天然气水合物形成/分解过程中的同位素分馏效应及其能源-环境意义

李佳玥, 李文镖, 张鹏飞, 陈国辉, 王峻, 刘灵奇. 2024. 天然气水合物形成/分解过程中的同位素分馏效应及其能源-环境意义. 华东地质, 45(4): 387-401. doi: 10.16788/j.hddz.32-1865/P.2024.34.005
引用本文: 李佳玥, 李文镖, 张鹏飞, 陈国辉, 王峻, 刘灵奇. 2024. 天然气水合物形成/分解过程中的同位素分馏效应及其能源-环境意义. 华东地质, 45(4): 387-401. doi: 10.16788/j.hddz.32-1865/P.2024.34.005
LI Jiayue, LI Wenbiao, ZHANG Pengfei, CHEN Guohui, WANG Jun, LIU Lingqi. 2024. Isotope fractionation during the formation-decomposition of natural gas hydrate and its energy-environmental implications. East China Geology, 45(4): 387-401. doi: 10.16788/j.hddz.32-1865/P.2024.34.005
Citation: LI Jiayue, LI Wenbiao, ZHANG Pengfei, CHEN Guohui, WANG Jun, LIU Lingqi. 2024. Isotope fractionation during the formation-decomposition of natural gas hydrate and its energy-environmental implications. East China Geology, 45(4): 387-401. doi: 10.16788/j.hddz.32-1865/P.2024.34.005

天然气水合物形成/分解过程中的同位素分馏效应及其能源-环境意义

  • 基金项目: 全国博士后创新人才支持计划“多尺度孔-裂隙系统内甲烷运移过程中的同位素分馏机理及定量表征研究(编号:BX20220062)”和三亚市崖州湾菁英人才科技专项“甲烷水合物形成-分解过程同位素分馏效应及其勘探开发应用(编号:SCKJ-JYRC-2023-01)”项目联合资助。
详细信息
    作者简介: 李佳玥,2004年生,男,本科,主要从事天然气水合物勘探开发研究工作。Email:lijiayue@stu.nepu.edu.cn
    通讯作者: 李文镖,1996年生,男,教授,博士,主要从事非常规油气地质学与油气地球化学研究工作。Email:liwenbiao@nepu.edu.cn
  • 中图分类号: P618.13;P744.4

Isotope fractionation during the formation-decomposition of natural gas hydrate and its energy-environmental implications

More Information
  • 文章从研究方法、同位素分馏效应及其能源-环境意义3个方面,综述了天然气水合物形成/分解过程中同位素分馏的研究进展。天然气水合物形成/分解过程中同位素分馏效应的研究方法主要为实验模拟和天然观测。以往研究表明,天然气水合物系统内不同埋深的流体存在显著的同位素组成差异,这与天然气水合物形成/分解过程中的同位素分馏效应密切相关。天然气水合物的形成/分解涉及溶解/脱溶、相变、多孔介质内流体传质以及氧化消耗等多个物理化学过程的叠加。相变过程受温度控制,属于热力学平衡同位素分馏效应;而溶解/脱溶、传质和氧化消耗过程主要受多孔介质孔隙结构、温度、压力和氧气含量等环境因素控制,并与时间相关,属于动力学非平衡同位素分馏效应。目前,天然气水合物形成/分解过程中的同位素分馏效应已初步应用于天然气水合物勘探标志、气源判识、成藏机制研究和资源量评估,并为解释现今大气中甲烷浓度上升和同位素反转变轻、地质历史时期全球升温与同位素快速负偏提供了新的视角。然而,目前关于天然气水合物形成/分解过程中同位素分馏效应的研究方法仍较为匮乏,现有手段主要聚焦于同位素分馏的现象观测和定性分析。未来,应采用数值模拟、分子动力学模拟等方法对天然气水合物同位素分馏效应的研究方法加以补充,并系统开展天然气水合物形成/分解过程中同位素分馏特征、影响因素、机理及定量表征的研究。

  • 加载中
  • 图 1  天然气水合物平衡相图(Liu et al., 2013; 郭平等, 2006; 李明川等, 2007

    Figure 1. 

    图 2  DSDP-67航次的497、496站位的孔隙水δ18O值随深度变化图(Hesse 和 Harrison, 1981

    Figure 2. 

    图 3  在不同降压增量条件下,排放气体中甲烷(a)、乙烷(b)、丙烷(c)和二氧化碳(d)的稳定碳同位素组成(Lai et al., 2021)

    Figure 3. 

    图 4  不同实验条件下CH4和CO2的碳、氢同位素分馏特征(陈宇峰, 2018

    Figure 4. 

    图 5  大气中甲烷碳同位素比值变化规律(Schaefer et al., 2016

    Figure 5. 

    表 1  天然气水合物同位素分馏实验常用的监测装置

    Table 1.  Common monitoring devices used in isotopic fractionation experiments of natural gas hydrates

    监测工具 研究对象 方法原理 装置功能 文献出处
    可视窗 天然气水合物形成/分解时空演化规律 通过高清摄影机观测记录天然气水合物形成/分解的位置、速率和实验进程 反应釜上安装了石英材质可视窗,可详细地观察记录天然气水合物的生成/分解情况,确认水合物形成/分解的各阶段 Carvajal-Ortiz和Pratt, 2013
    气体采集与分析装置 同位素比值变化规律 通过加装在取气口和玻璃顶空瓶的真空泵收集原样气体样品,之后将样品送入稳定同位素质谱仪中进行分析 用于开展天然气水合物离子和同位素的测试实验,其可以在反应过程中保持体系封闭的情况下进行取样 陈敏等, 2018
    色谱分析装置 天然气水合物形成/分解过程中气体的成分变化 通过反应釜上的阀门和导管,随时将反应釜内部的气体送入外部色谱仪进行分析 可原位监测各气体组分与水反应形成天然气水合物的能力,以及天然气水合物形成/分解过程中各气体组分的相对含量变化 刘昌岭和孟庆国, 2016
    下载: 导出CSV

    表 2  不同降压增量下的压力变化及排气体积(Lai et al., 2021)

    Table 2.  Pressure variation and volume of expelled gas in different depressurized increment (Lai et al., 2021)

    降压增量初始压力/Mpa结束压力/Mpa排出气体/mL
    94.423.69105
    104.243.56465
    114.273.63670
    124.263.61733
    134.183.52760
    144.103.49713
    153.903.31745
    163.643.05785
    173.472.95730
    183.342.74895
    202.481.831025
    211.961.56865
    221.641.23850
    231.280.94702
    240.970.60868
    250.630.26900
    260.300.00865
    下载: 导出CSV
  • [1]

    BEERLING D J, BERNER R A. 2002. Biogeochemical constraints on the Triassic-Jurassic boundary carbon cycle event[J]. Global Biogeochemical Cycles,16(3):1036.

    [2]

    BLACKBURN T J, OLSEN P E, BOWRING S A, MCLEAN N M, KENT D V, PUFFER J, MCHONE G, RASBURY E T, ET-TOUHAMI M. 2013. Zircon U-Pb geochronology links the end-Triassic extinction with the central Atlantic magmatic province[J]. Science,340(6135):941-945. doi: 10.1126/science.1234204

    [3]

    BREY T, MACKENSEN A. 1997. Stable isotopes prove shell growth bands in the Antarctic bivalve Laternula elliptica to be formed annually[J]. Polar Biology,17(5):465-468. doi: 10.1007/s003000050143

    [4]

    BURGESS S D, BOWRING S A. 2015. High-precision geochronology confirms voluminous magmatism before, during, and after Earth’s most severe extinction[J]. Science Advances,1(7):e1500470. doi: 10.1126/sciadv.1500470

    [5]

    HOFMAN D, BUTLER J, CONWAY T,DLUGOKENCKY E, Elkins J, Masarie K. 2008. The NOAA annual greenhouse gas index (AGGI)[J]. Earth System Research Laboratory.

    [6]

    CAI L, SU J W, LI Z, SHI H F, WANG R, YANG Y, DING Y. 2023. Study on the chemical characteristics and hydrogeochemistry process of groundwater in the upper reaches of Xin'an River Basin[J]. East China Geology,44(3):262-272 (in Chinese with English abstract).

    [7]

    CARVAJAL-ORTIZ H, PRATT L M. 2013. Influences of salinity and temperature on the stable isotopic composition of methane and hydrogen sulfide trapped in pressure-vessel hydrates[J]. Geochimica et Cosmochimica Acta,118:72-84. doi: 10.1016/j.gca.2013.05.013

    [8]

    CHEN Y F. 2018. Study on methane oxidation rate and carbon isotope fractionation in Bohai Sea sediments[D]. Qingdao: Qingdao University (in Chinese with English abstract).

    [9]

    CHEN M, CAO Z M, YE Y G, LIU C L. 2005. Hydrogen and oxygen isotopic fractionation of gas hydrate formation: experimental study[J]. Geochimica,34(6):605-611 (in Chinese with English abstract).

    [10]

    CHEN M, DENG X B, LIU C L, REN H B, YIN X J, LI J X, QI H S, ZHANG A M. 2018. Experimental study on carbon isotopic composition changes during the formation of gas hydrates[J]. Geoscience,32(1):205-212 (in Chinese with English abstract).

    [11]

    CHONG Z R, YANG S H B, BABU P, LINGA P, LI X S. 2016. Review of natural gas hydrates as an energy resource: prospects and challenges[J]. Applied Energy,162:1633-1652. doi: 10.1016/j.apenergy.2014.12.061

    [12]

    CLAYPOOL G E, KVENVOLDEN K A. 1983. Methane and other hydrocarbon gases in marine sediment[J]. Annual Review of Earth and Planetary Sciences,11:299-327. doi: 10.1146/annurev.ea.11.050183.001503

    [13]

    COLEMAN D D, RISATTI J B, SCHOELL M. 1981. Fractionation of carbon and hydrogen isotopes by methane-oxidizing bacteria[J]. Geochimica et Cosmochimica Acta,45(7):1033-1037. doi: 10.1016/0016-7037(81)90129-0

    [14]

    COURTILLOT V E, RENNE P R. 2003. On the ages of flood basalt events[J]. Comptes Rendus. Géoscience,335(1):113-140.

    [15]

    CRAIG H, GORDON L I, HORIBE Y. 1963. Isotopic exchange effects in the evaporation of water: 1. Low‐temperature experimental results[J]. Journal of Geophysical Research,68(17):5079-5087. doi: 10.1029/JZ068i017p05079

    [16]

    DAI J X. 1992. Identification of various alkane gases[J]. Science in China Series B-Chemistry, Life Sciences & Earth Sciences, 35(10): 1246-1257.

    [17]

    DAI J X, NI Y Y, HUANG S P, PENG W L, HAN W X, GONG D Y, WEI W. 2017. Genetic types of gas hydrates in China[J]. Petroleum Exploration and Development,44(6):837-848 (in Chinese with English abstract

    [18]

    DAVIDSON D W, LEAIST D G, HESSE R. 1983. Oxygen-18 enrichment in the water of a clathrate hydrate[J]. Geochimica et Cosmochimica Acta,47(12):2293-2295. doi: 10.1016/0016-7037(83)90053-4

    [19]

    DICKENS G R, O'NEIL J R, REA D K, OWEN R M. 1995. Dissociation of oceanic methane hydrate as a cause of the carbon isotope excursion at the end of the Paleocene[J]. Paleoceanography,10(6):965-971. doi: 10.1029/95PA02087

    [20]

    FENG L, PALMER P I, ZHU S H, PARKER R J, LIU Y. 2022. Tropical methane emissions explain large fraction of recent changes in global atmospheric methane growth rate[J]. Nature Communications,2022,13(1):1378.

    [21]

    FROITZHEIM N, MAJKA J, ZASTROZHNOV D. 2021. Methane release from carbonate rock formations in the Siberian permafrost area during and after the 2020 heat wave[J]. Proceedings of the National Academy of Sciences of the United States of America,118(32):e2107632118.

    [22]

    FU X T, WANG Z P, LU S F. 1996. Mechanisms and solubility equations of gas dissolving in water[J]. Science in China (Series B),39(5):500-508.

    [23]

    FU X T, WANG Z P, LU S F, ZHU X H. 2000. Mechanism of natural gas dissolving in brines and the dissolving equation[J]. Acta Petrolei Sinica,21(3):89-94 (in Chinese with English abstract).

    [24]

    GAT J R. 1996. Oxygen and hydrogen isotopes in the hydrologic cycle[J]. Annual Review of Earth and Planetary Sciences,24:225-262. doi: 10.1146/annurev.earth.24.1.225

    [25]

    GUO P, LIU S X, DU J F. 2006. Development of natural gas hydrate reservoirs[M]. Beijing: Petroleum Industry Press, 38-39 (in Chinese).

    [26]

    HESSE R, HARRISON W E. 1981. Gas hydrates (clathrates) causing pore-water freshening and oxygen isotope fractionation in deep-water sedimentary sections of terrigenous continental margins[J]. Earth and Planetary Science Letters,55(3):453-462. doi: 10.1016/0012-821X(81)90172-2

    [27]

    HU Y, XIA B, ZHANG X L, GUO F, SHI Q H. 2012. Geological and geochemical features and exploration progress of gas hydrate[J]. Marine Geology Frontiers,28(6):27-34 (in Chinese with English abstract).

    [28]

    JIANG G Q, KENNEDY M J, CHRISTIE-BLICK N. 2003. Stable isotopic evidence for methane seeps in Neoproterozoic postglacial cap carbonates[J]. Nature,426(6968):822-826. doi: 10.1038/nature02201

    [29]

    KENDER S, BOGUS K, PEDERSEN G K, DYBKJÆR K, MATHER T A, MARIANI E, RIDGWELL A, RIDING J B, WAGNER T, HESSELBO S P, LENG M J. 2021. Paleocene/Eocene carbon feedbacks triggered by volcanic activity[J]. Nature Communications,12(1):5186. doi: 10.1038/s41467-021-25536-0

    [30]

    KINNAMAN F S, VALENTINE D L, TYLER S C. 2007. Carbon and hydrogen isotope fractionation associated with the aerobic microbial oxidation of methane, ethane, propane and butane[J]. Geochimica et Cosmochimica Acta,71(2):271-283. doi: 10.1016/j.gca.2006.09.007

    [31]

    LAI H F, FANG Y X, KUANG Z G, XING D H, LI X, KANG D J, REN J F, LIANG J Q, LU J. 2021. Molecular and carbon isotopic characteristics during natural gas hydrate decomposition: insights from a stepwise depressurization experiment on a pressure core[J]. Energy & Fuels,35(19):15579-15588.

    [32]

    LAI H F, KUANG Z G, FANG Y X, XU C L, REN J F, LIANG J Q, LU J A. 2024. Origin and genetic mechanisms of hydrocarbon gas sources of the highly saturated gas hydrate deposits in the northern South China Sea[J]. Geoscience Frontiers, 1-26, doi: 10.13745/j.esf.sf.2024.6.53 (in Chinese with English abstract).

    [33]

    LI M C, FAN S S, ZHAO J Z. 2007. Impact of porous medium on gas hydrate[J]. Geophysical Prospecting for Petroleum,46(1):13-15 (in Chinese with English abstract).

    [34]

    LI W B, LI J Q, LU S F, CHEN G H, PANG X T, ZHANG P F, HE T H. 2022a. Evaluation of gas-in-place content and gas-adsorbed ratio using carbon isotope fractionation model: a case study from Longmaxi shales in Sichuan Basin, China[J]. International Journal of Coal Geology,249:103881. doi: 10.1016/j.coal.2021.103881

    [35]

    LI W B, LU S F, LI J Q, FENG W J, ZHANG P F, WANG J, WANG Z Y, LI X. 2022b. Concentration loss and diffusive fractionation of methane during storage: implications for gas sampling and isotopic analysis[J]. Journal of Natural Gas Science and Engineering,101:104562. doi: 10.1016/j.jngse.2022.104562

    [36]

    LI W B, LU S F, LI J Q, WEI Y B, ZHAO S X, ZHANG P F, WANG Z Y, LI X, WANG J. 2022. Research progress on isotopic fractionation in the process of shale gas/coalbed methane migration[J]. Petroleum Exploration and Development,49(5):929-942 (in Chinese with English abstract).

    [37]

    LI W B, LU S F, LI J Q, ZHANG P F, WANG S Y, FENG W J, WEI Y B. 2020. Carbon isotope fractionation during shale gas transport: mechanism, characterization and significance[J]. Science in China: Earth Sciences,50(4):553-569 (in Chinese with English abstract).

    [38]

    LI W B, LU S F, LI J Q, ZHANG P F, WANG S Y, FENG W J, WEI Y B. 2020. Carbon isotope fractionation during shale gas transport: mechanism, characterization and significance[J]. Science China Earth Sciences,63(5):674-689. doi: 10.1007/s11430-019-9553-5

    [39]

    LIANG J Z, FENG J C, ZHANG H, ZHANG S. 2024. Advances in deep-sea scientific experiment equipment[J]. Strategic Study of CAE,26(2):23-37 (in Chinese with English abstract). doi: 10.15302/J-SSCAE-2024.02.004

    [40]

    LI Y M. 1998. Geochemical study of methane in natural gas hydrate [J]. Natural Gas Geoscience, 9(3-4): 9-18. (in Chinese)

    [41]

    LIU Z F, HU X M. 2003. Extreme climates events in the cretaceous and paleogene[J]. Advance in Earth Sciences,18(5):681-690 (in Chinese with English abstract).

    [42]

    LIU C L, MENG Q G. 2016. Gas hydrates experiment and testing technologies[M]. Beijing: Science Press (in Chinese).

    [43]

    LIU C L, YE Y G, SUN S C, CHEN Q, MENG Q G, HU G W. 2013. Experimental studies on the P-T stability conditions and influencing factors of gas hydrate in different systems[J]. Science China Earth Sciences, 56(4): 594-600

    [44]

    LIU T, WU T, FANG C G, ZHANG C C, SHAO W, LIAO S B. 2023. Overpressure characteristics and genesis of the Triassic gas reservoirs in Wuwei Depression of Lower Yangtze Region[J]. East China Geology,44(4):415-423 (in Chinese with English abstract).

    [45]

    LU Z L, LING H F, JIANG S Y, YANG J H, NI P. 2003. Application of stable isotopes to the geochemical explorations for gas hydrate in the Blake Ridge sea area[J]. Marine Geology Letters,19(2):28-32 (in Chinese with English abstract).

    [46]

    MAEKAWA T. 2004. Experimental study on isotopic fractionation in water during gas hydrate formation[J]. Geochemical Journal,38(2):129-138. doi: 10.2343/geochemj.38.129

    [47]

    MAKOGON Y F. 2010. Natural gas hydrates - A promising source of energy[J]. Journal of Natural Gas Science and Engineering,2(1):49-59. doi: 10.1016/j.jngse.2009.12.004

    [48]

    MATSUMOTO R, BOROWSKI W S. 2000. Gas hydrate estimates from newly determined oxygen isotopic fractionation (αGH-IW) and δ18O anomalies of the interstitial waters: leg 164, Blake Ridge[C]//Proceedings of the Ocean Drilling Program: Scientific Results. College Station, 59-66. http://www-odp.tamu.edu/publications/164_SR/VOLUME/CHAPTERS/SR164_06.

    [49]

    MCCARTHY J J, CANZIANI O F, LEARY N A, DOKKEN D J, WHITE K S. 2001. Climate change 2001: impacts, adaptation, and vulnerability: contribution of Working Group II to the third assessment report of the Intergovernmental Panel on Climate Change[M]. Cambridge: Cambridge University Press, 191-205

    [50]

    MCELWAIN J C, BEERLING D J, WOODWARD F I. 1999. Fossil plants and global warming at the Triassic-Jurassic boundary[J]. Science,285(5432):1386-1390. doi: 10.1126/science.285.5432.1386

    [51]

    NING F L, JIANG G S, ZHANG L, WU X, DOU B, ZHANG J M. 2008. Development of experimental equipments for gas hydrate research[J]. Offshore Oil,28(2):68-72 (in Chinese with English abstract).

    [52]

    OREMLAND R S, DES MARAIS D J. 1983. Distribution, abundance and carbon isotopic composition of gaseous hydrocarbons in Big Soda Lake, Nevada: an alkaline, meromictic lake[J]. Geochimica et Cosmochimica Acta,47(12):2107-2114. doi: 10.1016/0016-7037(83)90035-2

    [53]

    PAULL C K, DILLON W P. 2001. Natural gas hydrates: occurrence, distribution, and detection: occurrence, distribution, and detection[M]. Washington: American Geophysical Union.

    [54]

    PENG X D, XU J L, FANG C G, SHEN S H, ZHANG C C. 2022. Sequence stratigraphic characteristics and shale gas exploration prospect of Middle Permian Qixia Formation in the Xuancheng-Guangde Basin[J]. East China Geology,43(2):154-166 (in Chinese with English abstract).

    [55]

    QI R R, QIN X W, LU C, MA C, MAO W J, ZHANG W T. 2022. Experimental study on the isothermal adsorption of methane gas in natural gas hydrate argillaceous silt reservoir[J]. Advances in Geo-Energy Research,6(2):143-156. doi: 10.46690/ager.2022.02.06

    [56]

    QIN S F, TANG X Y, SONG Y, WANG H Y. 2006. Distribution and fractionation mechanism of stable carbon isotope of coalbed methane[J]. Science in China Series D: Earth Sciences,49(12):1252-1258. doi: 10.1007/s11430-006-2036-3

    [57]

    RICE A L, BUTENHOFF C L, TEAMA D G, RÖGER F H, KHALIL M A K, RASMUSSEN R A. 2016. Atmospheric methane isotopic record favors fossil sources flat in 1980s and 1990s with recent increase[J]. Proceedings of the National Academy of Sciences of the United States of America,113(39):10791-10796.

    [58]

    RUHL M, BONIS N R, REICHART G J, DAMSTÉ J S S, KÜRSCHNER W M. 2011. Atmospheric carbon injection linked to end-Triassic mass extinction[J]. Science,333(6041):430-434. doi: 10.1126/science.1204255

    [59]

    SAUNOIS M, STAVERT A R, POULTER B, BOUSQUET P, CANADELL J G, JACKSON R B, RAYMOND P A, DLUGOKENCKY E J, HOUWELING S, PATRA P K, CIAIS P, ARORA V K, BASTVIKEN D, BERGAMASCHI P, BLAKE D R, BRAILSFORD G, BRUHWILER L, CARLSON K M, CARROL M, CASTALDI S, CHANDRA N, CREVOISIER C, CRILL P M, COVEY K, CURRY C L, ETIOPE G, FRANKENBERG C, GEDNEY N, HEGGLIN M I, HÖGLUND-ISAKSSON L, HUGELIUS G, ISHIZAWA M, ITO A, JANSSENS-MAENHOUT G, JENSEN K M, JOOS F, KLEINEN T, KRUMMEL P B, LANGENFELDS R L, LARUELLE G G, LIU L, MACHIDA T, MAKSYUTOV S, MCDONALD K C, MCNORTON J, MILLER P A, MELTON J R, MORINO I, MÜLLER J, MURGUIA-FLORES F, NAIK V, NIWA Y, NOCE S, O'DOHERTY S, PARKER R J, PENG C H, PENG S S, PETERS G P, PRIGENT C, PRINN R, RAMONET M, REGNIER P, RILEY W J, ROSENTRETER J A, SEGERS A, SIMPSON I J, H SHI, SMITH S J, STEELE L P, THORNTON B F, TIAN H Q, TOHJIMA Y, TUBIELLO F N, TSURUTA A, VIOVY N, VOULGARAKIS A, WEBER T S, VAN WEELE M, VAN DER WERF G R, WEISS R F, WORTHY D, WUNCH D, YIN Y, YOSHIDA Y, ZHANG W X, ZHANG Z, ZHAO Y H, ZHENG B, ZHU Q, ZHU Q, ZHUANG Q L. 2019. The global methane budget 2000-2017[J]. Earth System Science Data Discussions, 1-136, doi: 10.5194/essd-2019-128.

    [60]

    SCHAEFER H, FLETCHER S E M, VEIDT C, LASSEY K R, BRAILSFORD G W, BROMLEY T M, WHITE J W. 2016. A 21st-century shift from fossil-fuel to biogenic methane emissions indicated by 13CH4[J]. Science,352(6281):80-84. doi: 10.1126/science.aad2705

    [61]

    SHAW D G, ALPERIN M J, REEBURGH W S, MCINTOSH D J. 1984. Biogeochemistry of acetate in anoxic sediments of Skan Bay, Alaska[J]. Geochimica et Cosmochimica Acta,48(9):1819-1825. doi: 10.1016/0016-7037(84)90035-8

    [62]

    SLOAN JR E D. 1991. Natural gas hydrates[J]. Journal of Petroleum Technology,43(12):1414-1417. doi: 10.2118/23562-PA

    [63]

    SVENSEN H. 2012. Bubbles from the deep[J]. Nature,483(7390):413-415. doi: 10.1038/483413a

    [64]

    THAKRE N, JANA K A. 2021. Physical and molecular insights to Clathrate hydrate thermodynamics[J]. Renewable and Sustainable Energy Reviews,135:110150. doi: 10.1016/j.rser.2020.110150

    [65]

    TINIVELLA U, GIUSTINIANI M, DE LA CRUZ VARGAS CORDERO I, VASILEV A. 2019. Gas hydrate: environmental and climate impacts[J]. Geosciences,9(10):443. doi: 10.3390/geosciences9100443

    [66]

    TOLLEFSON J. 2022. Scientists raise alarm over ‘dangerously fast’ growth in atmospheric methane[J]. Nature, doi: 10.1038/d41586-022-00312-2.

    [67]

    UREY H C. 1947. The thermodynamic properties of isotopic substances[J]. Journal of the Chemical Society (Resumed), 562-581.

    [68]

    WANG H H. 2020. Study on the structural design and optimization of deep-sea cold spring thermal insulation and pressure retaining sampler[D]. Qingdao: Qingdao University of Science and Technology (in Chinese with English abstract).

    [69]

    XIA X Y, TANG Y C. 2012. Isotope fractionation of methane during natural gas flow with coupled diffusion and adsorption/desorption[J]. Geochimica et Cosmochimica Acta,77:489-503. doi: 10.1016/j.gca.2011.10.014

    [70]

    YANG T, JIANG S Y, GE L, YANG J H, WU N Y, ZHANG G X, LIU J, CHEN D H. 2013. Geochemistry of pore waters from HQ-1PC of the Qiongdongnan Basin, northern South China Sea, and its implications for gas hydrate exploration[J]. Science China Earth Sciences,56(4):521-529. doi: 10.1007/s11430-012-4560-7

    [71]

    YANG J H, JIANG S Y, LING H F. 2001. Origin of natural gas hydrate and its carbon isotope identification mark[J]. Marine Geology Letters, 17(8): 1-4 (in Chinese).

    [72]

    YANG T, JIANG S Y, YANG J H, LU G, WU N Y, LIU J, CHEN D H. 2008. Dissolved inorganic carbon (DIC) and its carbon isotopic composition in sediment pore waters from the Shenhu area, northern South China Sea[J]. Journal of Oceanography,64(2):303-310. doi: 10.1007/s10872-008-0024-2

    [73]

    YANG T, XUE Z C, YANG J H, JIANG S Y. 2003. Oxygen and hydrogen isotopic compositions of pore water from marine sediments in the northern South China Sea[J]. Acta Geoscientia Sinica,24(6):511-514 (in Chinese with English abstract).

    [74]

    YANG T, YE H, LAI Y J. 2017. Pore water geochemistry of the gas hydrate bearing zone on northern slope of the South China Sea[J]. Marine Geology & Quaternary Geology,37(5):48-58 (in Chinese with English abstract).

    [75]

    YAO B, ROSS K, ZHU J J, IGUSKY K, SONG R P, DAMASSA T. 2016. Opportunities to enhance non-carbon dioxide greenhouse gas mitigation in China[R]. Washington: World Resources Institute (in Chinese).

    [76]

    ZACHOS J C, RÖHL U, SCHELLENBERG S A, SLUIJS A, HODELL D A, KELLY D C, THOMAS E, NICOLO M, RAFFI I, LOURENS L J, MCCARREN H, KROON D. 2005. Rapid acidification of the ocean during the Paleocene-Eocene thermal maximum[J]. Science,308(5728):1611-1615. doi: 10.1126/science.1109004

    [77]

    ZHANG X B, XU Y C, LIU W H, SHEN P, JI L M, MA L Y. 2002. A discussion of formation mechanism and its significance of characteristics of chemical composition and isotope of water-dissolved gas in Turpan-Hami Basin[J]. Acta Sedimentologica Sinica,20(4):705-709 (in Chinese with English abstract).

    [78]

    蔡磊, 苏晶文, 李状, 史洪峰, 王睿, 杨洋, 丁勇. 2023. 新安江流域上游地区地下水化学特征及水文地球化学作用研究[J]. 华东地质,44(3):262-272.

    [79]

    陈敏, 曹志敏, 业渝光, 刘昌岭. 2005. 海洋天然气水合物氢氧同位素分馏初探[J]. 地球化学,34(6):605-611. doi: 10.3321/j.issn:0379-1726.2005.06.007

    [80]

    陈敏, 邓兴波, 刘昌岭, 任宏波, 尹希杰, 李佳宣, 戚洪帅, 张爱梅. 2018. 水合物生成过程中碳同位素组成变化的实验研究[J]. 现代地质,32(1):205-212.

    [81]

    陈宇峰. 2018. 渤海沉积物中甲烷氧化速率及碳氢同位素分馏规律研究[D]. 青岛: 青岛大学.

    [82]

    戴金星, 倪云燕, 黄士鹏, 彭威龙, 韩文学, 龚德瑜, 魏伟. 2017. 中国天然气水合物气的成因类型[J]. 石油勘探与开发,44(6):837-848 doi: 10.11698/PED.2017.06.01

    [83]

    付晓泰, 王振平, 卢双舫. 1996. 气体在水中的溶解机理及溶解度方程[J]. 中国科学(B辑 化学),26(2):124-130.

    [84]

    付晓泰, 王振平, 卢双舫, 祝孝华. 2000. 天然气在盐溶液中的溶解机理及溶解度方程[J]. 石油学报,21(3):89-94. doi: 10.3321/j.issn:0253-2697.2000.03.018

    [85]

    郭平, 刘士鑫, 杜建芬. 2006. 天然气水合物气藏开发[M]. 北京: 石油工业出版社, 38-39.

    [86]

    胡杨, 夏斌, 张晓磊, 郭峰, 施秋华. 2012. 天然气水合物地质地球化学特征及其勘查[J]. 海洋地质前沿,28(6):27-34.

    [87]

    赖洪飞, 匡增桂, 方允鑫, 许辰璐, 任金锋, 梁金强, 陆敬安. 2024. 南海北部高饱和度水合物矿藏的烃类气体来源与成因机制[J]. 地学前缘, 1-26, doi: 10.13745/j.esf.sf.2024.6.53.

    [88]

    李明川, 樊栓狮, 赵金洲. 2007. 多孔介质对天然气水合物形成的影响[J]. 石油物探,46(1):13-15. doi: 10.3969/j.issn.1000-1441.2007.01.002

    [89]

    李文镖, 卢双舫, 李俊乾, 魏永波, 赵圣贤, 张鹏飞, 王子轶, 李霄, 王峻. 2022. 页岩气/煤层气运移过程中的同位素分馏研究进展[J]. 石油勘探与开发,49(5):929-942. doi: 10.11698/PED.20220225

    [90]

    李文镖, 卢双舫, 李俊乾, 张鹏飞, 王思远, 冯文俊, 魏永波. 2020. 页岩气运移过程中的碳同位素分馏: 机理, 表征及意义[J]. 中国科学: 地球科学,50(4):553-569.

    [91]

    李玉梅. 1998. 天然气水合物中甲烷的地球化学研究[J]. 天然气地球科学, 9(3-4): 9-18

    [92]

    梁健臻, 冯景春, 张卉, 张偲. 2024. 深海科学实验装备发展研究[J]. 中国工程科学,26(2):23-37.

    [93]

    刘志飞, 胡修棉. 2003. 白垩纪至早第三纪的极端气候事件[J]. 地球科学进展,18(5):681-690. doi: 10.3321/j.issn:1001-8166.2003.05.007

    [94]

    刘昌岭, 孟庆国. 2016. 天然气水合物实验测试技术[M]. 北京: 科学出版社.

    [95]

    刘桃, 吴通, 方朝刚, 章诚诚, 邵威, 廖圣兵. 2023. 下扬子地区无为凹陷三叠系气藏超压特征及其成因分析[J]. 华东地质,44(4):415-423.

    [96]

    陆尊礼, 凌洪飞, 蒋少涌, 杨竞红, 倪培. 2003. 稳定同位素在天然气水合物地球化学勘查中的应用简介——以“布莱克海隆”海区为例[J]. 海洋地质动态,19(2):28-32. doi: 10.3969/j.issn.1009-2722.2003.02.008

    [97]

    宁伏龙, 蒋国盛, 张凌, 吴翔, 窦斌, 张家铭. 2008. 天然气水合物实验装置及其发展趋势[J]. 海洋石油,28(2):68-72. doi: 10.3969/j.issn.1008-2336.2008.02.012

    [98]

    彭晓东, 徐锦龙, 方朝刚, 沈仕豪, 章诚诚. 2022. 宣广盆地中二叠世栖霞组层序地层特征及页岩气勘探前景[J]. 华东地质,43(2):154-166.

    [99]

    秦胜飞, 唐修义, 宋岩, 王红岩. 2006. 煤层甲烷碳同位素分布特征及分馏机理[J]. 中国科学 D辑 地球科学,36(12):1092-1097.

    [100]

    王洪浩. 2020. 深海冷泉保温保压取样器结构设计及优化研究[D]. 青岛: 青岛科技大学.

    [101]

    杨涛, 蒋少涌, 葛璐, 杨競红, 吴能友, 张光学, 刘坚, 陈道华. 2013. 南海北部琼东南盆地HQ-1PC沉积物孔隙水的地球化学特征及其对天然气水合物的指示意义[J]. 中国科学: 地球科学,43(3):329-338.

    [102]

    杨竞红, 蒋少涌, 凌洪飞. 2001. 天然气水合物的成因及其碳同位素判别标志[J]. 海洋地质动态,17(8):1-4. doi: 10.3969/j.issn.1009-2722.2001.08.001

    [103]

    杨涛, 薛紫晨, 杨竞红, 蒋少涌. 2003. 南海北部地区海洋沉积物中孔隙水的氢、氧同位素组成特征[J]. 地球学报,24(6):511-514. doi: 10.3321/j.issn:1006-3021.2003.06.005

    [104]

    姚波, ROSS K, 朱晶晶, IGUSKY K, 宋然平, DAMASSA T. 2016. 全面减排 迈向净零排放目标——中国非二氧化碳温室气体减排潜力研究[R]. 华盛顿: 世界资源研究所.

    [105]

    张晓宝, 徐永昌, 刘文汇, 沈平, 吉利明, 马立元. 2002. 吐哈盆地水溶气组分与同位素特征形成机理及意义探讨[J]. 沉积学报,20(4):705-709. doi: 10.3969/j.issn.1000-0550.2002.04.027

  • 加载中

(5)

(2)

计量
  • 文章访问数:  573
  • PDF下载数:  336
  • 施引文献:  0
出版历程
收稿日期:  2024-04-17
修回日期:  2024-07-19
录用日期:  2024-07-19
刊出日期:  2024-12-28

目录