Journal of Sedimentary Research, 2012, 82:688-708.

    [49]

    ARNOTT R. Bedforms, primary structures and grain fabric in the presence of suspended sediment rain[J]. Journal of Sedimentary Petrology, 1989, 59:1062-1069.

    [50]

    BAAS J. Conditions for formation of massive turbiditic sandstones by primary depositional processes[J]. Sedimentary Geology, 2004, 166:293-310.

    [51]

    LECLAIR S. Preservation of cross-strata due to the migration of subaqueous dunes:an experimental investigation[J]. Sedimentology, 2002, 49:1157-1180.

    [52]

    YANG T, CAO Y, WANG Y, et al. Sedimentary characteristics and depositional model of hyperpycnites in the gentle slope of a lacustrine rift basin:a case study from the third member of the Eocene Shahejie Formation, Bonan Sag, Bohai Bay Basin, Eastern China[J]. Basin Research, 2023, 35, 1590-1618.

    [53]

    ZAVALA C, ARCURI M, VALIENTE L. The importance of plant re-mains as diagnostic criteria for the recognition of ancient hyperpycnites[J]. Revue de Paléobiologie, Genève, 2012, 11:457-469.

    [54]

    DUCASSOU E, MULDER T, MIGEON S, et al. Nile floods recorded in deep Mediterranean sediments[J]. Quaternary Research, 2008, 70:382-391.

    [55]

    NAKAJIMA T. Hyperpycnites deposited 700 km away from river mouths in the Central Japan Sea[J]. Journal of Sedimentary Research, 2006, 76(1):60-73.

    [56]

    KNELLER B, BRANNEY M. Sustained high-density turbidity currents and the deposition of thick massive sands[J]. Sedimentology, 1995, 42:607-616.

    [57]

    HOYAL D C J D, VAN WAGONER J C, ADAIR N L, et al. Sedimentation from jets:a depositional model for clastic deposits of all scales and environments. Search and Discovery, 2003, 40082:1-9.

    [58]

    XIAN B Z, WANG J H, GONG C L, et al. Classification and sedimentary characteristics of lacustrine hyperpycnal channels:Triassic outcrops in the south Ordos Basin, central China[J]. Sedimentary Geology, 2018, 368:68-82.

    [59]

    SINCLAIR H D, TOMASSO M. Depositional evolution of confined turbidite basins[J]. Journal of Sedimentary Research, 2002, 72(4):451-456.

    [60]

    TONIOLO H, LAMB M P, PARKER G. Depositional turbidity currents in diapiric minibasins on the continental slop:formulation and theory[J]. Journal of Sedimentary Research, 2006, 76(5):783-797.

    [61]

    DOU L X, BEST J, BAO Z D, et al. The sedimentary architecture of hyperpycnites produced by transient turbulent flows in a shallow lacustrine environ-ment[J]. Sedimentary Geology, 2021, 411:105804.

    [62]

    FENG Z Q, ZHANG S, CROSS T A, et al. Lacustrine turbidite channels and fans in the Mesozoic Songliao Basin, China[J]. Basin Research, 2010, 22(1):96-107.

    [63]

    WANG Y J, YIN T J, TANG Y, et al. Architecture characteristics of hyperpycnal deposits:insights from numerical modeling with numerical simulation platform grade[J]. Interpretation, 2023, 11(1):175-188.

    [64]

    SHANMUGAM G. Discussion on Mulder et al.(2001, Geo-Marine Letters 21:86-93) Inversely graded turbidite sequences in the deep Mediterranean. A record of deposits from flood-generated turbidity currents?[J]. Geo-Marine Letters, 2002, 22:108-111.

    [65]

    TALLING P J. On the triggers, resulting flow types and frequencies of subaqueous sediment density lows in different settings[J]. Marine Geology, 2014, 352:155-182.

    [66]

    CHEN P, XIAN B Z, LI M J, et al. A giant lacustrine flood-related turbidite system in the Triassic Ordos Basin, China:Sedimentary processes and depositional architecture[J]. Sedimentology, 2021, 68:3279-3306.

    [67]

    YOSHIDA M, YOSHIUCHI Y, HOYANAGI K. Occurrence conditions of hyperpycnal flows, and their significance for organic-matter sedimentation in a Holocene estuary, Niigata Plain, Central Japan[J]. Island Article, 2009, 18:320-332.

    [68]

    邹才能,朱如凯,吴松涛,等.常规与非常规油气聚集类型、特征、机理及展望——以中国致密油和致密气为例[J].石油学报,2012, 33(2):173-187.

    ZOU C N, ZHU R K, WU S T, et al. Types characteristics, genesis and prospects of conventional and unconventional hydrocarbon accumulations:taking tight oil and tight gas in China an instance[J]. Acta Petrolei Sinica, 2012, 33(2):173-187.

  • 加载中
计量
  • 文章访问数:  640
  • PDF下载数:  53
  • 施引文献:  0
出版历程
收稿日期:  2024-02-17
修回日期:  2024-03-12

目录