Revealing the evolutionary history of the Yangtze River based on sediments provenance in the middle and lower reaches and offshore regions: progress, challenges and prospects
-
摘要:
长江作为连接青藏高原与西太平洋边缘海的关键纽带,其演化历史是揭示东亚“构造-地貌-气候”耦合机制的重要切入点。目前,学界围绕长江的形成及演化开展了大量研究,运用构造地貌学、沉积学等多学科方法深入分析,研究区域涵盖了上游的高原峡谷、三峡河流阶地,中下游的砾石层、江汉盆地以及海域盆地等。然而,关于长江的贯通时间,学界仍存在较大争议,提出了诸如始新世、中新世以前、晚中新世及早—中更新世之交等多种观点。文章基于长江中下游及海域的物源分析,系统梳理了长江演化研究的方法与进展,探讨了不同物源方法的适用性及面临的挑战。尽管多种物源方法为理解长江演化提供了重要证据,但各类方法均存在一定局限性。高封闭温度物源分析方法(碎屑锆石U-Pb定年等)易受再旋回物质的显著干扰,难以准确区分青藏高原东缘与长江中下游的物源贡献;低封闭温度方法(裂变径迹、云母及钾长石40Ar/39Ar测年等)能反映青藏东缘的独特隆升剥蚀过程,但相关研究较少。此外,陆域沉积易受局部物源影响且沉积连续性差,难以准确追溯长时间尺度的物源变化。相较而言,海域沉积地层受局部物源影响较小,且具有连续性好、年代标定精度高的优势。未来应加强多种同位素方法的联合应用,并注重对东海盆地等海域沉积记录的研究,结合沉积速率变化进行综合分析,以期更有效地揭示长江的演化历史。
Abstract:The Yangtze River, as a critical link between the Tibetan Plateau and the marginal seas of the western Pacific, serves as an important window for understanding the coupling mechanisms of tectonics, geomorphology, and climate in East Asia. Extensive research has been conducted on the formation and evolution of the Yangtze River, covering a wide range of regions from the upstream plateau gorges and river terraces in Three Gorges to the gravel layers in the mid-lower reaches, the Jianghan Basin and offshore basins. These studies have employed multidisciplinary approaches such as tectonic geomorphology and sedimentology to in-depth analyse. However, the timing of the river’s full connection remains highly debated, with hypotheses ranging from the Eocene, pre-Miocene, late Miocene, to the early-middle Pleistocene transition. Based on provenance analysis of sediments from the middle-lower Yangtze River and the offshore region, this study systematically reviews the methods and progress in the research on the Yangtze River’s evolution, discussing the applicability and challenges of different provenance approaches. Although multiple provenance methods provide crucial evidence for understanding the river’s evolution, each method has its limitations. High-closure-temperature provenance methods (e.g., detrital zircon U-Pb dating) are significantly affected by recycled materials, making it difficult to accurately distinguish sediment contributions from the eastern Tibetan Plateau and the middle-lower Yangtze River. Low closure temperature methods (e.g., fission track dating, mica and potassium feldspar 40Ar/39Ar dating) can effectively reflect the unique uplift and erosion processes of the eastern marginal Tibetan Plateau, but such studies remain relatively scarce. Moreover, terrestrial sediments are often influenced by local sources and suffer from poor depositional continuity, making it challenging to trace long-term provenance changes. In contrast, marine sedimentary sequences are less affected by local sources and offer advantages such as better continuity and higher chronological precision. It should be highlighted in the combined application of multiple isotopic provenance methods and the research on recording marine sedimentation including East China Sea Basin in the future. A comprehensive analysis with the change of sedimentation rate is expected to effectively reveal the evolution of the Yangtze River.
-
Key words:
- Yangtze River /
- provenance analysis /
- isotopic dating /
- sedimentary records /
- East China Sea Basin
-
-
图 1 长江流域地貌及水系分布简图(盆地区划修改自Ren et al., 2002; Zhu et al., 2019)
Figure 1.
图 2 长江流域大地构造单元区划及前人采样点位置分布图(修改自He et al., 2013; Sun et al., 2018, 2021; Yang et al., 2009 ; Zhang et al., 2016, 2021; Zheng et al., 2013)
Figure 2.
图 3 长江干流流域碎屑锆石U-Pb、云母40Ar/39Ar及长石40Ar/39Ar年龄谱图(数据来自He et al., 2013; Sun et al., 2016, 2018; Wang P et al.,2014, 2021; Yang et al., 2009; Zhang et al., 2021, 2022; Zheng et al., 2013, 2015)
Figure 3.
图 4 长江支流流域碎屑锆石U-Pb、云母40Ar/39Ar、长石40Ar/39Ar年龄谱图(数据来自He et al., 2013; Sun et al., 2016, 2018; Wang P et al., 2014, 2021; Zhang et al., 2021, 2022; Zheng et al., 2013, 2015)
Figure 4.
图 5 长江流域地层碎屑锆石U-Pb、云母40Ar/39Ar、长石40Ar/39Ar年龄谱图(数据来自Fu et al., 2021; Lin et al., 2024; Shen et al., 2012b; Wang J T et al., 2010; Wang P et al., 2014, 2018; Wu et al., 2017; Yang et al., 2019; Zheng et al., 2013)
Figure 5.
图 6 长江流域砾石层钾长石Pb同位素比值图(数据引自Zhang et al., 2016, 2021, 2022)
Figure 6.
表 1 长江中下游主要物源示踪研究对比
Table 1. Comparison on provenance tracing in major research areas of the middle and lower reaches of the Yangtze River
研究区域 主要依据 主要结论 文献来源 分歧焦点 江汉盆地 周老孔深100 m处中-粗颗粒成分和稳定磁性矿物成分明显增加 距今1.17~1.12 Ma,长江三峡贯通 张玉芬等, 2008 取样点是否客观揭示长江演化信息 沉积相及物源分析显示,黄陵背斜基岩从新近纪开始遭受剥蚀 长江至少在约23 Ma前已贯通 Wang et al.,2014 长江砾石层及江汉盆地 新近纪以来,长江砾石层的碎屑锆石U-Pb年龄组成未发生变化;江汉盆地在渐新世之前为湖相沉积 长江形成于36.5 ~23 Ma Zheng et al., 2013 (1)长江砾石层能否代表贯通后的长江干流沉积产物
(2)碎屑锆石U-Pb年龄能否有效区分长江上游物源信息长江砾石层中钾长石的铅同位素组成与桐柏—大别山基本一致,但与长江上游截然不同;在江汉盆地,周老孔3.4 Ma之后的钾长石铅同位素特征与长江上游一致 三峡的形成时间距今不超过10 Ma Zhang et al., 2021 长江中下游砾石层 通过对长江砾石层开展系统的年代学和沉积物源分析,发现其碎屑锆石U-Pb年龄特征与青藏高原的火山活动存在显著关联 长江于晚渐新世至早中新世时期已完成贯通 Wang et al.,2021 长江砾石层及现今长江干流 长江砾石层中云母及钾长石的40Ar/39Ar年龄与现今长江上游的情况截然不同,但与长江中游源区的特征高度吻合 在晚中新世之前,不存在贯通的长江 Sun et al., 2021 长江三角洲 碎屑锆石U-Pb年龄显示,自3.2 Ma以来长江三角洲的物源主要来自上游 距今3.2 Ma,长江已经形成 Jia et al., 2010 (1)如何客观解释某一时期或层段的物源变化
(2)不同区域沉积连续性差异大,物源的变化是代表水系的演化,还是反映沉积体系的变迁边缘海盆地 东海盆地晚中新世地层中首次记录到与现今长江干流具有高度相似性的碎屑锆石U-Pb年龄谱特征 现代长江侵蚀模式(以青藏高原东缘为主要物源)在晚中新世(约10 Ma)确立 Fu et al., 2021 西湖凹陷渐新世碎屑锆石U-Pb年龄组成与现今长江相似 渐新世,长江已经形成 Wang et al., 2018 台湾岛中新世开始物源发生突变,碎屑钾长石铅同位素显示主要来自苏鲁—大别造山带 早中新世,长江尚未贯通 Zhang et al., 2022 表 2 多种同位素物源方法及其在长江流域研究中的应用
Table 2. Characteristics of multiple isotopic provenance methods and their applications in researching Yangtze River drainage basin
同位素物源方法 封闭温度/°C 优点 缺点 长江流域应用情况 高封闭
温度锆石
U-Pb>900 分布广泛,极为稳定,普通铅含量极低,测年准确,方法成熟可靠 在基性岩中含量低,易受沉积再旋回影响 应用最为广泛,为现有多种观点提供了关键证据 锆石
Lu-Hf分布广泛,极为稳定,能够反映地壳演化,方法成熟可靠 在基性岩中含量低,易受沉积再旋回影响 长江现代沉积有大量的研究,但东海盆地尚无相关数据报道 较低
封闭
温度云母
40Ar/39Ar350~400 基本不受沉积再旋回影响,反映造山带剥露历史 易受风化作用影响,测试难度大,成岩后分选难度大 现今长江、江汉盆地及长江砾岩都有应用,可很好地区分青藏高原东缘物质与中下游物质 长石
40Ar/39Ar200~250 基本不受沉积再旋回影响,反映造山带剥露历史 易受风化作用影响,测试难度大,成岩后分选难度大 现今长江、江汉盆地及长江砾岩都有应用,可很好地区分青藏东缘物质与中下游物质 长石Pb 约450 沉积岩主要矿物组分基本不受沉积再旋回影响,不同地块Pb同位素差异较大,可通过电子探针对薄片进行原位测试 不同源区有一定重叠 上游和下游均开展了大量研究,已证实能相对有效地区分出上游物源 磷灰石
裂变径迹约120 受沉积再旋回影响小,很好地反映造山带抬升剥露史 所需样品量大,海域盆地易受埋藏升温的影响 青藏高原应用极为普遍,积累了大量数据;长江流域沉积物相关研究极少,仅江汉盆地开展少量工作 -
[1] BARBOUR G.1935.Physiographic history of the Yangtze[M]. XIE J R, trans. Beijing: The National Geological Survey of China and The Institute of Geology of the National Academy of Peking, 17-34 (in Chinese).
[2] CHAPPELL J, ZHENG HB, FIFIELD K. 2006. Yangtse River sediments and erosion rates from source to sink traced with cosmogenic 10Be: Sediments from major rivers[J]. Palaeogeography, Palaeoclimatology, Palaeoecology: An International Journal for the Geo-Sciences, 241(1): 79-94.
[3] CHEN J N, SUN G Y, WEN Y X, LI S Q, WANG X Y, LIU K, JIANG R, ZHOU X H. 2024. Grain sizes characteristics of sediments from QDQ2 borehole in the Yangtze River Delta since the Late Pleistocene and their paleoenvironmental significance[J]. East China Geology, 45(4): 466-477(in Chinese with English abstract).
[4] CHEN J, WANG Z, WANG Z H, CHEN Z Y. 2007. Heavy mineral distribution and its provenance implication in Late Cenozoic sediments in western and eastern area of the Changjiang River Delta[J]. Quaternary Sciences,27(5):700-708 (in Chinese with English abstract).
[5] CHEN C F, ZHONG K, ZHU W L, XU D H, WANG J, ZHANG B C. 2017a. Provenance of sediments and its effects on reservoir physical properties in Lishui Sag, East China Sea Shelf Basin[J]. Oil & Gas Geology,38(5):963-972 (in Chinese with English abstract).
[6] CHEN C F, ZHU W L, FU X W, XU D H, ZHANG B C. 2017b. Provenance change and its influence in Late Paleocene, Jiaojiang Sag, East China Sea Shelf Basin[J]. Journal of Tongji University (Natural Science),45(10):1522-1530,1548 (in Chinese with English abstract).
[7] CHEN X Y, LYU K L, WANG P, HUANG X T, KONG X G. 2022. A Review of Research Progress on the Analytical Method of Large-n Detrital Zircon U-Pb Geochronology[J]. Rock and Mineral Analysis,41(6): 920-934(in Chinese with English abstract).
[8] CHERNIAK D J, WATSON E B. 2001. Pb diffusion in zircon[J]. Chemical Geology,172(1-2):5-24. doi: 10.1016/S0009-2541(00)00233-3
[9] CLARK M K, SCHOENBOHM L M, ROYDEN L H, WHIPPLE K X, BURCHFIEL B C, ZHANG X, TANG W, WANG E, CHEN L. 2004. Surface uplift, tectonics, and erosion of eastern Tibet from large-scale drainage patterns[J]. Tectonics,23(1):TC1006.
[10] CLIFT P D. 2006. Controls on the erosion of Cenozoic Asia and the flux of clastic sediment to the ocean[J]. Earth and Planetary Science Letters,241(3-4):571-580. doi: 10.1016/j.jpgl.2005.11.028
[11] DENG K, YANG S Y, LI C, SU N, BI L, CHANG Y P, CHANG S C. 2017. Detrital zircon geochronology of river sands from Taiwan: implications for sedimentary provenance of Taiwan and its source link with the east China mainland[J]. Earth-Science Reviews,164:31-47. doi: 10.1016/j.earscirev.2016.10.015
[12] DING L, KAPP P, CAI F L, GARZIONE C N, XIONG Z Y, WANG H Q, WANG C. 2022. Timing and mechanisms of Tibetan Plateau uplift[J]. Nature Reviews Earth & Environment,3(10):652-667.
[13] DING D L, XU J S, WANG J L, LI G X, DING D, QIAO L L, YU J J. 2021. A brief introduction on dating methods of marine sediments[J]. East China Geology,42(2):217-228 (in Chinese with English abstract).
[14] FEDO C M, SIRCOMBE K N, RAINBIRD R H. 2003. Detrital zircon analysis of the sedimentary record[J]. Reviews in Mineralogy and Geochemistry,53(1):277-303. doi: 10.2113/0530277
[15] FU X W, YANG R, ZHU W L, YANG S Y, GENG J H, ZHANG L Y. 2022. Initiation of a "lost" large river on the East Asia margin in the Middle Eocene. Preprints, 2022: 2022030017.
[16] FU X W, ZHU W L, CHEN C F, ZHONG K, XU C H. 2015a. Provenance of detrital zircons from the Upper Member of the Mingyuefeng Formation in the western slope of the Lishui-Jiaojiang Sag[J]. Earth Science-Journal of China University of Geosciences,40(12):1987-2001.
[17] FU X W, ZHU W L, GENG J H, YANG S Y, ZHONG K, HUANG X T, ZHANG L Y, XU X. 2021. The present-day Yangtze River was established in the Late Miocene: evidence from detrital zircon ages[J]. Journal of Asian Earth Sciences,205:104600. doi: 10.1016/j.jseaes.2020.104600
[18] FU X W, ZHU W L, ZHONG K, CHEN C F. 2015. Discovery of Late Paleozoic detrital zircons in Lishui Sag, East China Sea, and its significance[J]. Journal of Tongji University (Natural Science),43(6):924-931 (in Chinese with English abstract).
[19] GALLAGHER K, BROWN R, JOHNSON C. 1998. Fission track analysis and its applications to geological problems[J]. Annual Review of Earth and Planetary Sciences,26:519-572. doi: 10.1146/annurev.earth.26.1.519
[20] HARRISON T M, HEIZLER M T, HAVIV I, AVOUAC J P. 2009. Continuous thermal histories from muscovite 40Ar/39Ar age spectra[J]. Geochimica et Cosmochimica Acta,73:A497.
[21] HE M Y, MEI X, ZHANG X H, LIU J, GUO X W, ZHENG H B. 2019. Provenance discrimination of detrital zircon U-Pb dating in the core CSDP-1 in the continental shelf of South Yellow Sea[J]. Journal of Jilin University (Earth Science Edition),49(1):85-95 (in Chinese with English abstract).
[22] HE M Y, ZHENG H B, CLIFT P D. 2013. Zircon U-Pb geochronology and Hf isotope data from the Yangtze River sands: implications for major magmatic events and crustal evolution in Central China[J]. Chemical Geology,360-361:186-203. doi: 10.1016/j.chemgeo.2013.10.020
[23] HU S B, KOHN B P, RAZA A, WANG J Y, GLEADOW A J W. 2006. Cretaceous and Cenozoic cooling history across the ultrahigh pressure Tongbai-Dabie belt, central China, from apatite fission-track thermochronology[J]. Tectonophysics,420(3-4):409-429. doi: 10.1016/j.tecto.2006.03.027
[24] HUANG X Y, GAO M S, HOU G H, ZHANG G, DANG X Z. 2023. Grain size characteristics and environmental response of marine sediments in Laizhou Bay[J]. East China Geology,44(4):402-414 (in Chinese with English abstract).
[25] JIA J T, ZHENG H B, HUANG X T, WU F Y, YANG S Y, WANG K, HE M Y. 2010. Detrital zircon U-Pb ages of Late Cenozoic sediments from the Yangtze delta: implication for the evolution of the Yangtze River[J]. Chinese Science Bulletin,55(15):1520-1528. doi: 10.1007/s11434-010-3091-x
[26] JIANG Y H, ZHOU Q P, NI H Y, CHEN L D, CHENG H Q, LEI M T, GE W Y, MA T, SHI B, CHENG Z Y, DUAN X J, SU J W, ZHU J Q, XIU L C, XIANG F, ZHU Z M, FENG N Q, XIE Z S, TAN J M, PENG K, GUO S Q, FU Y P, REN H Y, SUN J P, YANG Q, ZHU J L, WANG D H, LI M H, LIU G N, FAN C Z, WANG X F, SHI Y J, WANG H M, DONG X Z, CHEN H Y, HAO S F, DENG Y M, LI Y, XIAO Z Y, YANG H, LIU L, JIN Y, ZHANG H, MEI S J, QI Q J, LÜ J S, HOU L L, CHEN G, CHEN Z, JIA Z Y. 2023.Progress of environmental geological investigation and research in the Yangtze River Economic Zone[J]. East China Geology, 44(3): 239-261(in Chinese with English abstract).
[27] KANG C G, LI C A, ZHANG Y F, SHAO L, JIANG H J. 2014. Heavy mineral characteristics of the Yichang gravel layers and provenance tracing[J]. Acta Geologica Sinica,88(2):254-262 (in Chinese with English abstract).
[28] LI J J, XIE S Y, KUANG M S. 2001. Geomorphic evolution of the Yangtze Gorges and the time of their formation[J]. Geomorphology, 41(2): 125-135.
[29] LI X H, LI Z X, LI W X. 2014. Detrital zircon U-Pb age and Hf isotope constrains on the generation and reworking of Precambrian continental crust in the Cathaysia Block, South China: a synthesis[J]. Gondwana Research,25(3):1202-1215. doi: 10.1016/j.gr.2014.01.003
[30] LI S H, NAJMAN Y, VERMEESCH P, BARFOD D N, MILLAR I, CARTER A. 2024. A critical appraisal of the sensitivity of detrital zircon U-Pb provenance data to constrain drainage network evolution in Southeast Tibet[J]. Journal of Geophysical Research: Earth Surface,129(2):e2023JF007347. doi: 10.1029/2023JF007347
[31] LIN C K. 1989. Sediment and environment in Three Gorges and Gezhouba of the Yangtze River[M]. Nanjing: Nanjing University Press (in Chinese).
[32] LIN X J, ZENG J L, et al. 2024. Sedimentary provenance constraints on the Cretaceous to Cenozoic palaeogeography of the western margin of the Jianhan Basin, South China[J]. Gondwana Research, 125: 343-358.
[33] LIN X, LIU H J, WU Z H, LIU W M, ZHANG Y, CHEN J X. 2021. Provenance study on geochemical elements of detrital K-feldspar in Quaternary gravel layer in Yichang and its geological significance[J]. Journal of Geomechanics,27(6):1024-1034 (in Chinese with English abstract).
[34] LIN X, WU Z H, ZHAO X T, ZHANG Y, CHEN J X, LIU H J. 2022. Detrital zircon U-Pb age characteristics of main rivers around Jianghan Basin and implications of provenance tracing[J]. Acta Geoscientica Sinica,43(1):73-81 (in Chinese with English abstract).
[35] LIU W S, ZHAO H, ZHAO R Y, QIN J H, ZHANG X, JIANG J C, ZHAO C H, LI T J, WANG C H.2022. The Constraints of Carbonaceous Mudstone Re-Os and Detrital Zircons U-Pb Isotopic Dating on the Diagenetic and Metallogenic Ages from the Dabaoshan Copper Deposit in Guangdong Province[J]. Rock and Mineral Analysis, 41(2): 300-313(in Chinese with English abstract).
[36] LIU-ZENG J, TAPPONNIER P, GAUDEMER Y, DING L. 2008. Quantifying landscape differences across the Tibetan Plateau: implications for topographic relief evolution[J]. Journal of Geophysical Research: Earth Surface,113(F4):F04018.
[37] LIU-ZENG J, ZHANG J Y, MCPHILLIPS D, REINERS P, WANG W, PIK R, ZENG L S, HOKE G, XIE K J, XIAO P, ZHENG D W, GE Y K. 2018. Multiple episodes of fast exhumation since Cretaceous in southeast Tibet, revealed by low-temperature thermochronology[J]. Earth and Planetary Science Letters,490:62-76. doi: 10.1016/j.jpgl.2018.03.011
[38] MAO G Z, LIU C Y. 2011. Application of geochemistry in provenance and depositional setting analysis[J]. Journal of Earth Sciences and Environment,33(4):337-348 (in Chinese with English abstract).
[39] MCDOUGALL I, HARRISON T M. 1999. Geochronology and thermochronology by the 40Ar/39Ar method[M]. New York: Oxford University Press.
[40] NAJMAN Y, MARK C, BARFOD D N, CARTER A, PARRISH R, CHEW D, GEMIGNANI L. 2019. Spatial and temporal trends in exhumation of the Eastern Himalaya and syntaxis as determined from a multi-technique detrital thermochronological study of the Bengal Fan[J]. Geological Society of America Bulletin, 131: 1607-1622.
[41] NAJMAN Y, SOBEL E R, MILLAR I, LUAN X W, ZAPATA S, GARZANTI E, PARRA M, VEZZOLI G, ZHANG P, WA AUNG D, PAW S M T L, LWIN T N. 2022. The timing of collision between Asia and the west Burma Terrane, and the development of the Indo-Burman Ranges[J]. Tectonics,41(7):e2021TC007057. doi: 10.1029/2021TC007057
[42] OUIMET W, WHIPPLE K, ROYDEN L, REINERS P, HODGES K, PRINGLE M. 2010. Regional incision of the eastern margin of the Tibetan Plateau[J]. Lithosphere,2(1):50-63. doi: 10.1130/L57.1
[43] REINERS P W, BRANDON M T. 2006. Using thermochronology to understand orogenic erosion[J]. Annual Review of Earth and Planetary Sciences,34:419-466. doi: 10.1146/annurev.earth.34.031405.125202
[44] REINERS P W, ZHOU Z Y, EHLERS T A, XU C H, BRANDON M T, DONELICK R A, NICOLESCU S. 2003. Post-orogenic evolution of the Dabie Shan, eastern China, from (U-Th)/He and fission-track thermochronology[J]. American Journal of Science,303(6):489-518. doi: 10.2475/ajs.303.6.489
[45] REN J Y, TAMAKI, K, Li S T, ZHANG J X. 2002. Late Mesozoic and Cenozoic rifting and its dynamic setting in Eastern China and adjacent areas[J]. Tectonophysics,344(3-4):175-205. doi: 10.1016/S0040-1951(01)00271-2
[46] RICHARDSON N J, DENSMORE A L, SEWARD D, WIPF M, YONG L. 2010. Did incision of the Three Gorges begin in the Eocene?[J]. Geology,38(6):551-554. doi: 10.1130/G30527.1
[47] ROYDEN L H, BURCHFIEL B C, VAN DER HILST R D. 2008. The geological evolution of the Tibetan Plateau[J]. Science,321(5892):1054-1058. doi: 10.1126/science.1155371
[48] RUIZ G M H, SEWARD D, WINKLER W. 2004. Detrital thermochronology−a new perspective on hinterland tectonics, an example from the Andean Amazon Basin, Ecuador[J]. Basin Research,16(3):413-430. doi: 10.1111/j.1365-2117.2004.00239.x
[49] SHAO L, LI C A, YUAN S Y, KANG C T, WANG J T, LI T. 2012. Neodymium isotopic variations of the late Cenozoic sediments in the Jianghan Basin: Implications for sediment source and evolution of the Yangtze River[J]. Journal of Asian Earth Sciences,45(4):57-64.
[50] SHAO L, YUAN S Y, LI C A, KANG C G, ZHU W J, LIU Y D, WANG J T. 2015. Changing provenance of late Cenozoic sediments in the Jianghan Basin[J]. Geoscience Frontiers,6(4):605-615.
[51] SHEN C B, DONELICK R A, O’SULLIVAN P B, JONCKHEERE R, YANG Z, SHE Z B, MIU X L, GE X. 2012a. Provenance and hinterland exhumation from LA-ICP-MS zircon U–Pb and fission-track double dating of Cretaceous sediments in the Jianghan Basin, Yangtze block, central China[J]. Sedimentary Geology,281:194-207. doi: 10.1016/j.sedgeo.2012.09.009
[52] SHEN C B, MEI L F, PENG L, CHEN Y Z, YANG Z, HONG G F. 2012b. LA-ICP-MS U-Pb zircon age constraints on the provenance of Cretaceous sediments in the Yichang area of the Jianghan Basin, central China[J]. Cretaceous Research,34:172-183. doi: 10.1016/j.cretres.2011.10.016
[53] SUN X L, LI C, KUIPER K F, WANG J T, TIAN Y T, VERMEESCH P, ZHANG Z J, ZHAO J X, WIJBRANS J R. 2018. Geochronology of detrital muscovite and zircon constrains the sediment provenance changes in the Yangtze River during the late Cenozoic[J]. Basin Research,30(4):636-649. doi: 10.1111/bre.12268
[54] SUN X L, LI C A, KUIPER K F, ZHANG Z J, GAO J H, WIJBRANS J R. 2016. Human impact on erosion patterns and sediment transport in the Yangtze River[J]. Global and Planetary Change,143:88-99. doi: 10.1016/j.gloplacha.2016.06.004
[55] SUN X L, TIAN Y T, KUIPER K F, LI C, ZHANG Z J, WIJBRANS J R. 2021. No Yangtze River prior to the Late Miocene: evidence from detrital muscovite and K-feldspar 40Ar/39Ar geochronology[J]. Geophysical Research Letters,48(5):e2020GL089903. doi: 10.1029/2020GL089903
[56] SUN Y X, ZHU X Y, QIU X M, LIU Q D, DUAN H L, QIU Y F. 2024. Characteristics of shale fractures in the second member of Funing Formation in Gaoyou Sag of Subei Basin[J]. Petroleum Reservoir Evaluation and Development,14(3):414-424.
[57] TIAN Y T, KOHN B P, HU S B, GLEADOW A J W. 2015. Synchronous fluvial response to surface uplift in the eastern Tibetan Plateau: implications for crustal dynamics[J]. Geophysical Research Letters,42(1):29-35. doi: 10.1002/2014GL062383
[58] TANG D L K, SEWARD D, WILSON C J N, SEWELL R J, CARTER A, PAUL B T. 2014. Thermotectonic history of SE China since the Late Mesozoic: insights from detailed thermochronological studies of Hong Kong[J]. Journal of the Geological Society,171(4):591-604. doi: 10.1144/jgs2014-009
[59] TYRRELL S, HAUGHTON P D W, DALY J S, KOKFELT T F, GAGNEVIN D. 2006. The use of the common Pb isotope composition of detrital K-feldspar grains as a provenance tool and its application to Upper Carboniferous paleodrainage, Northern England[J]. Journal of Sedimentary Research,76(2):324-345. doi: 10.2110/jsr.2006.023
[60] VERVOORT J D, KEMP A I S. 2016. Clarifying the zircon Hf isotope record of crust–mantle evolution[J]. Chemical Geology, 425: 65-75.
[61] VEZZOLI G, GARZANTI E, LIMONTA M, ANDÒ S, YANG S Y. 2016. Erosion patterns in the Changjiang (Yangtze River) catchment revealed by bulk-sample versus single-mineral provenance budgets[J]. Geomorphology,261:177-192. doi: 10.1016/j.geomorph.2016.02.031
[62] WANG P X. 2004. Cenozoic deformation and the history of sea-land interactions in Asia[M]//CLIFT P, KUHNT W, WANG P, HAYES D. Continental-Ocean Interactions within East Asian Marginal Seas. Washington: American Geophysical Union, 1-22.
[63] WANG W, BIDGOLI T, YANG X H, YE J R. 2018. Source-to-sink links between East Asia and Taiwan from detrital zircon geochronology of the Oligocene Huagang Formation in the East China Sea Shelf Basin[J]. Geochemistry, Geophysics, Geosystems, 19(10): 3673-3688.
[64] WANG J, CHANG S C, LU H B, ZHANG H C. 2014. Detrital zircon U-Pb age constraints on Cretaceous sedimentary rocks of Lingshan Island and implications for tectonic evolution of eastern Shandong, North China[J]. Journal of Asian Earth Sciences,96:27-45. doi: 10.1016/j.jseaes.2014.09.002
[65] WANG L C, CHEN X L, CHU T C. 1997. A contrast analysis on the loads character of the Changjiang River and the Yellow River[J]. Geographical Research,16(4):71-79 (in Chinese with English abstract).
[66] WANG J T, LI C A, YANG Y, SHAO L. 2010. Detrital zircon geochronology and provenance of core sediments in Zhoulao Town, Jianghan Plain, China[J]. Journal of Earth Science,21(3):257-271. doi: 10.1007/s12583-010-0090-4
[67] WANG H J, YANG Z S, WANG Y, SAITO Y, LIU J P. 2008. Reconstruction of sediment flux from the Changjiang (Yangtze River) to the sea since the 1860s[J]. Journal of Hydrology,349(3-4):318-332. doi: 10.1016/j.jhydrol.2007.11.005
[68] WANG P, ZHENG H B, WANG Y D, WEI X C, TANG L Y, JOURDAN F, CHEN J, HUANG X T. 2021. Sedimentology, geochronology, and provenance of the Late Cenozoic “Yangtze Gravel”: implications for Lower Yangtze River reorganization and tectonic evolution in Southeast China[J]. GSA Bulletin,134(1-2):463-486.
[69] WANG X, HAN J Q, ZAN L, LI X L, PENG X P. 2024. Logging evaluation of shale oil in the second member of Funing Formation of Qintong Sag, Subei Basin[J]. Petroleum Reservoir Evaluation and Development,14(3):364-372.
[70] WEI C Y, VOINCHET P, ZHANG Y F, BAHAIN J J, LIU C R, KANG C G, YIN G M, SUN X L, LI C. 2020. Chronology and provenance of the Yichang gravel layer deposits in the Jianghan Basin, middle Yangtze River Valley, China: implications for the timing of channelization of the Three Gorges Valley[J]. Quaternary International,550:39-54. doi: 10.1016/j.quaint.2020.03.020
[71] WEI H H, WANG E, WU G L, MENG K. 2016. No sedimentary records indicating southerly flow of the paleo-Upper Yangtze River from the First Bend in southeastern Tibet[J]. Gondwana Research,32:93-104. doi: 10.1016/j.gr.2015.02.006
[72] WEISLOGEL A L, GRAHAM S A, CHANG E Z, WOODEN J L, GEHRELS G E. 2010. Detrital zircon provenance from three turbidite depocenters of the Middle-Upper Triassic Songpan-Ganzi complex, central China: record of collisional tectonics, erosional exhumation, and sediment production[J]. Geological Society of America Bulletin,122(11-12):2041-2062. doi: 10.1130/B26606.1
[73] WISSINK G K, HOKE G D. 2016. Eastern margin of Tibet supplies most sediment to the Yangtze River[J]. Lithosphere,8(6):601-614. doi: 10.1130/L570.1
[74] WU L, MONIÉ P, WANG F, LIN W, JI W B, BONNO M, MÜNCH P, WANG Q C. 2016. Cenozoic exhumation history of Sulu terrane: implications from (U-Th)/He thermochrology[J]. Tectonophysics,672-673:1-15. doi: 10.1016/j.tecto.2016.01.035
[75] WU L L, MEI L F, LIU Y S, LUO J, MIN C Z, LU S L, LI M H, GUO L B. 2017. Multiple provenance of rift sediments in the composite basin-mountain system: Constraints from detrital zircon U-Pb geochronology and heavy minerals of the early Eocene Jianghan Basin, Central China[J]. Sedimentary Geology, 349: 46-61.
[76] WU F, YANG J, WILDE S, LIU X, GUO J, ZHAI M. 2007. Detrital zircon U–Pb and Hf isotopic constraints on the crustal evolution of North Korea[J]. Precambrian Research,159(3-4):155-177. doi: 10.1016/j.precamres.2007.06.007
[77] XIANG F, YANG D, TIAN X, LI Z H, LUO L. 2011. LA-ICP-MS U-Pb geochronology of zircons in the Quaternary sediments from the Yichang area of Hubei Province and its provenance significance[J]. Mineralogy and Petrology,31(2):106-114 (in Chinese with English abstract).
[78] XU X S, O’REILLY S Y, GRIFFIN W L, WANG X L, PEARSON N J, HE Z Y. 2007. The crust of Cathaysia: age, assembly and reworking of two terranes[J]. Precambrian Research,158(1-2):51-78. doi: 10.1016/j.precamres.2007.04.010
[79] XU C H, ZHANG L, SHI H S, BRIX M R, HUHMA H, CHEN L H, ZHANG M Q, ZHOU Z Y. 2017. Tracing an Early Jurassic magmatic arc from south to East China Seas[J]. Tectonics,36(3):466-492. doi: 10.1002/2016TC004446
[80] YAN Y, CARTER A, HUANG C Y, CHAN L S, HU X Q, LAN Q. 2012. Constraints on Cenozoic regional drainage evolution of SW China from the provenance of the Jianchuan Basin[J]. Geochemistry, Geophysics, Geosystems, 13(3): Q03001.
[81] YANG J, GAO S, CHEN C, TANG Y Y, YUAN H L, GONG H J, XIE S W, WANG J Q. 2009. Episodic crustal growth of North China as revealed by U–Pb age and Hf isotopes of detrital zircons from modern rivers[J]. Geochimica et Cosmochimica Acta,73(9):2660-2673. doi: 10.1016/j.gca.2009.02.007
[82] YANG R, SEWARD D, ZHOU Z Y. 2010. Provenance study by U-Pb dating of the detrital zircons in the Yangtze River[J]. Marine Geology & Quaternary Geology,30(6):73-83 (in Chinese with English abstract).
[83] YANG Z, SHEN C B, RATSCHBACHER L, ENKELMANN E, JONCKHEERE R, WAUSCHKUHN B, DONG Y P. 2017. Sichuan Basin and beyond: eastward foreland growth of the Tibetan Plateau from an integration of Late Cretaceous-Cenozoic fission track and (U-Th)/He ages of the eastern Tibetan Plateau, Qinling, and Daba Shan[J]. Journal of Geophysical Research: Solid Earth,122(6):4712-4740. doi: 10.1002/2016JB013751
[84] YANG C Q, SHEN C B, ZATTIN M, YU W. 2021. Formation of the Yangtze Three Gorges: insights from detrital apatite fission-track dating of sediments from the Jianghan Basin[J]. Terra Nova,33(5):511-520. doi: 10.1111/ter.12543
[85] YANG C Q, SHEN C B, ZATTIN M, YU W, SHI S X, MEI L F. 2019. Provenances of Cenozoic sediments in the Jianghan Basin and implications for the formation of the Three Gorges[J]. International Geology Review,61(16):1980-1999. doi: 10.1080/00206814.2019.1576066
[86] YANG S Y, WANG Z B, GUO Y, LI C X, CAI J G. 2009. Heavy mineral compositions of the Changjiang (Yangtze River) sediments and their provenance-tracing implication[J]. Journal of Asian Earth Sciences,35(1):56-65. doi: 10.1016/j.jseaes.2008.12.002
[87] YANG S Y, WEI G J, SHI X F. 2015. Geochemical approaches of tracing source-to-sink sediment processes and environmental changes at the East Asian continental margin[J]. Bulletin of Mineralogy, Petrology and Geochemistry, 34(5): 902-910 (in Chinese with English abstract).
[88] YANG S L, XU K H, MILLIMAN J D, YANG H F, WU C S. 2015. Decline of Yangtze River water and sediment discharge: impact from natural and anthropogenic changes[J]. Scientific Reports,5:12581. doi: 10.1038/srep12581
[89] YANG S Y, ZHANG F, WANG Z B. 2012. Grain size distribution and age population of detrital zircons from the Changjiang (Yangtze) River system, China[J]. Chemical Geology,296-297:26-38. doi: 10.1016/j.chemgeo.2011.12.016
[90] YU J J, LIU P, LIN F Z, WANG J L, DING D L, PENG B, WU B, LAO J X. 2022. Sediment sources and environment evolution since 90 ka in Sansha Bay, Fujian Province[J]. East China Geology,43(1):30-39 (in Chinese with English abstract).
[91] YUAN S Y, LI C A, ZHANG Y F, SHAO L, WANG J T. 2012. Trace element characteristics of sediments in Jianghan Basin: implications for expansion of the upper reaches of the Yangtze River[J]. Geology in China,39(4):1042-1048 (in Chinese with English abstract).
[92] ZHANG Z J, DALY J S, LI C, TYRRELL S, SUN X L, BADENSZKI E, LI Y W, ZHANG D, TIAN Y T, YAN Y. 2021. Formation of the Three Gorges (Yangtze River) no earlier than 10 Ma[J]. Earth-Science Reviews,216:103601. doi: 10.1016/j.earscirev.2021.103601
[93] ZHANG Z J, DALY J S, TIAN Y T, TYRRELL S, SUN X L, BADENSZKI E, QIN Y H, CHENG Z Y, GUO R J. 2022. Sedimentary provenance perspectives on the evolution of the major rivers draining the eastern Tibetan Plateau[J]. Earth-Science Reviews,232:104151. doi: 10.1016/j.earscirev.2022.104151
[94] ZHANG X C, HUANG C Y, WANG Y J, CLIFT P D, YAN Y, FU X W, CHEN D F. 2017. Evolving Yangtze River reconstructed by detrital zircon U-Pb dating and petrographic analysis of Miocene marginal Sea sedimentary rocks of the Western Foothills and Hengchun Peninsula, Taiwan[J]. Tectonics,36(4):634-651. doi: 10.1002/2016TC004357
[95] ZHANG Y F, LI C A, WANG Q L, CHEN L, MA Y F, KANG C G. 2008. Magnetism parameters characteristics of drilling deposits in Jianghan Plain and indication for forming of the Yangtze River Three Gorges[J]. Chinese Science Bulletin,53(4):584-590. doi: 10.1007/s11434-008-0111-1
[96] ZHANG J Y, LU Y C, KRIJGSMAN W, LIU J S, LI X Q, DU X B, WANG C, LIU X C, FENG L, WEI W, LIN H. 2018. Source to sink transport in the Oligocene Huagang Formation of the Xihu Depression, East China Sea Shelf Basin[J]. Marine and Petroleum Geology,98:733-745. doi: 10.1016/j.marpetgeo.2018.09.014
[97] ZHANG Z J, TYRRELL S, LI C A, DALY J S, SUN X L, BLOWICK A, LIN X. 2016. Provenance of detrital K-feldspar in Jianghan Basin sheds new light on the Pliocene-Pleistocene evolution of the Yangtze River[J]. Geological Society of America Bulletin,128(9-10):1339-1351. doi: 10.1130/B31445.1
[98] ZHANG X C, YAN Y, HUANG C Y, CHEN D F, SHAN Y H, LAN Q, CHEN W H, YU M M. 2014. Provenance analysis of the Miocene accretionary prism of the Hengchun Peninsula, southern Taiwan, and regional geological significance[J]. Journal of Asian Earth Sciences,85:26-39. doi: 10.1016/j.jseaes.2014.01.021
[99] ZHAO X D, ZHANG H P, HETZEL R, KIRBY E, DUVALL A R, WHIPPLE K X, XIONG J G, LI Y F, PANG J Z, WANG Y, WANG P, LIU K, MA P F, ZHANG B, LI X M, ZHANG J W, ZHANG P Z. 2021. Existence of a continental-scale river system in eastern Tibet during the Late Cretaceous–early Palaeogene[J]. Nature Communications,12(1):7231. doi: 10.1038/s41467-021-27587-9
[100] ZHENG H B. 2015. Birth of the Yangtze River: age and tectonic-geomorphic implications[J]. National Science Review,2(4):438-453. doi: 10.1093/nsr/nwv063
[101] ZHENG L S. 2013. The provenance analysis of Xinghua-2 core from the Late Miocene, Subei Basin[D]. Nanjing: Nanjing Normal University (in Chinese with English abstract).
[102] ZHENG H B, CLIFT P D, HE M Y, BIAN Z X, LIU G Z, LIU X C, XIA L, YANG Q, JOURDAN F. 2021. Formation of the first bend in the Late Eocene gave birth to the modern Yangtze River, China[J]. Geology,49(1):35-39. doi: 10.1130/G48149.1
[103] ZHENG H B, CLIFT P D, WANG P, TADA R, JIA J T, HE M Y, JOURDAN F. 2013. Pre-Miocene birth of the Yangtze River[J]. Proceedings of the National Academy of Sciences of the United States of America,110(19):7556-7561.
[104] ZHENG H B, JIA D, CHEN J, WANG P. 2011. Did incision of the Three Gorges begin in the Eocene? Comment[J]. Geology,39(9):e244. doi: 10.1130/G31944C.1
[105] ZHU X F, SHEN C B, ZHOU R J, XU J Y, ZHAO J X, WANG L, GE X. 2020. Paleogene sediment provenance and paleogeographic reconstruction of the South Yellow Sea Basin, East China: constraints from detrital zircon U-Pb geochronology and heavy mineral assemblages[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 553: 109776.
[106] ZHU W L, ZHONG K, FU X W, CHEN C F, ZHANG M Q, GAO S L. 2019. The formation and evolution of the East China Sea Shelf Basin: a new view[J]. Earth-Science Reviews,190:89-111. doi: 10.1016/j.earscirev.2018.12.009
[107] ZHUANG G S, NAJMAN Y, GUILLOT S, RODDAZ M, ANTOINE P O, MÉTAIS G, CARTER A, MARIVAUX L, SOLANGI S H. 2015. Constraints on the collision and the pre-collision tectonic configuration between India and Asia from detrital geochronology, thermochronology, and geochemistry studies in the Lower Indus Basin, Pakistan[J]. Earth and Planetary Science Letters,432:363-373. doi: 10.1016/j.jpgl.2015.10.026
[108] 巴尔博. 1935. 扬子江流域地文发育史[M]. 谢家荣, 译. 北京: 实业部地质调查所国立北平研究院地质学研究所, 17-34.
[109] 陈嘉诺,孙高远,温永祥,李思琦,王鑫宇,刘凯,蒋仁,周效华. 2024. 长江三角洲QDQ2钻孔晚更新世以来沉积物粒度特征及其古环境意义[J]. 华东地质,45(4):466-477.
[110] 陈静, 王哲, 王张华, 陈中原. 2007. 长江三角洲东西部晚新生代地层中的重矿物差异及其物源意义[J]. 第四纪研究,27(5):700-708. doi: 10.3321/j.issn:1001-7410.2007.05.011
[111] 陈春峰, 钟楷, 朱伟林, 徐东浩, 王军, 张伯成. 2017a. 东海丽水凹陷物源及其对储层物性影响[J]. 石油与天然气地质,38(5):963-972.
[112] 陈春峰, 朱伟林, 付晓伟, 徐东浩, 张伯成. 2017b. 东海椒江凹陷晚古新世物源变化[J]. 同济大学学报(自然科学版),45(10):1522-1530,1548.
[113] 陈玺贇, 吕开来, 王平, 黄湘通, 孔兴功. 2022.大样本量(large-n)碎屑锆石U-Pb年代学分析技术研究进展[J]. 岩矿测试, 41(6): 920-934.
[114] 丁大林, 徐继尚, 王继龙, 李广雪, 丁咚, 乔璐璐, 于俊杰. 2021. 海洋沉积物测年方法综述[J]. 华东地质,42(2):217-228.
[115] 付晓伟,朱伟林,陈春峰,钟锴,许长海.2015a.丽水—椒江凹陷西斜坡明月峰组上段碎屑锆石物源.地球科学(中国地质大学学报), 40(12):1987-2001.
[116] 付晓伟, 朱伟林, 钟锴, 陈春峰. 2015b. 东海丽水凹陷晚古生代碎屑锆石的发现及其意义[J]. 同济大学学报(自然科学版),43(6):924-931.
[117] 何梦颖, 梅西, 张训华, 刘健, 郭兴伟, 郑洪波. 2019. 南黄海陆架区CSDP-1孔沉积物碎屑锆石U-Pb年龄物源判别[J]. 吉林大学学报(地球科学版),49(1):85-95.
[118] 黄学勇, 高茂生, 侯国华, 张戈, 党显璋. 2023. 莱州湾海洋沉积物粒度特征及其环境响应分析[J]. 华东地质,44(4):402-414.
[119] 姜月华, 周权平, 倪化勇, 陈立德, 程和琴, 雷明堂, 葛伟亚, 马腾, 施斌, 程知言, 段学军, 苏晶文, 朱锦旗, 修连存, 向芳, 朱志敏, 冯乃琦, 谢忠胜, 谭建民, 彭轲, 郭盛乔, 伏永朋, 任海彦, 孙建平, 杨强, 朱继良, 王东辉, 李明辉, 刘广宁, 范晨子, 王新峰, 史玉金, 王寒梅, 董贤哲, 陈焕元, 郝社峰, 邓娅敏, 李云, 肖则佑, 杨海, 刘林, 金阳, 张鸿, 梅世嘉, 齐秋菊, 吕劲松, 侯莉莉, 陈刚, 陈孜, 贾正阳. 2023. 长江经济带环境地质调查研究进展[J]. 华东地质,44(3):239-261. doi: 10.16788/j.hddz.32-1865/P.2023.03.001
[120] 康春国, 李长安, 张玉芬, 邵磊, 江华军. 2014. 宜昌砾石层重矿物组合特征及物源示踪分析[J]. 地质学报,88(2):254-262.
[121] 林承坤. 1989. 长江三峡与葛洲坝的泥沙及环境[M]. 南京: 南京大学出版社.
[122] 林旭, 刘海金, 吴中海, 刘维明, 张洋, 陈济鑫. 2021. 宜昌第四纪砾石层钾长石主、微量元素物源研究及其地质意义[J]. 地质力学学报,27(6):1024-1034.
[123] 林旭, 吴中海, 赵希涛, 张洋, 陈济鑫, 刘海金. 2022. 江汉盆地河流碎屑锆石U-Pb年龄特征及其对物源研究的启示[J]. 地球学报,43(1):73-81.
[124] 刘武生, 赵鸿, 赵如意, 秦锦华, 张熊, 蒋金昌, 赵晨辉, 李挺杰, 王成辉. 2022.炭质泥岩Re-Os和碎屑锆石U-Pb同位素定年对广东大宝山铜矿床成矿时代的约束[J]. 岩矿测试, 41(2): 300-313.
[125] 毛光周, 刘池洋. 2011. 地球化学在物源及沉积背景分析中的应用[J]. 地球科学与环境学报,33(4):337-348. doi: 10.3969/j.issn.1672-6561.2011.04.002
[126] 任美锷, 包浩生, 韩同春, 王飞燕, 黄培华. 1959. 云南西北部金沙江河谷地貌与河流袭夺问题[J]. 地理学报,(2):135-155. doi: 10.11821/xb195902003
[127] 孙雅雄, 朱相羽, 邱旭明, 刘启东, 段宏亮, 仇永峰, 巩磊. 2024. 苏北盆地高邮凹陷阜宁组二段页岩裂缝特征分析[J]. 油气藏评价与开发, 14(3): 414-424.
[128] 王腊春, 陈晓玲, 储同庆. 1997. 黄河、长江泥沙特性对比分析[J]. 地理研究,16(4):71-79.
[129] 王欣, 韩建强, 昝灵,李小龙, 彭兴平. 2024. 苏北盆地溱潼凹陷阜宁组二段页岩油测井评价研究[J]. 油气藏评价与开发, 14(3): 364-372.
[130] 向芳, 杨栋, 田馨, 李志宏, 罗来. 2011. 湖北宜昌地区第四纪沉积物中锆石的U-Pb年龄特征及其物源意义[J]. 矿物岩石,31(2):106-114.
[131] 杨蓉, SEWARD D, 周祖翼. 2010. 长江流域现代沉积物碎屑锆石U-Pb年龄物源探讨[J]. 海洋地质与第四纪地质,30(6):73-83.
[132] 杨守业, 韦刚健, 石学法. 2015. 地球化学方法示踪东亚大陆边缘源汇沉积过程与环境演变[J]. 矿物岩石地球化学通报,34(5):902-910. doi: 10.3969/j.issn.1007-2802.2015.05.003
[133] 于俊杰, 刘平, 林丰增, 王继龙, 丁大林, 彭博, 武彬, 劳金秀. 2022. 福建三沙湾90 ka以来沉积物来源及环境演变研究[J]. 华东地质,43(1):30-39.
[134] 袁胜元, 李长安, 张玉芬, 邵磊, 王节涛. 2012. 江汉盆地沉积物微量元素特征与长江上游水系拓展[J]. 中国地质,39(4):1042-1048. doi: 10.3969/j.issn.1000-3657.2012.04.020
[135] 张玉芬, 李长安, 王秋良, 陈亮, 马永法, 康春国. 2008. 江汉平原沉积物磁学特征及对长江三峡贯通的指示[J]. 科学通报,53(5):577-582. doi: 10.3321/j.issn:0023-074X.2008.05.013
[136] 郑良烁. 2013. 苏北兴化2孔晚中新世以来重矿物物源示踪研究[D]. 南京: 南京师范大学.
-