基于有效雨量的地质灾害降雨阈值研究——以温州市为例

徐登财, 张泰丽, 黑李莎, 王一鸣. 2025. 基于有效雨量的地质灾害降雨阈值研究——以温州市为例. 华东地质, 46(2): 252-267. doi: 10.16788/j.hddz.32-1865/P.2025.02.012
引用本文: 徐登财, 张泰丽, 黑李莎, 王一鸣. 2025. 基于有效雨量的地质灾害降雨阈值研究——以温州市为例. 华东地质, 46(2): 252-267. doi: 10.16788/j.hddz.32-1865/P.2025.02.012
XU Dengcai, ZHANG Taili, HEI Lisha, WANG Yiming. 2025. Study on rainfall threshold of geological disasters based on effective rainfall model in Wenzhou City. East China Geology, 46(2): 252-267. doi: 10.16788/j.hddz.32-1865/P.2025.02.012
Citation: XU Dengcai, ZHANG Taili, HEI Lisha, WANG Yiming. 2025. Study on rainfall threshold of geological disasters based on effective rainfall model in Wenzhou City. East China Geology, 46(2): 252-267. doi: 10.16788/j.hddz.32-1865/P.2025.02.012

基于有效雨量的地质灾害降雨阈值研究——以温州市为例

  • 基金项目: 中国地质调查局“浙江飞云江流域地质灾害调查(编号:DD20160282)”、“浙江丽水地区灾害地质调查(编号:DD20190648)”、“浙闽沿海台风暴雨型地质灾害精细调查与风险管控(编号:DD20221742)”和 温州市自然资源和规划局“温州市地质灾害风险防范区阈值专项研究(编号:ZZGC-ZBCG-2023026)”项目联合资助。
详细信息
    作者简介: 徐登财,1969年生,男,高级工程师,本科,主要从事地质灾害调查监测与风险预警研究工作。Email:xudengcai@163.com
    通讯作者: 张泰丽,1980年生,女,正高级工程师,博士,主要从事地质灾害监测、预警与风险评价研究工作。Email:674802878@qq.com
  • 中图分类号: P642.4

Study on rainfall threshold of geological disasters based on effective rainfall model in Wenzhou City

More Information
  • 温州市地处我国东南沿海强降雨核心区,极端降雨事件频繁,历年地质灾害高发。文章通过收集、整理该市历年地质灾害与降雨数据(地质灾害样本2 692个,其中时间精确到月份的地质灾害点2 615个,时间跨度为1905—2023年),对全市地质灾害的发育情况、时空分布规律及其与降雨量的关系进行了分析,并基于有效雨量模型,统计分析了不同类型地质灾害的降雨阈值。结果表明:温州市地质灾害类型主要为台风暴雨群发型与单点突发型。台风暴雨群发型地质灾害的时空分布与台风暴雨活动密切相关,并与降雨极值有较密切的相关性;单点突发型地质灾害的爆发与强降雨之间的相关性一般。通过统计分析,获得了温州市域范围内的台风暴雨群发型滑坡灾害与泥石流灾害在不同概率下的降雨阈值I-D曲线,并提出了不同类型地质灾害的降雨阈值建议。该研究可为温州市地质灾害的预警提供理论支持和科学依据,具有重要的现实意义和应用价值。

  • 加载中
  • 图 1  1956—2013年温州市四季降雨量图

    Figure 1. 

    图 2  温州市地势图

    Figure 2. 

    图 3  温州市地质构造纲要图

    Figure 3. 

    图 4  温州市工程地质简图

    Figure 4. 

    图 5  温州市地质灾害分布图(a)及地质灾害分布点密度图(b)

    Figure 5. 

    图 6  温州市台风暴雨群发型崩滑灾害点密度图(a)及泥石流灾害点密度图(b)

    Figure 6. 

    图 7  温州市台风暴雨群发型地质灾害月度分布柱状图

    Figure 7. 

    图 8  温州市单点突发型地质灾害点密度图

    Figure 8. 

    图 9  温州市单点突发型地质灾害月度分布柱状图

    Figure 9. 

    图 10  温州市单点突发型崩滑灾害与降雨极值关系柱状图

    Figure 10. 

    图 11  温州市群发型崩滑灾害与降雨极值关系柱状图

    Figure 11. 

    图 12  温州市群发型泥石流灾害与降雨极值关系柱状图

    Figure 12. 

    图 13  温州市“桑美”台风期间最大1 h雨量等值线与地质灾害分布(a)、最大3 h雨量等值线与地质灾害分布(b)及最大过程雨量等值线与地质灾害分布图(c)

    Figure 13. 

    图 14  温州市“莫拉克”台风期间最大1 h雨量等值线与地质灾害分布(a)、最大3 h雨量等值线与地质灾害分布(b)及最大过程雨量等值线与地质灾害分布图(c)

    Figure 14. 

    图 15  温州市“利奇马”台风期间最大1 h雨量等值线与地质灾害分布 (a)、最大3 h雨量等值线与地质灾害分布 (b)及最大过程雨量等值线与地质灾害分布图(c)

    Figure 15. 

    图 16  “桑美”台风(a)、“莫拉克”台风(b)及“利奇马”台风(c)雨量站泰森多边形分布图

    Figure 16. 

    图 17  基于有效雨量的I-D拟合曲线(蓝线为滑坡I-D曲线,红线为泥石流I-D曲线)

    Figure 17. 

    图 18  基于有效雨量的不同概率I-D曲线(左图为滑坡,右图为泥石流)

    Figure 18. 

    表 1  台风暴雨群发型地质灾害及台风数量月度分布统计结果

    Table 1.  Monthly frequency of typhoon/rainstorm-induced geo-hazards clusters and typhoon

    月份 1 2 3 4 5 6 7 8 9 10 11 12 合计
    群发型地质灾害/个 0 0 0 0 0 0 165 460 612 6 0 0 1243
    台风数量/个 0 0 0 1 4 22 53 70 49 11 0 0 210
    下载: 导出CSV

    表 2  “桑美”台风降雨极值统计表

    Table 2.  Statistics of extreme rainfall during Typhoon Saomai

    降雨发生后的时间/h 1 3 6 12 24 48
    极值降雨量/mm 129.5 240.5 370.3 454.1 474.4 478.5
    下载: 导出CSV

    表 3  “莫拉克”台风降雨极值统计表

    Table 3.  Statistics of extreme rainfall during Typhoon Morakot

    降雨发生后时间/h 1 3 6 12 24 48
    极值降雨量/mm 62.6 139.2 219.8 334 540.5 750
    下载: 导出CSV

    表 4  “利奇马”台风降雨极值统计表

    Table 4.  Statistics of extreme rainfall during Typhoon Lekima

    降雨发生后时间/h 1 3 6 12 24 48
    极值降雨量/mm 168.5 441 565 750 883.5 922
    下载: 导出CSV

    表 5  不同日数前期累计降雨量与滑坡相关性分析

    Table 5.  Correlation analysis between cumulative rainfall in different days and landslide

    r1r2r3r4r5r6r7r8r9r10
    0.37570.53450.34990.27600.28410.33510.33490.30130.29700.2931
    注:r1—r10为不同日数前期累计降雨量与滑坡相关系数。
    下载: 导出CSV

    表 6  不同日数前期累计降雨量与泥石流相关性分析

    Table 6.  Correlation between debris flow and cumulative rainfall for different days

    r1r2r3r4r5r6r7r8r9r10
    0.45580.66210.42570.25740.24490.26150.25670.19610.19330.1902
    注:r1—r10为不同日数前期累计降雨量与滑坡相关系数。
    下载: 导出CSV

    表 7  温州市崩滑灾害降雨阈值建议表(基于有效雨量)(单位:mm)

    Table 7.  Recommended rainfall thresholds for landslide disasters in Wenzhou (based on effective rainfall amount) (mm)

    预警时长 启动概率 低概率 中等概率 高概率
    I-D曲线 I0=2.38D−0.50 I30=23.03D−0.50 I50=25.30D−0.50 I80=40.60D−0.50
    1 h 2.4 23.0 25.3 40.6
    3 h 4.2 40.3 44.3 71.1
    6 h 5.9 57.4 63.1 101.2
    12 h 8.5 81.8 89.8 144.2
    24 h 12.0 116.5 127.9 205.3
    48 h 17.1 165.9 182.2 292.4
    下载: 导出CSV

    表 8  温州市泥石流灾害降雨阈值建议表(基于有效雨量)(单位:mm)

    Table 8.  Recommended rainfall thresholds for debris flow disasters in Wenzhou (based on effective rainfall amount) (mm)

    预警时长 启动概率 低概率 中等概率 高概率
    I-D曲线 I0=41.98D−0.83 I30=79.64D−0.83 I50=115.86D−0.83 I80=167.60D−0.83
    1 h 42.0 79.6 115.9 167.6
    3 h 50.6 96.0 139.7 202.0
    6 h 56.9 108.0 157.1 227.3
    12 h 64.0 121.5 176.8 255.7
    24 h 72.1 136.7 198.9 287.7
    48 h 81.1 153.8 223.7 323.7
    下载: 导出CSV
  • [1]

    ALVIOLI M, GUZZETTI F, ROSSI M. 2014. Scaling properties of rainfall induced landslides predicted by a physically based model[J]. Geomorphology,213:38-47. doi: 10.1016/j.geomorph.2013.12.039

    [2]

    BAO Q Y, MA T H, LI C J, WANG B X. 2016. Rainfall intensity-duration thresholds for the initiation of landslides in 62 hilly and mountainous counties of Zhejiang Province[J]. Bulletin of Science and Technology,32(5):48-55,95 (in Chinese with English abstract).

    [3]

    BORDONI M, CORRADINI B, LUCCHELLI L, VALENTINO R, BITTELLI M, VIVALDI V, MEISINA C. 2019. Empirical and physically based thresholds for the occurrence of shallow landslides in a prone area of Northern Italian Apennines[J]. Water,11(12):2653. doi: 10.3390/w11122653

    [4]

    CAINE N. 1980. The rainfall intensity: duration control of shallow landslides and debris flows[J]. Geografiska Annaler. Series A, Physical Geography, 62(1-2): 23-27.

    [5]

    CAMPBELL R H. 1975. Soil slips, debris flows, and rainstorms in the Santa Monica Mountains and vicinity, southern California[M]. Washington: US Government Printing Office.

    [6]

    ENDO T. 1969. Probable distribution of the amount of rainfall causing landslides[R]. Sapporo: Annual Report of the Hokkaido Branch, Government Forest Experiment Station, 122-136.

    [7]

    FUSCO F, DE VITA P, MIRUS B B, BAUM R L, ALLOCCA V, TUFANO R, DI CLEMENTE E, CALCATERRA D. 2019. Physically based estimation of rainfall thresholds triggering shallow landslides in volcanic slopes of Southern Italy[J]. Water,11(9):1915. doi: 10.3390/w11091915

    [8]

    GIANNECCHINI R, GALANTI Y, AVANZI G D A, BARSANTI M. 2016. Probabilistic rainfall thresholds for triggering debris flows in a human-modified landscape[J]. Geomorphology,257:94-107. doi: 10.1016/j.geomorph.2015.12.012

    [9]

    GONG X F. 2004. The current situation, characteristics and causes of debris flows in the northern mountainous area of Yueqing City[J]. Zhejiang Land & Resources,(10):38-42 (in Chinese).

    [10]

    GUO X J, CUI P, LI Y, MA L, GE Y G, MAHONEY W B. 2016. Intensity–duration threshold of rainfall-triggered debris flows in the Wenchuan earthquake affected area, China[J]. Geomorphology,253:208-216. doi: 10.1016/j.geomorph.2015.10.009

    [11]

    GUZZETTI F, PERUCCACCI S, ROSSI M, STARK C P. 2008. The rainfall intensity–duration control of shallow landslides and debris flows: an update[J]. Landslides,5(1):3-17. doi: 10.1007/s10346-007-0112-1

    [12]

    HAN S, HUI S J, SUN Q, ZHANG S, SHI L, ZHANG Y, ZHU Q W. 2023. Research on ecological restoration technology of high-steep slopes of abandoned mines based on geological safety evaluation[J]. East China Geology,44(2):216-227 (in Chinese with English abstract).

    [13]

    MA T H, LI C J, SUN L L, LI W, HE C F. 2011. Rainfall intensity-duration thresholds for landslides in Zhejiang region, China[J]. The Chinese Journal of Geological Hazard and Control,22(2):20-25 (in Chinese with English abstract).

    [14]

    MARIN R J, GARCÍA E F, ARISTIZÁBAL E. 2020. Effect of basin morphometric parameters on physically-based rainfall thresholds for shallow landslides[J]. Engineering Geology,278:105855. doi: 10.1016/j.enggeo.2020.105855

    [15]

    MARIN R J, VELÁSQUEZ M F. 2020. Influence of hydraulic properties on physically modelling slope stability and the definition of rainfall thresholds for shallow landslides[J]. Geomorphology,351:106976. doi: 10.1016/j.geomorph.2019.106976

    [16]

    MARINO P, PERES D J, CANCELLIERE A, GRECO R, BOGAARD T A. 2020. Soil moisture information can improve shallow landslide forecasting using the hydrometeorological threshold approach[J]. Landslides,17(9):2041-2054. doi: 10.1007/s10346-020-01420-8

    [17]

    NAPOLITANO E, FUSCO F, BAUM R L, GODT J W, DE VITA P. 2016. Effect of antecedent-hydrological conditions on rainfall triggering of debris flows in ash-fall pyroclastic mantled slopes of Campania (southern Italy)[J]. Landslides,13(5):967-983. doi: 10.1007/s10346-015-0647-5

    [18]

    ONODERA T, YOSHINAKA R, KAZAMA H. 1974. Slope failures caused by heavy rainfall in Japan[J]. Journal of the Japan Society of Engineering Geology,15(4):191-200. doi: 10.5110/jjseg.15.191

    [19]

    PAPA M N, MEDINA V, CIERVO F, BATEMAN A. 2013. Derivation of critical rainfall thresholds for shallow landslides as a tool for debris flow early warning systems[J]. Hydrology and Earth System Sciences,17(10):4095-4107. doi: 10.5194/hess-17-4095-2013

    [20]

    SENOO K, HARAGUCHI K, KIKUI T, YOSHIDA S. 2001. On the theme and improvement of standard rainfall for warning and evacuation from sediment disasters[J]. Journal of the Japan Society of Erosion Control Engineering, 53(6): 37-44 (in Japanese with English abstract).

    [21]

    SUN L Y, ZHANG H H, QIU C J, YANG Z B, ZHANG C X, ZHANG B, ZHANG T L. 2024. Temporal variability of influence factors weights and rainfall thresholds of geological hazards in Ningbo City[J]. East China Geology,45(2):218-227 (in Chinese with English abstract).

    [22]

    SUN Q, ZHANG T L, WU J B, WANG H S, ZHU Y H, HAN S. 2021. Application of shallow landslide stability model to landslide prediction in the Linxi River basin of southern Zhejiang[J]. East China Geology,42(4):383-389 (in Chinese with English abstract).

    [23]

    TAN W P. 1989. Distribution characters of critical rainfall line for the debris flow gully[J]. Bulletin of Soil and Water Conservation,9(6):21-26 (in Chinese with English abstract).

    [24]

    TANG R J, XU G L, TANG Z Q. 2019. Study on critical rainfall of grouped slope debris flows in Wenzhou[J]. The Chinese Journal of Geological Hazard and Control,30(3):60-66 (in Chinese with English abstract).

    [25]

    WANG Y M, YUAN M H, YIN K L, GONG X F. 2011. Analysis on the critical rainfall for the outbreak of debris flow in Southeast mountain area of Zhejiang Province[J]. The Chinese Journal of Geological Hazard and Control,22(3):21-26 (in Chinese with English abstract).

    [26]

    WANG H S, WU J B, ZHANG T L, SUN Q, LI Y.2020. Dynamic assesment of geohazard susceptibility based on the SHALSTAB model[J]. East China Geology, 41(1): 88-95(in Chinese with English Abstract).

    [27]

    WU Y M, LAN H X, GAO X, LI L P, YANG Z H. 2015. A simplified physically based coupled rainfall threshold model for triggering landslides[J]. Engineering Geology,195:63-69. doi: 10.1016/j.enggeo.2015.05.022

    [28]

    WU J B, WANG H S, ZHANG T L, SUN Q, ZHU Y H. 2021. Analysis and prediction of the groundwater dynamics of landslide induced by typhoon rainstorm[J]. East China Geology,42(4):390-397 (in Chinese with English abstract).

    [29]

    YUAN L X, CUI X, WANG Z P, LI Y S. 2009. Cause mechanism of Xianrentan debris flow in Yueqing City, Zhejiang Province[J]. Journal of Natural Disasters,18(2):150-154 (in Chinese with English abstract).

    [30]

    ZHANG G R, CHEN L X, DONG Z X. 2011. Real-time warning system of regional landslides supported by WEBGIS and its application in Zhejiang Province, China[J]. Procedia Earth and Planetary Science,2:247-254. doi: 10.1016/j.proeps.2011.09.040

    [31]

    鲍其云, 麻土华, 李长江, 王保欣. 2016. 浙江62个丘陵山区县引发滑坡的降雨强度——历时阈值[J]. 科技通报,32(5):48-55,95. doi: 10.3969/j.issn.1001-7119.2016.05.010

    [32]

    龚新法. 2004. 乐清市北部山区泥石流现状特征及成因[J]. 浙江国土资源,(10):38-42. doi: 10.3969/j.issn.1672-6960.2004.10.015

    [33]

    韩帅, 惠淑君, 孙强, 张帅, 时磊, 张颖, 朱庆伟. 2023. 基于地质安全评价的废弃矿山高陡边坡生态修复技术研究[J]. 华东地质,44(2):216-227.

    [34]

    瀬尾克美, 原口勝則, 菊井稔宏, 吉田真也. 2001. 在滑坡和疏散下的标准降雨的问题和改进[J]. 砂防学会誌,53(6):37-44.

    [35]

    麻土华, 李长江, 孙乐玲, 李炜, 何彩芬. 2011. 浙江地区引发滑坡的降雨强度-历时关系[J]. 中国地质灾害与防治学报,22(2):20-25. doi: 10.3969/j.issn.1003-8035.2011.02.004

    [36]

    孙丽影, 张弘怀, 邱昌骏, 杨珍斌, 张长响, 张斌, 张泰丽. 2024. 宁波地质灾害影响因子权重的时变性与雨量阈值研究[J]. 华东地质,45(2):218-227.

    [37]

    孙强, 张泰丽, 伍剑波, 王赫生, 朱延辉, 韩帅. 2021. SHALSTAB模型在浙南林溪流域滑坡预测中的应用[J]. 华东地质,42(4):383-389.

    [38]

    谭万沛. 1989. 泥石流沟的临界雨量线分布特征[J]. 水土保持通报,9(6):21-26.

    [39]

    汤人杰, 徐光黎, 汤忠强. 2019. 温州群发性坡面泥石流临界雨量研究[J]. 中国地质灾害与防治学报,30(3):60-66.

    [40]

    王一鸣, 袁民豪, 殷坤龙, 龚新法. 2011. 浙东南山丘区泥石流爆发的临界雨量分析[J]. 中国地质灾害与防治学报,22(3):21-26. doi: 10.3969/j.issn.1003-8035.2011.03.005

    [41]

    王赫生, 伍剑波, 张泰丽, 孙 强, 李 燕.2020. 基于SHALSTAB模型的地质灾害易发性动态评价[J]. 华东地质, 41(1): 88-95.

    [42]

    伍剑波, 王赫生, 张泰丽, 孙强, 朱延辉. 2021. 台风暴雨型滑坡地下水位动态特征及预测[J]. 华东地质,42(4):390-397.

    [43]

    袁丽侠, 崔星, 王州平, 李永生. 2009. 浙江乐清仙人坦泥石流的形成机制[J]. 自然灾害学报,18(2):150-154. doi: 10.3969/j.issn.1004-4574.2009.02.024

  • 加载中

(18)

(8)

计量
  • 文章访问数:  164
  • PDF下载数:  17
  • 施引文献:  0
出版历程
收稿日期:  2025-02-28
修回日期:  2025-04-21
录用日期:  2025-04-21
刊出日期:  2025-06-28

目录