Distribution characteristics and ecological risk assessment of heavy metals in soils in railway depots
-
摘要:
铁路交通运输是土壤重金属元素的重要潜在来源,为探究铁路场段土壤重金属空间分布规律以及污染程度,选取我国北方某铁路机务段、车辆段和编组场作为研究对象,测定机务段、车辆段各16处和编组场6处样点的土壤重金属(As、Hg、Cd、Pb、Cu和Ni)含量,对比分析铁路各场段土壤重金属的分布特征,阐明相关关系,并采用内梅罗综合污染指数法和Hakanson生态风险评价法评估各场段土壤重金属环境质量和生态风险。研究结果表明: ①研究铁路场段存在重金属积累现象,但积累程度较轻,不存在超标现象; ②机务段土壤Pb、Cd含量和车辆段土壤Cu、Cd、Pb含量空间分布存在差异,重金属积累受人为活动影响较大,机务段油库、洗车机电控楼和锅炉房土壤Pb含量或Cd含量偏高,车辆段锅炉房、变电所、预检预修库、轮对段修间和指挥中心中土壤Cu含量、Pb含量或Cd含量偏高,各场段工艺差异会导致不同重金属在土壤中积累; ③场段土壤Cd含量与Pb含量、As含量呈显著正相关,3种重金属可能受油料燃烧废气、油品存放使用、车辆尾气、铁路煤炭运输等因素影响; ④各场段综合土壤环境质量判定结果均为无污染,土壤生态风险程度处于最低级别。研究结果可为铁路场段设计、运营以及土壤环境影响评价提供参考。
Abstract:Railway transportation is an important potential source of the heavy metals in soils. In order to explore the spatial distribution pattern and pollution level of soil heavy metals in railway depots, the authors selected a locomotive depot, a vehicle depot and a marshalling yard in the northern part of China as the study object and measured the heavy metals (As, Hg, Cd, Pb, Cu, and Ni) content of the respective 16 samples from locomotive depot and vehicle depot, and 6 samples from the marshalling yard. The distribution characteristics of heavy metal in each railway depot were analyzed by comparing with the standards, and their correlation relationships were identified. The environmental quality and ecological risks of heavy metals in the soils of each depot were evaluated by Nemerow comprehensive pollution index and Hakanson ecological risk assessment method. The results are as follows. ① There is a phenomenon of heavy metal accumulation in the railway depot, but the accumulation degree is relatively light without a sign of exceeding the standard. ② The spatial distribution of Pb and Cd content in the locomotive depot and Cu, Cd, and Pb content in the vehicle depot has huge variations. The accumulation of heavy metals is greatly affected by human activities, and Pb and Cd content in the soils of the oil depot, washing workshop, and boiler room of the locomotive depot is higher. Cu, Pb, and Cd content in the soils of the boiler room, substation, pre-inspection and pre-repair warehouse, wheelset overhaul workshop, and command center of the vehicle depot is higher as well. Furthermore, the divergences in the process of each railway depot will lead to the accumulation of different heavy metals in the soil.③ There is a significant positive correlation between Cd content and Pb and As content, and these heavy metals may be influenced by the factors such as oil combustion exhaust gases, storage and usage of oil, vehicle exhaust gases, and railway coal transportation. ④ The results of comprehensive soil environmental quality assessment show that there is no pollution in each depot, and the ecological risk degree of each depot is at the lowest level. This research results could provide references for the design, operation, and soil environmental impact assessment of railway depots.
-
-
表 1 各场段土壤基本物理化学性质
Table 1. The basic physical and chemical characteristics of soils in different railway depots
场段 采样点数/处 pH值 CEC/(cmol·kg-1) Eh值/mV 总孔隙度/% 渗滤率/(mm·min-1) 土壤容重/(g·cm-3) 机务段 16 8.14±0.16a 12.43±1.61a 429.25±50.05ab 37.69±3.27a 0.87±0.26a 1.194±0.018a 车辆段 16 8.16±0.12a 12.86±1.62a 466.13±41.40a 37.09±3.43a 0.82±0.24a 1.193±0.018a 编组场 6 8.09±0.03a 10.27±3.91b 401.83±30.13b 38.63±0.92a 0.94±0.10a 1.185±0.017a 注: 同一列不同小写字母表示不同场段差异显著(P<0.05), a与b之间存在显著差异,a、b与ab之间不存在显著差异。 表 2 各场段土壤重金属含量描述性统计
Table 2. Descriptive statistics of heavy metals in soils of different railway depots
场段 特征值 As Hg Cd Pb Cu Ni 机务段 含量范围/10-6 10.00~19.60 0.024~0.048 0.07~0.26 23.20~76.60 20.00~40.00 32.00~40.00 平均值±标准差/10-6 13.51±2.17a 0.038±0.008b 0.14±0.05a 33.48±12.39a 28.00±5.51a 34.56±2.09b 变异系数/% 16.04 19.89 33.22 37.03 19.68 6.05 车辆段 含量范围/10-6 8.20~15.40 0.035~0.048 0.05~0.24 25.30~53.50 18.00~64.00 33.00~47.00 平均值±标准差/10-6 11.49±1.88b 0.043±0.005ab 0.13±0.05a 36.09±7.58a 26.81±11.09a 37.88±3.37a 变异系数/% 16.41 12.77 38.39 21.01 41.37 8.90 编组场 含量范围/10-6 11.30~14.00 0.036~0.048 0.08~0.13 23.20~30.20 15.00~23.00 34.00~38.00 平均值±标准差/10-6 12.73±0.94ab 0.045±0.005a 0.11±0.02a 26.89±2.60a 20.17±2.67a 35.17±1.34b 变异系数/% 7.39 11.29 16.27 9.65 13.25 3.82 所在城市土壤化学元素背景值[12]/10-6 12 0.059 0.13 23 27 32 建设用地土壤风险管控标准/10-6 60 38 65 800 18 000 900 注: 同一列不同小写字母表示不同场段差异显著(P<0.05), a与b之间存在显著差异,a、b与ab之间不存在显著差异; 建设用地土壤风险管控标准参照第二类用地筛选值。 表 3 各场段土壤采样点位置
Table 3. Soil sampling sites in different railway depots
机务段 编号 J1 J2 J3 J4 J5 J6 J7 J8 J9 J10 J11 J12 J13 J14 J15 J16 位置 污水处理站 受电弓检测间 洗车机电控楼 段办公楼 2号发油点 地下油库 整备厂 1号发油点 锅炉房 油库 材料库 检修库 小辅修库 旋轮库 职教中心 食堂 车辆段 编号 C1 C2 C3 C4 C5 C6 C7 C8 C9 C10 C11 C12 C13 C14 C15 C16 位置 制动间 材料库 易燃品存放间 预检预修库 修车库 配件加修库 设备维修间 变电所 轮对段修间 轮轴厂修库 洗罐棚 污水处理站 指挥中心 锅炉房 宿舍 食堂 编组场 编号 B1 B2 B3 B4 B5 B6 位置 上行调车场西区 上行调车场中区 上行调车场东区 下行调车场西区 下行调车场中区 下行调车场东区 表 4 各场段不同土壤重金属含量之间的相关性分析
Table 4. Correlation analysis of heavy metal content in soils of different railway depots
场段 相关系数 As Hg Cd Pb Cu Ni 机务段 As 1 Hg -0.083 1 Cd 0.500* -0.073 1 Pb 0.115 -0.068 0.554* 1 Cu -0.011 -0.063 0.328 0.238 1 Ni -0.373 0.410 -0.087 0.109 0.250 1 车辆段 As 1 Hg 0.052 1 Cd 0.387 0.298 1 Pb 0.316 -0.229 0.690** 1 Cu -0.260 0.268 0.285 0.450 1 Ni -0.024 0.030 -0.384 -0.203 0.055 1 编组场 As 1 Hg 0.458 1 Cd 0.187 0.029 1 Pb 0.445 0.130 -0.299 1 Cu -0.340 -0.143 0.785 -0.403 1 Ni 0.628 0.203 0.545 0.039 0.364 1 注: **表示P<0.01,*表示P<0.05。 表 5 内梅罗综合污染指数等级划分标准
Table 5. Grading standards of Nemerow comprehensive pollution index
级别 Pn 污染程度 1 Pn≤0.7 清洁 2 [0.7, 1) 警戒 3 [1, 2) 轻度污染 4 [2, 3) 中度污染 5 Pn≥3 重度污染 表 6 各场段土壤重金属内梅罗综合污染指数
Table 6. Nemerow comprehensive pollution index for heavy metals in soils of different railway depots
场段 Pn 级别 污染程度 机务段 0.163 1 清洁 车辆段 0.139 1 清洁 编组场 0.154 1 清洁 表 7 生态风险指数等级划分标准
Table 7. Grading standards of ecological risk index
级别 Eri NIRI 风险程度 1 Eri≤40 NIRI≤40 轻微风险 2 [40, 80) [40, 80) 中等风险 3 [80, 160) [80, 160) 较强风险 4 [160, 320) [160, 320) 很强风险 5 Eri≥320 NIRI≥320 极强风险 表 8 各场段土壤重金属综合生态风险指数
Table 8. Comprehensive ecological risk index for heavy metals in soils of different railway depots
场段 NIRI 级别 风险程度 机务段 24.948 1 轻微风险 车辆段 24.178 1 轻微风险 编组场 23.328 1 轻微风险 -
[1] Malawska M, Wiłkomirski B. Soil and plant contamination with heavy metals in the area of the old railway junction Tarnowskie Góry and near two main railway routes[J]. Roczniki Panstwowego Zakladu Higieny, 2000, 51(3): 259-267.
[2] Malawska M, Wiłkomirski B. An analysis of soil and plant (taraxacum officinale) contamination with heavy metals and polycyclic aromatic hydrocarbons (PAHs) in the area of the railway junction Iława Główna, Poland[J]. Water, Air, and Soil Pollution, 2001, 127(1): 339-349. https://link.springer.com/article/10.1023/A:1005236016074
[3] Wang L F, Bai Y X, Gai S N. Single-factor and Nemerow multi-factor index to assess heavy metals contamination in soils on railway side of Harbin-Suifenhe railway in northeastern China[J]. Applied Mechanics and Materials, 2011, 71-78(71-78): 3033-3036. https://www.scientific.net/AMM.71-78.3033
[4] Zhang H, Wang Z F, Zhang Y L, et al. The effects of the Qinghai-Tibet railway on heavy metals enrichment in soils[J]. Science of the Total Environment, 2012, 439: 240-248.
[5] Stojic N, Pucarevic M, Stojic G. Railway transportation as a source of soil pollution[J]. Transportation Research Part D: Transport and Environment, 2017, 57: 124-129. https://www.sciencedirect.com/science/article/pii/S1361920917303930
[6] 王桢. 铁路沿线土壤重金属污染特征与来源分析[D]. 成都: 西南交通大学, 2018.
Wang Z. Contamination Characteristics and Source Analysis of Heavy Metal in Soil in Vicinity of Railway[D]. Chengdu: Southwest Jiaotong University, 2018.
[7] 周怡, 吴秋梅, 樊亚男, 等. 江苏省典型高速公路沿线土壤重金属分布特征及影响因素研究[J]. 土壤通报, 2023, 54(1): 161-170.
Zhou Y, Wu Q M, Fan Y N, et al. Spatial distribution and influencing factors of heavy metals in soils around typical highways in Jiangsu provinces[J]. Chinese Journal of Soil Science, 2023, 54(1): 161-170.
[8] Wierzbicka M, Bemowska-Kałabun O, Gworek B. Multidimensional evaluation of soil pollution from railway tracks[J]. Ecotoxicology, 2015, 24(4): 805-822. https://link.springer.com/article/10.1007/s10646-015-1426-8
[9] Chen J S, Li T T, Wang L. Soil heavy metal pollution in the soil of railway traffic: a mini-review[J]. Academic Journal of Agriculture & Life Sciences, 2020, 1(1): 1-8.
[10] 谷朝君, 姜海波, 宋珺, 等. 铁路货场土壤重金属污染研究[J]. 铁道劳动安全卫生与环保, 2010, 37(1): 29-31. doi: 10.3969/j.issn.2095-1671.2010.01.008
Gu Z J, Jiang H B, Song J, et al. Research on heavy metal pollution in the soil in railway freight yard[J]. Railway Occupational Safety Health & Environmental Protection, 2010, 37(1): 29-31. doi: 10.3969/j.issn.2095-1671.2010.01.008
[11] 生态环境部. HJ 964—2018环境影响评价技术导则土壤环境(试行)[S]. 北京: 中国环境科学出版社, 2018.
Ministry of Ecological Environment. HJ 964—2018 Technical Guidelines for Environmental Impact Assessment―Soil Environment[S]. Beijing: China Environmental Science Press, 2018.
[12] 成杭新, 李括, 李敏, 等. 中国城市土壤化学元素的背景值与基准值[J]. 地学前缘, 2014, 21(3): 265-306.
Cheng H X, Li K, Li M, et al. Geochemical background and baseline value of chemical elements in urban soil in China[J]. Earth Science Frontiers, 2014, 21(3): 265-306.
[13] 生态环境部, 国家市场监督管理总局. GB 36600—2018土壤环境质量建设用地土壤风险管控标准(试行)[S]. 北京: 中国环境科学出版社, 2019.
Ministry of Ecological Environment, State Administration for Market Regulation. GB 36600—2018 Soil Environmental Quality Risk Control Standard for Soil Contamination of Development Land[S]. Beijing: Standards Press of China, 2019.
[14] Niu S P, Gao L M, Wang X. Characterization of contamination levels of heavy metals in agricultural soils using geochemical baseline concentrations[J]. Journal of Soils and Sediments, 2019, 19(4): 1697-1707. https://link.springer.com/article/10.1007/s11368-018-2190-1
[15] 王显钦, 费学海, 杨员, 等. 贵阳市花溪城区PM 2.5中重金属元素的污染特征、来源及健康风险评价[J]. 环境科学学报, 2023, 43(6): 110-118.
Wang X Q, Fei X H, Yang Y, et al. Pollution characteristics, source apportionment and health risk assessment of heavy metal elements in PM 2.5 collected in Huaxi urban areas, Guiyang[J]. Acta Scientiae Circumstantiae, 2023, 43(6): 110-118.
[16] 赵洪刚, 刘忠攀, 王海苗, 等. 小型燃气供暖锅炉的燃烧与污染物排放试验[J]. 煤炭加工与综合利用, 2020(12): 83-87.
Zhao H G, Liu Z P, Wang H M, et al. The emission test of combustion and pollutants of small gas heating boiler[J]. Coal Processing & Comprehensive Utilization, 2020(12): 83-87.
[17] 车凯, 郁金星, 宫云茜, 等. 变电站场地土壤环境调查与评价[J]. 环境科学与技术, 2021, 44(S1): 120-125.
Che K, Yu J X, Gong Y Q, et al. Investigation and evaluation of soil environment in substation[J]. Environmental Science & Technology, 2021, 44(S1): 120-125.
[18] 任剑峰, 王波. 某废弃油库土壤重金属污染健康风险评估[J]. 安徽大学学报: 自然科学版, 2021, 45(4): 100-108. doi: 10.3969/j.issn.1000-2162.2021.04.014
Ren J F, Wang B. Health risk assessments of soil polluted by heavy metals at the site of an abandoned oil depot[J]. Journal of Anhui University (Natural Science Edition), 2021, 45(4): 100-108. doi: 10.3969/j.issn.1000-2162.2021.04.014
[19] 陈昱君. 新疆油田土壤污染调查及典型污染物迁移转化研究[D]. 北京: 中国石油大学(北京), 2021.
Chen Y J. Investigation of Soil Pollution and Study on Migration and Transformation of Typical Pollutants in Xinjiang Oilfield[D]. Beijing: China University of Petroleum (Beijing), 2021.
[20] 康兴东, 任玉鑫, 高超, 等. 铁路客车车体结构材料的演变与展望[J]. 铁道机车车辆, 2019, 39(2): 119-124. doi: 10.3969/j.issn.1008-7842.2019.02.26
Kang X D, Ren Y X, Gao C, et al. Evolution and prospect of railway passenger car carbody structure materials[J]. Railway Locomotive & Car, 2019, 39(2): 119-124. doi: 10.3969/j.issn.1008-7842.2019.02.26
[21] 何勇. 重载铁路C96型30 t轴重车辆段工艺适应性设计研究[J]. 铁道标准设计, 2018, 62(8): 174-177.
He Y. Process adaptability design and research on C96 30 t axis vehicle depot of heavy haul railway[J]. Railway Standard Design, 2018, 62(8): 174-177.
[22] 王诗雨, 李淳, 赵洪伟, 等. 某试验场土壤重金属分布特征及其污染评价[J]. 环境科学, 2023, 44(3): 1657-1667.
Wang S Y, Li C, Zhao H W, et al. Distribution characteristics and pollution assessment of heavy metals in soils of a testing range[J]. Environmental Science, 2023, 44(3): 1657-1667.
[23] 罗帅, 马新月, 王东, 等. 重庆市场地土壤污染特征分析及行业来源识别[J]. 生态环境学报, 2020, 29(4): 810-818.
Luo S, Ma X Y, Wang D, et al. Analysis of soil pollution characteristics and identification of industry sources in contaminated sites in Chongqing city, China[J]. Ecology and Environmental Sciences, 2020, 29(4): 810-818.
[24] 宇星辰, 张家浩, 王庆同, 等. 莱州湾南岸滨海湿地表层土壤重金属元素分布与生态风险评价[J]. 中国地质调查, 2023, 10(5): 82-90. doi: 10.19388/j.zgdzdc.2023.05.10
Yu X C, Zhang J H, Wang T Q, et al. Heavy metal elements distribution in the surface soil of coastal wetland in Southern Laizhou Bay and ecological risk assessment[J]. Geological Survey of China, 2023, 10(5): 82-90. doi: 10.19388/j.zgdzdc.2023.05.10
[25] 梅梅, 闵宁. 运煤铁路两侧土壤重金属分布特征及污染评价[J]. 河北北方学院学报: 自然科学版, 2019, 35(9): 49-53. doi: 10.3969/j.issn.1673-1492.2019.09.010
Mei M, Min N. Distribution characteristics and pollution evaluation of heavy metals in soil on both sides of coal railway[J]. Journal of Hebei North University (Natural Science Edition), 2019, 35(9): 49-53. doi: 10.3969/j.issn.1673-1492.2019.09.010
[26] 丁莉. 包头西机务段和谐型电力机车C4修工艺方案研究[J]. 铁道标准设计, 2016, 60(11): 153-157.
Ding L. Research on harmonious electric locomotive C4 maintenance process program for Baotou West locomotive depot[J]. Railway Standard Design, 2016, 60(11): 153-157.
[27] Men C, Liu R M, Xu L B, et al. Source-specific ecological risk analysis and critical source identification of heavy metals in road dust in Beijing, China[J]. Journal of Hazardous Materials, 2020, 388: 121763.
[28] 李旭, 李军, 李开明, 等. 基于蒙特卡洛模拟的兰州银滩湿地公园沉积物重金属污染特征及风险评价[J]. 环境化学, 2024, 43(7): 2340-2355.
Li X, Li J, Li K M, et al. Characteristics and risk assessment of heavy metals contamination in sediments from the Lanzhou Yintan wetland park based on Monte Carlo simulation model[J]. Environmental Chemistry, 2024, 43(7): 2340-2355.
[29] 王新军, 窦红菲, 黄山倩, 等. 高速公路路域土壤重金属污染特征与生态风险评价[J]. 交通运输研究, 2021, 7(4): 75-84.
Wang X J, Dou H F, Huang S Q, et al. Heavy metal pollution characteristics and ecological risk assessment of roadside soil along expressway[J]. Transport Research, 2021, 7(4): 75-84.
-