基于分形理论的下扬子地区孤峰组页岩孔隙结构研究

刘桃, 廖圣兵, 邵威, 方朝刚, 章诚诚. 2025. 基于分形理论的下扬子地区孤峰组页岩孔隙结构研究. 华东地质, 46(2): 238-251. doi: 10.16788/j.hddz.32-1865/P.2024.06.002
引用本文: 刘桃, 廖圣兵, 邵威, 方朝刚, 章诚诚. 2025. 基于分形理论的下扬子地区孤峰组页岩孔隙结构研究. 华东地质, 46(2): 238-251. doi: 10.16788/j.hddz.32-1865/P.2024.06.002
LIU Tao, LIAO Shengbing, SHAO Wei, FANG Chaogang, ZHANG Chengcheng. 2025. Research on the pore structure of Gufeng Formation shale in the Lower Yangtze area based on fractal theory. East China Geology, 46(2): 238-251. doi: 10.16788/j.hddz.32-1865/P.2024.06.002
Citation: LIU Tao, LIAO Shengbing, SHAO Wei, FANG Chaogang, ZHANG Chengcheng. 2025. Research on the pore structure of Gufeng Formation shale in the Lower Yangtze area based on fractal theory. East China Geology, 46(2): 238-251. doi: 10.16788/j.hddz.32-1865/P.2024.06.002

基于分形理论的下扬子地区孤峰组页岩孔隙结构研究

  • 基金项目: 中国地质调查局“无为—南陵地区盆地深部地质调查(编号:DD20243499)”和“苏皖地区页岩气资源调查评价(编号:DD20221662)”项目联合资助。
详细信息
    作者简介: 刘桃,1994年生,男,工程师,硕士,主要从事油气地质研究工作。Email:1115303614@qq.com
    通讯作者: 邵威,1988年生,男,工程师,硕士,主要从事页岩气地质研究工作。Email:44252631@qq.com
  • 中图分类号: P593;P624

Research on the pore structure of Gufeng Formation shale in the Lower Yangtze area based on fractal theory

More Information
  • 复杂的孔隙结构系统是制约页岩气富集成藏的主要因素,但现有的孤峰组页岩孔隙结构研究尚较为薄弱。为明确下扬子地区孤峰组页岩储层的孔隙结构特征,文章应用扫描电镜、高压压汞和氮气吸附等多种实验手段,基于孔隙分形理论,揭示了孤峰组页岩孔隙的多段分形特征,建立了孤峰组页岩孔隙大小分类方案,将孔隙按孔径大小划分为微孔(<2 nm)、小孔(2~20 nm)、中孔(20~50 nm)、大孔(50~5 000 nm)及特大孔(>5 000 nm)等5类,并讨论了不同类型孔隙的发育特征。研究结果显示,孤峰组页岩储集空间类型多样,主要包括有机质孔、矿物溶蚀孔及微裂缝等;页岩孔径分布显示,孤峰组页岩孔隙发育以小孔(2~20 nm)为主,平均体积分数达50.3%;不同类型孔隙中, 20 nm以下的微孔隙越发育,则页岩孔隙系统的复杂程度越高,吸附气赋存能力越强,越有利于下扬子复杂构造区页岩气富集成藏。因此,以发育小孔为主的孤峰组页岩具有良好的页岩气勘探前景。

  • 加载中
  • 图 1  下扬子地区二叠纪孤峰组岩相古地理图(a)及WWD-1井地层柱状图(b)(李建青等,2021廖圣兵等,2021

    Figure 1. 

    图 2  孤峰组页岩孔隙类型

    Figure 2. 

    图 3  孤峰组页岩高压压汞进汞-退汞曲线

    Figure 3. 

    图 4  孤峰组页岩高压压汞分形曲线

    Figure 4. 

    图 5  孤峰组页岩低温氮气吸附-脱附曲线

    Figure 5. 

    图 6  孤峰组页岩N2吸附分形曲线

    Figure 6. 

    图 7  孤峰组页岩不同类型孔隙孔径分布图

    Figure 7. 

    图 8  孤峰组页岩总分形维数与孔隙发育(a)(b)、矿物组分(d)(e)(f)、TOC(c)的相关性分析

    Figure 8. 

    图 9  孤峰组页岩孔隙分布与BET比表面积的相关性

    Figure 9. 

    图 10  孤峰组页岩甲烷等温吸附曲线

    Figure 10. 

    表 1  下扬子地区孤峰组页岩TOC及矿物含量

    Table 1.  TOC and mineral composition contents of the Gufeng Formation shale in the Lower Yangtze area

    样品编号 深度/m TOC/% Ro/% 矿物含量/%
    石英 钾长石 斜长石 方解石 白云石 黄铁矿 黏土矿物
    样品1 447 5.51 1.53 52 0 2 27 0 1 18
    样品2 459 5.56 1.64 58 0 0 9 2 6 25
    样品3 465 6.71 1.63 63 0 0 28 1 5 3
    样品4 468 4.89 1.65 58 0 0 29 2 2 9
    样品5 481 3.71 1.75 21 0 0 70 1 2 6
    样品6 483 3.33 1.77 25 0 0 55 7 3 10
    平均值 4.95 1.66 46 0 0 36 2 3 12
    下载: 导出CSV

    表 2  孤峰组页岩高压压汞分形维数

    Table 2.  Fractal dimension of high-pressure mercury intrusion in Gufeng Formation shale

    样品编号第1段分形第2段分形第3段分形拐点直径/μm
    DMICP-1R2DMICP-2R2DMICP-3R2r1-2r2-3
    样品12.238 90.973 82.135 60.913 62.723 50.979 54.72~6.050.045~0.050
    样品22.178 80.976 52.063 40.909 52.691 50.984 04.67~7.250.050~0.055
    样品32.213 70.977 92.068 10.966 72.812 90.971 74.77~6.050.047~0.052
    样品42.132 50.967 52.043 10.947 32.604 50.936 44.77~6.050.050~0.056
    样品52.390 90.987 22.166 70.993 72.365 20.986 14.60~6.050.050~0.055
    样品62.169 20.973 02.048 80.995 22.670 80.924 74.59~6.050.047~0.052
    下载: 导出CSV

    表 3  孤峰组页岩N2吸附分形维数

    Table 3.  Fractal dimension of N2 adsorption in Gufeng Formation shale

    样品编号0<P/Po<0.50.5<P/Po<0.90.9<P/Po<1
    K1R2DFHH-1K2R2DFHH-2K3R2DFHH-3
    样品1−0.334 20.958 62.665 8−0.174 10.999 02.825 9−0.101 00.985 32.899 0
    样品2−0.321 80.965 92.678 2−0.170 90.996 22.829 1−0.087 00.989 42.913 0
    样品3−0.311 10.974 62.688 9−0.174 40.998 32.825 6−0.122 60.992 22.877 4
    样品4−0.346 70.970 62.653 3−0.193 70.996 82.806 3−0.090 80.993 32.909 2
    样品5−0.353 60.983 02.646 4−0.196 80.995 12.803 2−0.138 40.996 32.861 6
    样品6−0.330 50.981 02.669 5−0.188 10.996 22.811 9−0.119 30.990 02.880 7
    下载: 导出CSV

    表 4  孤峰组页岩不同类型孔隙体积分数

    Table 4.  Different types of pore volume fractions in Gufeng Formation shale

    样品编号 孔隙体积分数/%
    微孔 小孔 中孔 大孔 特大孔
    样品1 19.0 50.2 14.3 8.0 8.5
    样品2 21.5 54.9 11.6 3.3 8.7
    样品3 18.5 52.3 15.1 3.7 10.4
    样品4 18.8 53.9 12.6 2.8 11.8
    样品5 8.5 39.3 10.6 23.5 18.0
    样品6 17.6 51.4 13.4 3.6 14.0
    平均值 17.3 50.3 12.9 7.5 11.9
    下载: 导出CSV
  • [1]

    CHEN J. 2021. Pore structure characteristics of shale in Early Cambrian Niutitang Formationin, Fenggang area, Guizhou Province[J]. East China Geology,42(3):359-366(in Chinese with English abstract).

    [2]

    HE J W, XIE Y, LIU J Q, HE L. 2023. Geological characteristics of ultra-deep Longmaxi Formation shale reservoirs in the southwest margin of Sichuan Basin: case study of Leibo block in Zhaotong National Shale Gas Demonstration area. Natural Gas Geoscience, 34(7): 1260-1273 (in Chinese with English abstract).

    [3]

    JIANG Z X, LI T W, GONG H J, JIANG T, CHANG J Q, NING C X, SU S Y, CHEN W T. 2020. Characteristics of low-mature shale reservoirs in Zhanhua sag and their influence on the mobility of shale oil[J]. Acta Petrolei Sinica,41(12):1587-1600 (in Chinese with English abstract). doi: 10.1038/s41401-020-0475-6

    [4]

    JIANG Z X, TANG X L, LI Z, HUANG H X, YANG P P, YANG X, LI W B, HAO J. 2016. The whole-aperture pore structure characteristics and its effect on gas content of the Longmaxi Formation shale in the southeastern Sichuan basin[J]. Earth Science Frontiers,23(2):126-134 (in Chinese with English abstract).

    [5]

    JIN Z J, WANG G P, LIU G X, GAO B, LIU Q Y, WANG H L, LIANG X P, WANG R Y. 2021b. Research progress and key scientific issues of continental shale oil in China[J]. Acta Petrolei Sinica,42(7):821-835 (in Chinese with English abstract).

    [6]

    JIN Z J, ZHU R K, LIANG X P, SHEN Y Q. 2021a. Several issues worthy of attention in current lacustrine shale oil exploration and development[J]. Petroleum Exploration and Development,48(6):1276-1287 (in Chinese with English abstract).

    [7]

    KUMAR S, MENDHE V A, KAMBLE A D, VARMA A K, MISHRA D K, BANNERJEE M, BURAGOHAIN J, PRASAD A K. 2019. Geochemical attributes, pore structures and fractal characteristics of Barakar shale deposits of Mand-Raigarh Basin, India[J]. Marine and Petroleum Geology,103:377-396. doi: 10.1016/j.marpetgeo.2019.02.026

    [8]

    LI J Y, LI W B, ZHANG P F, CHEN G H, WANG J, LIU L Q. 2024. Isotope fractionation during the formation-decomposition of natural gas hydrate and its energy-environmental implications[J]. East China Geology,45(4):387-401 (in Chinese with English abstract).

    [9]

    LI W B, LU S F, LI J Q, ZHANG P F, CHEN C, WANG S Y. 2019. The coupling relationship between material composition and pore microstructure of southern China marine shale[J]. Natural Gas Geoscience,30(1):27-38 (in Chinese with English abstract).

    [10]

    LI J Q, ZHANG C C, HUANG Z Q, FANG C G, WU T, SHAO W, ZHOU D R, TENG L, WANG Y J, HUANG N. 2021. Discovery of overpressure gas reservoirs in the complex structural area of the Lower Yangtze and its key elements of hydrocarbon enrichment[J]. Geological Bulletin of China,40(4):577-585 (in Chinese with English abstract).

    [11]

    LI P, ZHENG M, BI H, WU S T, WANG X R. 2017. Pore throat structure and fractal characteristics of tight oil sandstone: a case study in the Ordos Basin, China[J]. Journal of Petroleum Science and Engineering,149:665-674. doi: 10.1016/j.petrol.2016.11.015

    [12]

    LIAO S B, SHI G, LI J Q, ZHEN H J, ZHOU D R, WANG C Z, HUANG N. 2021. Shale gas drilled by well WWD1 in the Wangjiang area of Anhui Province[J]. Geology in China,48(5):1657-1658 (in Chinese with English abstract).

    [13]

    LIU Z B, HU Z Q, LIU G X, LIU Z J, LIU H T, HAO J Y, WANG P W, LI P. 2021. Pore characteristics and controlling factors of continental shale reservoirs in the Lower Jurassic Ziliujing Formation, northeastern Sichuan Basin[J]. Oil & Gas Geology,42(1):136-145 (in Chinese with English abstract).

    [14]

    LIU J W, LI P C, SUN Z Y, LU Z W, DU Z H, LIANG H B, LU D T. 2017. A new method for analysis of dual pore size distributions in shale using nitrogen adsorption measurements[J]. Fuel,210:446-454. doi: 10.1016/j.fuel.2017.08.067

    [15]

    LIU T, LIAO S B, FANG C G, ZHANG C C, ZHOU D R, SHAO W, WANG Y J. (2022-10-09). Pore size distribution characteristics of the Gufeng Formation shale in the Lower Yangtze area and its effect on gas-bearing properties[J/OL]. Geology in China. http://kns.cnki.net/kcms/detail/11.1167.P.20221008.1820.004.html (in Chinese with English abstract).

    [16]

    LIU K Q, OSTADHASSAN M, SUN L W, ZOU J, YUAN Y J, GENTZIS T, ZHANG Y X, CARVAJAL-ORTIZ H, REZAEE R. 2019. A comprehensive pore structure study of the Bakken Shale with SANS, N2 adsorption and mercury intrusion[J]. Fuel,245:274-285. doi: 10.1016/j.fuel.2019.01.174

    [17]

    LIU T, WU T, FANG C G, ZHANG C C, SHAO W, LIAO S B. 2023. Overpressure characteristics and genesis of the Triassic gas reservoirs in Wuwei Depression of Lower Yangtze Region[J]. East China Geology,44(4):415-423 (in Chinese with English abstract).

    [18]

    MA Y S, CAI X Y, ZHAO P R, HU Z Q, LIU H M, GAO B, WANG W Q, LI Z M, ZHANG Z L. 2022. Geological characteristics and exploration practices of continental shale oil in China[J]. Acta Geologica Sinica,96(1):155-171 (in Chinese with English abstract).

    [19]

    MENDHE V A, BANNERJEE M, VARMA A K, KAMBLE A D, MISHRA S, SINGH B D. 2017. Fractal and pore dispositions of coal seams with significance to coalbed methane plays of East Bokaro, Jharkhand, India[J]. Journal of Natural Gas Science and Engineering,38:412-433. doi: 10.1016/j.jngse.2016.12.020

    [20]

    NI F, ZHU F, MENG Q L. 2024. Analysis of knee fold structure model in Nanchuan Block of southeastern Chongqing[J]. Petroleum Reservoir Evaluation and Development,14(3):373-381(in Chinese with English abstract).

    [21]

    RAO Y, CHENG T, YANG S L, ZHAO H Y, LI Q, CHEN Q H. 2023. Hydrocarbon accumulation characteristics and controlling factors of the Doseo Basin in Central Africa[J]. Geology and Exploration,59(5):1117-1127(in Chinese with English abstract).

    [22]

    SHI G, GONG Z, HUANG N, YE J, ZHOU D R, SHAO W, TENG L, LIAO S B, LI J Q. 2023. The main controlling factors of the gas content in the Permian Dalong Formation of the Xuanjing area, the Lower Yangtze region: a case study of Gangdi 1 Well[J]. East China Geology,44(1):93-102(in Chinese with English abstract).

    [23]

    SONG S L, YANG E L, SHA M Y. 2023. Influencing factors of occurrence state of shale oil based on molecular simulation[J]. Petroleum Reservoir Evaluation and Development,13(1):31-38(in Chinese with English abstract).

    [24]

    SUN P, WANG Q, WANG C Y, LIU J B, CHEN F, ZHANG J. 2023. Application of geophysical method in the interface exploration between backfill soil rock and bedrock of the mine pit[J]. East China Geology,44(4):439-447 (in Chinese with English abstract).

    [25]

    TANG X L, JIANG Z X, LI Z, GAO Z Y, BAI Y Q, ZHAO S, FENG J. 2015. The effect of the variation in material composition on the heterogeneous pore structure of high-maturity shale of the Silurian Longmaxi Formation in the southeastern Sichuan Basin, China[J]. Journal of Natural Gas Science and Engineering,23:464-473. doi: 10.1016/j.jngse.2015.02.031

    [26]

    TANG L, SONG Y, JIANG Z X, TANG X L, LI Z, LI Q W, CHANAG J Q, SUN Y. 2018. Diffusion process and capacity of Longmaxi shale gas in the basin-margin transition zone of SE Chongqing and their controlling factors[J]. Natural Gas Industry,38(12):37-47 (in Chinese with English abstract).

    [27]

    WANG X M, CHEN J B, REN D Z. 2023. Research progress and prospect of pore structure representation and seepage law of continental shale oil reservoir[J]. Petroleum Reservoir Evaluation and Development,13(1):23-30(in Chinese with English abstract).

    [28]

    WANG H Y, SHI Z S, SUN S S, ZHANG L F. 2021. Characterization and genesis of deep shale reservoirs in the first member of the Silurian Longmaxi Formation in southern Sichuan Basin and its periphery[J]. Oil & Gas Geology,42(1):66-75 (in Chinese with English abstract).

    [29]

    WANG H J, WU W, CHEN T, YU J, PAN J N. 2019. Pore structure and fractal analysis of shale oil reservoirs: a case study of the Paleogene Shahejie Formation in the Dongying Depression, Bohai Bay, China[J]. Journal of Petroleum Science and Engineering,177:711-723. doi: 10.1016/j.petrol.2019.02.081

    [30]

    WANG J L, ZHANG B S, CHEN J W, SHI G. 2020. Comparison of application effect of magnetotelluric sounding using different inversion methods in shale gas investigation in Wanjiang area of Anhui Province[J]. East China Geology,41(1):79-87(in Chinese with English abstract).

    [31]

    WEI Z H. 2015. Late fugitive emission of shale gas from Wufeng-Longmaxi Formation in Sichuan Basin and its periphery[J]. Oil & Gas Geology,36(4):659-665 (in Chinese with English abstract).

    [32]

    WU T, LI J Q, ZHANG C C, SHAO W, FANG C G, ZHOU D R, HUANG N. 2020. Analysis on the gas reservoir forming conditions of Middle Triassic Zhouchongcun Formation in Wuwei Depression, Lower Yangtze Basin[J]. East China Geology,41(4):425-433 (in Chinese with English abstract).

    [33]

    YIN Q C, FANG C G, ZHENG H J, WANG J D, WANG F. 2020. Geological conditions of Ordovician shale gas and optimization for prospective areas in the Lower Yangtze region[J]. East China Geology,41(1):70-78(in Chinese with English abstract).

    [34]

    YU L J, FAN M, TENGER, LIU Y X. 2016. Shale gas occurrence under burial conditions[J]. Petroleum Geology & Experiment,38(4):438-444,452 (in Chinese with English abstract).

    [35]

    YU Y X, WANG Z X, ZHANG K X, CHENG M. 2020. Advances in quantitative characterization of shale pore structure by using fluid injection methods[J]. Journal of Geomechanics,26(2):201-210 (in Chinese with English abstract).

    [36]

    ZHANG Y, LIU J C, XU H, NIU X L, QIN G H, CAO D Y. 2017. Comparison between pore structure and fractal characteristics of continental and transitional coal measures shale: a case study of Yan'an and Taiyuan Formations at the northeastern margin of Ordos Basin[J]. Acta Petrolei Sinica,38(9):1036-1046 (in Chinese with English abstract).

    [37]

    ZHANG P F, LU S F, LI J Q. 2019. Characterization of pore size distributions of shale oil reservoirs: a case study from Dongying sag, Bohai Bay basin, China[J]. Marine and Petroleum Geology,100:297-308. doi: 10.1016/j.marpetgeo.2018.11.024

    [38]

    ZHANG M Q, ZOU C N, GUAN P, DONG D Z, SUN S S, SHI Z S, LI Z X, FENG Z Q, LILAMAOCAIDAN. 2019. Pore-throat characteristics of deep shale gas reservoirs in south of Sichuan Basin: case study of Longmaxi Formation in Well Z201 of Zigong area[J]. Natural Gas Geoscience,30(9):1349-1361 (in Chinese with English abstract).

    [39]

    ZHAO K Y,MU K. 2023. Evaluation of shale reservoirs based on grey relation analysis and principal component analysis[J]. Geology and Exploration,59(2):443-450(in Chinese with English abstract).

    [40]

    ZHU Y M, WANG Y, CHEN S B, ZHANG H, FU C Q. 2016. Qualitative-quantitative multiscale characterization of pore structures in shale reservoirs: a case study of Longmaxi Formation in the Upper Yangtze area[J]. Earth Science Frontiers,23(1):154-163 (in Chinese with English abstract).

    [41]

    ZHU W B, ZHANG X H, ZHOU D R, FANG C G, LI J Q, HUANG Z Q. 2021. New cognition on pore structure characteristics of Permian marine shale in the Lower Yangtze Region and its implications for shale gas exploration[J]. Natural Gas Industry,41(7):41-55 (in Chinese with English abstract).

    [42]

    陈洁. 2021. 贵州凤冈地区早寒武世牛蹄塘组页岩孔隙结构特征[J]. 华东地质,42(3):359-366.

    [43]

    何佳伟, 谢渊, 刘建清, 何利. 2023. 四川盆地西南缘深层龙马溪组页岩储层地质特征——以昭通页岩气示范区雷波地区为例[J]. 天然气地球科学,34(7):1260-1273.

    [44]

    姜振学, 李廷微, 宫厚健, 姜涛, 常佳琦, 宁传祥, 苏思远, 陈委涛. 2020. 沾化凹陷低熟页岩储层特征及其对页岩油可动性的影响[J]. 石油学报,41(12):1587-1600.

    [45]

    姜振学, 唐相路, 李卓, 黄何鑫, 杨佩佩, 杨潇, 李卫兵, 郝进. 2016. 川东南地区龙马溪组页岩孔隙结构全孔径表征及其对含气性的控制[J]. 地学前缘,23(2):126-134.

    [46]

    金之钧, 王冠平, 刘光祥, 高波, 刘全有, 王红亮, 梁新平, 王濡岳. 2021b. 中国陆相页岩油研究进展与关键科学问题[J]. 石油学报,42(7):821-835.

    [47]

    金之钧, 朱如凯, 梁新平, 沈云琦. 2021a. 当前陆相页岩油勘探开发值得关注的几个问题[J]. 石油勘探与开发,48(6):1276-1287.

    [48]

    李佳玥, 李文镖, 张鹏飞, 陈国辉, 王峻, 刘灵奇. 2024. 天然气水合物形成/分解过程中的同位素分馏效应及其能源-环境意义[J]. 华东地质,45(4):387-401.

    [49]

    李文镖, 卢双舫, 李俊乾, 张鹏飞, 陈晨, 王思远. 2019. 南方海相页岩物质组成与孔隙微观结构耦合关系[J]. 天然气地球科学,30(1):27-38.

    [50]

    李建青, 章诚诚, 黄正清, 方朝刚, 吴通, 邵威, 周道容, 滕龙, 王元俊, 黄宁. 2021. 下扬子复杂构造区超高压含气层的发现及油气富集关键要素[J]. 地质通报,40(4):577-585.

    [51]

    廖圣兵, 石刚, 李建青, 郑红军, 周道容, 王存智, 黄宁. 2021. 安徽望江地区WWD1井钻遇二叠系孤峰组页岩气[J]. 中国地质,48(5):1657-1658.

    [52]

    刘忠宝, 胡宗全, 刘光祥, 刘珠江, 刘晧天, 郝景宇, 王鹏威, 李鹏. 2021. 四川盆地东北部下侏罗统自流井组陆相页岩储层孔隙特征及形成控制因素[J]. 石油与天然气地质,42(1):136-145.

    [53]

    刘桃, 廖圣兵, 方朝刚, 章诚诚, 周道容, 邵威, 王元俊. (2022-10-09) [2024-08-27]. 下扬子地区孤峰组页岩孔径分布特征及对含气性的影响[J/OL]. 中国地质. http://kns.cnki.net/kcms/detail/11.1167.P.20221008.1820.004.html.

    [54]

    刘桃, 吴通, 方朝刚, 章诚诚, 邵威, 廖圣兵. 2023. 下扬子地区无为凹陷三叠系气藏超压特征及其成因分析[J]. 华东地质,44(4):415-423.

    [55]

    马永生, 蔡勋育, 赵培荣, 胡宗全, 刘惠民, 高波, 王伟庆, 李志明, 张子麟. 2022. 中国陆相页岩油地质特征与勘探实践[J]. 地质学报,96(1):155-171.

    [56]

    倪锋, 朱峰, 孟庆利. 2024. 渝东南地区南川区块膝折构造模式解析[J]. 油气藏评价与开发,14(3):373-381.

    [57]

    饶勇,程涛,杨松岭,赵红岩,李全,陈全红. 2023. 中非Doseo盆地油气地质条件及成藏控制因素分析[J]. 地质与勘探,59(5):1117-1127.

    [58]

    石刚, 龚赞, 黄宁, 叶隽, 周道容, 邵威, 滕龙, 廖圣兵, 李建青. 2023. 下扬子宣泾地区二叠系大隆组页岩含气量主控因素分析——以港地1井为例[J]. 华东地质,44(1):93-102.

    [59]

    宋书伶, 杨二龙, 沙明宇. 2023. 基于分子模拟的页岩油赋存状态影响因素研究[J]. 油气藏评价与开发,13(1):31-38.

    [60]

    孙平, 王谦, 王重阳, 刘俊伯, 陈峰, 张建. 2023. 物探方法在采矿坑回填土石与基岩分界面勘探中的应用[J]. 华东地质,44(4):439-447.

    [61]

    唐令, 宋岩, 姜振学, 唐相路, 李卓, 李倩文, 常佳琦, 孙玥. 2018. 渝东南盆缘转换带龙马溪组页岩气散失过程、能力及其主控因素[J]. 天然气工业,38(12):37-47.

    [62]

    王晓明, 陈军斌, 任大忠. 2023. 陆相页岩油储层孔隙结构表征和渗流规律研究进展及展望[J]. 油气藏评价与开发,13(1):23-30.

    [63]

    王红岩, 施振生, 孙莎莎, 张磊夫. 2021. 四川盆地及周缘志留系龙马溪组一段深层页岩储层特征及其成因[J]. 石油与天然气地质,42(1):66-75.

    [64]

    王佳龙, 张宝松, 陈基炜, 石刚. 2020. 大地电磁测深不同反演方法的应用效果对比——以安徽皖江地区页岩气调查为例[J]. 华东地质,41(1):79-87.

    [65]

    魏志红. 2015. 四川盆地及其周缘五峰组-龙马溪组页岩气的晚期逸散[J]. 石油与天然气地质,36(4):659-665.

    [66]

    吴通, 李建青, 章诚诚, 邵威, 方朝刚, 周道容, 黄宁. 2020. 下扬子无为凹陷中三叠世周冲村组天然气成藏物质基础分析[J]. 华东地质,41(4):425-433.

    [67]

    殷启春,方朝刚,郑红军,王敬东,王丰. 2020. 下扬子地区奥陶纪页岩气地质条件及远景区优选[J]. 华东地质,41(1):70-78.

    [68]

    俞凌杰, 范明, 腾格尔, 刘友祥. 2016. 埋藏条件下页岩气赋存形式研究[J]. 石油实验地质,38(4):438-444,452.

    [69]

    俞雨溪, 王宗秀, 张凯逊, 程明. 2020. 流体注入法定量表征页岩孔隙结构测试方法研究进展[J]. 地质力学学报,26(2):201-210.

    [70]

    张岩, 刘金城, 徐浩, 牛鑫磊, 秦国红, 曹代勇. 2017. 陆相与过渡相煤系页岩孔隙结构及分形特征对比——以鄂尔多斯盆地东北缘延安组与太原组为例[J]. 石油学报,38(9):1036-1046.

    [71]

    张梦琪, 邹才能, 关平, 董大忠, 孙莎莎, 施振生, 李志欣, 冯子齐, 李拉毛才旦. 2019. 四川盆地深层页岩储层孔喉特征——以自贡地区自201井龙马溪组为例[J]. 天然气地球科学,30(9):1349-1361.

    [72]

    赵可英,牟凯. 2023. 基于灰色关联度分析法和主成分分析法对泥页岩储层评价方法的探讨[J]. 地质与勘探,59(2):443-450.

    [73]

    朱炎铭, 王阳, 陈尚斌, 张寒, 付常青. 2016. 页岩储层孔隙结构多尺度定性-定量综合表征: 以上扬子海相龙马溪组为例[J]. 地学前缘,23(1):154-163.

    [74]

    朱文博, 张训华, 周道容, 方朝刚, 李建青, 黄正清. 2021. 下扬子地区二叠系海相页岩孔隙特征新认识及页岩气勘探启示[J]. 天然气工业,41(7):41-55.

  • 加载中

(10)

(4)

计量
  • 文章访问数:  50
  • PDF下载数:  7
  • 施引文献:  0
出版历程
收稿日期:  2024-06-11
修回日期:  2024-09-27
录用日期:  2024-09-30
刊出日期:  2025-06-28

目录