-
摘要:
为研究辽宁省地质灾害隐患点发育规律,为防灾减灾提供决策支持,基于辽宁省1∶5万地质灾害隐患点风险调查项目成果数据、ALOS卫星地形高程数字模型(digital elevation model, DEM)数据以及辽宁省区域地质志数据,利用ArcGIS软件,使用核密度分析、邻域分析、坡度分析、坡向分析、山体阴影、栅格重分类等方法开展研究。结果表明: 在辽宁省范围内,地质灾害隐患点多发育在辽西北低山丘陵区及辽东、辽南山区,大连市是地质灾害隐患点数量最多的地级市,鞍山市是地质灾害隐患点密度最高的市; 滑坡隐患点多位于地形切割强烈和边坡陡峻地带; 崩塌隐患点主要受花岗岩、变质岩、碎屑岩控制,多发生在坡度大于60°的陡崖地带; 泥石流隐患点主要发育在距断裂两侧2.5 km范围的花岗岩、混合花岗岩、片麻岩中; 地面塌陷和地裂缝隐患点多由矿产开采造成,主要分布地层为第四系、碎屑岩和碳酸盐岩。研究可进一步揭示辽宁省地质灾害隐患点的分布规律情况,深化对地质灾害的科学认知, 为地质灾害的预测、评估、防治和防灾减灾工作提供数据支撑和科学参考。
Abstract:In order to study the development law of geological hazard potential sites in Liaoning Province and provide decision support for disaster prevention and mitigation, the authors in this paper used results of 1∶50 000 geological hazard risk survey project, ALOS satellite DEM data, regional geological data of Liaoning Province and ArcGIS software to conduct research by kernel density analysis, neighborhood analysis, slope analysis, aspect analysis, mountain shadow, raster reclassification and other methods. The results show that geological hazard potential sites are mostly developed in the low mountainous and hilly areas in the northwestern Liaoning and the mountainous areas in the eastern and southern Liaoning. Dalian is the city with the largest number of geological hazard potential sites, and Anshan is the city with the highest density of geological hazard potential sites. The landslide potential sites are mostly located in areas with strong terrain cutting and steep slopes. And the collapse potential sites are mainly controlled by granite, metamorphic rock and clastic rock, and mostly occur in steep cliffs with a slope greater than 60 degrees. The debris flow potential sites are mainly developed in granite, mixed granite and gneiss within 2.5 km from both sides of the fault. Ground subsidence and ground fissures are primarily caused by mining activities, and they are mainly distributed in the Quaternary strata, clastic rocks, and carbonate rocks. This research could further reveal the distribution patterns of geological disasters in Liaoning Province, and deepen the scientific understanding of geological disasters, which could provide data support and scientific references for the prediction, assessment, prevention and mitigation of geological disasters.
-
Key words:
- geological hazards /
- spatial distribution /
- GIS /
- Liaoning Province
-
-
表 1 辽宁省各地市地质灾害隐患点基本情况统计
Table 1. Statistics of the basic situation of geological hazard potential sites in various cities of Liaoning Province
城市 面积/km2 隐患点数量/个 密度/(个·100 km-2) 滑坡 崩塌 泥石流 地面塌陷 地裂缝 总计 沈阳市 12 859.90 0 2 0 11 0 13 0.10 大连市 13 739.32 33 264 106 14 0 417 3.04 鞍山市 9 255.35 22 55 248 3 0 328 3.54 抚顺市 11 271.05 14 47 35 4 7 107 0.95 本溪市 8 413.96 21 74 59 3 0 157 1.87 丹东市 14 966.74 21 92 67 8 0 188 1.26 锦州市 10 048.32 0 28 15 6 0 49 0.49 营口市 5 424.65 6 42 122 1 0 171 3.15 阜新市 10 327.01 5 2 0 7 0 14 0.14 辽阳市 4 735.79 8 19 3 14 0 44 0.93 盘锦市 4 102.95 0 0 0 0 0 0 0.00 铁岭市 12 984.52 17 33 0 16 0 66 0.51 朝阳市 19 697.88 13 41 7 8 0 69 0.35 葫芦岛市 10 414.29 9 47 14 16 0 86 0.83 合计 14 8241.73 169 746 676 111 7 1 709 1.15 表 2 滑坡隐患点在各类岩石地层中发育占比
Table 2. Proportion of potential landslide sites developed in various rock formations
地层岩性 规模等级 滑坡数量/个 数量占比/% 第四系 大型 1 0.59 小型 4 2.37 火山岩 中型 1 0.59 小型 14 8.28 碎屑岩 巨型 1 0.59 中型 3 1.78 小型 35 20.71 碳酸盐岩 中型 1 0.59 小型 15 8.88 花岗岩 小型 44 26.04 闪长岩 小型 3 1.78 基性侵入岩 小型 1 0.59 变质岩 小型 46 27.22 合计 169 100.00 表 3 滑坡隐患点与边坡坡度关系
Table 3. Statistics of the relationship between potential landslide sites and slope gradient
微地貌 陡崖
(>60°)陡坡
(25°, 60°]缓坡
(8°, 25°]平台
[0°, 8°]滑坡/个 33 120 15 1 数量占比/% 19.52 71.01 8.88 0.59 表 4 崩塌隐患点在各类岩石地层中发育占比
Table 4. Proportion of potential collapse sites developed in various rock formations
地层岩性 规模等级 数量/个 数量占比/% 第四系 中型 1 0.13 小型 22 2.95 火山岩 中型 5 0.67 小型 53 7.10 碎屑岩 大型 2 0.27 中型 15 2.01 小型 127 17.02 碳酸盐岩 大型 2 0.27 中型 16 2.14 小型 86 11.53 花岗岩 大型 2 0.27 中型 17 2.28 小型 202 27.08 闪长岩 中型 1 0.13 小型 8 1.07 基性侵入岩 中型 1 0.13 小型 9 1.21 变质岩 中型 14 1.88 小型 163 21.86 合计 746 100.00 表 5 崩塌隐患点与边坡坡度关系
Table 5. Statistics of the relationship between potential collapse sites and slope gradient
微地貌 陡崖
(>60°)陡坡
(25°, 60°]缓坡
(8°, 25°]平台
[0°, 8°]崩塌/个 522 203 21 0 数量占比/% 69.98 27.21 2.81 0 表 6 泥石流隐患在各类岩石地层中发育占比
Table 6. Proportion of potential debris flow sites developed in various rock formations
地层岩性 规模等级 数量/个 数量占比/% 火山岩 中型 6 0.89 小型 14 2.07 碎屑岩 大型 2 0.30 中型 8 1.18 小型 22 3.25 碳酸盐岩 特大型 1 0.15 大型 3 0.40 中型 11 1.63 小型 16 2.37 花岗岩 特大型 3 0.40 大型 15 2.22 中型 145 21.45 小型 185 27.37 闪长岩 大型 1 0.15 中型 9 1.33 小型 16 2.37 基性侵入岩 中型 1 0.15 变质岩 特大型 2 0.30 大型 9 1.33 中型 75 11.09 小型 132 19.53 合计 676 100.00 表 7 泥石流隐患点与边坡坡度关系
Table 7. Relationship between potential debris flow sites and slope gradient
山坡坡度/(°) [32°, 60°) (25°, 32°] (15°, 25°] [0°, 15°] 泥石流/处 286 280 89 21 数量占比/% 42.31 41.42 13.16 3.11 表 8 地面塌陷和地裂缝隐患在各类岩石地层中发育占比
Table 8. Proportion of potential ground collapse and ground fissure sites developed in various rock formations
地层岩性 规模等级 数量/个 数量占比/% 大型 13 11.02 第四系 中型 9 7.63 小型 24 20.34 火山岩 中型 1 0.85 特大型 5 4.24 大型 4 3.39 碎屑岩 中型 5 4.24 小型 12 10.17 特大型 1 0.85 碳酸盐岩 大型 2 1.69 中型 3 2.54 小型 21 17.80 大型 1 0.85 花岗岩 中型 1 0.85 小型 3 2.54 闪长岩 特大型 1 0.85 变质岩 大型 3 2.54 小型 9 7.63 合计 118 100.00 -
[1] 武爽. 辽宁省人类活动、地质灾害及防灾减灾研究[D]. 大连: 辽宁师范大学, 2009.
Wu S. The study on Geological Hazards and Disaster Prevention and Reduction Human Activities in Liaoning Province[D]. Dalian: Liaoning Normal University, 2009.
[2] 王鹏, 罗银花, 高世缘, 等. 辽宁西部地区地质灾害风险评价[J]. 防灾减灾学报, 2023, 39(4): 88-92.
Wang P, Luo Y H, Gao S Y, et al. Risk assessment of geological hazards in western Liaoning Region[J]. Journal of Disaster Prevention and Reduction, 2023, 39(4): 88-92.
[3] 金澍. 辽宁抚顺地区地质灾害评价及防治措施研究[D]. 长春: 吉林大学, 2020.
Jin S. Study on Geological Disaster Assessment and Prevention Measures in Fushun Area of Liaoning Province[D]. Changchun: Jilin University, 2020.
[4] 翟富荣, 梁帅, 金鑫, 等. 遥感技术在地质灾害调查及灾害规律研究中的应用——以辽宁省建昌县为例[J]. 化工矿产地质, 2020, 42(2): 155-161.
Zhai F R, Liang S, Jin X, et al. Application of remote sensing technology in geological hazard investigation and hazard law research: Taking Jianchang county in Liaoning province as an example[J]. Geology of Chemical Minerals, 2020, 42(2): 155-161.
[5] 赵彤彤. 辽宁省常见的地质灾害及防治措施[J]. 国土资源, 2018(3): 54-55.
Zhao T T. Common geological hazards and their prevention and control measures in Liaoning province[J]. Land & Resources, 2018(3): 54-55.
[6] 刘莎莎, 高俊华, 尹向红, 等. 基于遥感的辽宁省采煤沉陷区治理调查[J]. 国土资源导刊, 2022, 19(1): 17-22. doi: 10.3969/j.issn.1672-5603.2022.01.006
Liu S S, Gao J H, Yin X H, et al. Investigation on coal mining subsidence area control based on remote sensing in Liaoning province[J]. Land & Resources Herald, 2022, 19(1): 17-22. doi: 10.3969/j.issn.1672-5603.2022.01.006
[7] 杨吉红, 李剑, 侯欣雨. ArcGIS在湖北省公路地质灾害危险性评估中的应用[J]. 山西建筑, 2024, 50(1): 73-76.
Yang J H, Li J, Hou X Y. Application of ArcGIS in the risk assessment of highway geological hazards in Hubei province[J]. Shanxi Architecture, 2024, 50(1): 73-76.
[8] 李永威, 徐林荣, 陈昀灏, 等. 基于天-空-车-地一体化铁路路基灾害隐患早期识别与服役状态监测[J]. 武汉大学学报: 信息科学版, 2024, 49(8): 1392-1406, 1421.
Li Y W, Xu L R, Chen Y H, et al. Intergrated space-air-train-ground muti-source techniques for early detection of subgrade disasters and service status of railway subgrade[J]. Journal of Wuhan University (Information Science Edition), 2024, 49(8): 1392-1406, 1421.
[9] 李志才, 陈智, 武军郦, 等. 基于高频GNSS观测的甘肃积石山Ms6.2级地震同震形变[J]. 武汉大学学报: 信息科学版, 2025, 50(2): 236-246.
Li Z C, Chen Z, Wu J L, et al. Coseismic deformation of the Ms 6.2 Jishishan earthquake in Gansu province based on high-frequency GNSS observation[J]. Geomatics and Information Science of Wuhan University, 2025, 50(2): 236-246.
[10] 董继红, 张肃, 梁京涛, 等. 利用Stacking/SBAS技术在滇西北地区滑坡隐患的识别对比[J]. 山东科技大学学报: 自然科学版, 2023, 42(4): 21-31.
Dong J H, Zhang S, Liang J T, et al. Comparison of landslide hazard identification in Northwest Yunnan using Stacking/SBAS technology[J]. Journal of Shandong University of Science and Technology (Natural Science Edition), 2023, 42(4): 21-31.
[11] 许强, 彭大雷, 范宣梅, 等. 甘肃积石山Ms6.2级地震触发青海中川乡液化型滑坡-泥流特征与成因机理[J]. 武汉大学学报: 信息科学版, 2025, 50(2): 207-222.
Xu Q, Peng D L, Fan X M, et al. Preliminary study on the characteristics and initiation mechanism of Zhongchuan flowslide due to liquefaction triggered by the Ms 6.2 Jishishan earthquake in Gansu province[J]. Journal of Wuhan University (Information Science Edition), 2025, 50(2): 207-222.
[12] 铁永波, 张宪政, 曹佳文, 等. 积石山Ms6.2级和泸定Ms6.8级地震地质灾害发育规律对比[J]. 成都理工大学学报: 自然科学版, 2024, 51(1): 9-21, 59.
Tie Y B, Zhang X Z, Cao J W, et al. Comparative research of the characteristics of geological hazards induced by the Jishishan (Ms6.2) and Luding (Ms6.8) earthquakes[J]. Journal of Chengdu University of Technology (Science & Technology Edition), 2024, 51(1): 9-21, 59.
[13] 陈博, 宋闯, 陈毅, 等. 2023年甘肃积石山Ms 6.2地震同震滑坡和建筑物损毁情况应急识别与影响因素研究[J]. 武汉大学学报: 信息科学版, 2025, 50(2): 322-332.
Chen B, Song C, Chen Y, et al. Emergency identification and influencing factor analysis of coseismic landslides and building damages induced by the 2023 Ms 6.2 Jishishan (Gansu, China) Earthquake[J]. Journal of Wuhan University (Information Science Edition), 2025, 50(2): 322-332.
[14] 刘玉伟, 甘建军, 余广文, 等. 江西省地质灾害分布特征及诱发因素分析[J]. 四川地质学报, 2023, 43(4): 708-712. doi: 10.3969/j.issn.1006-0995.2023.04.022
Liu Y W, Gan J J, Yu G W, et al. Analysis on distribution characteristics and induced factors of geological disasters in Jiangxi province[J]. Acta Geologica Sichuan, 2023, 43(4): 708-712. doi: 10.3969/j.issn.1006-0995.2023.04.022
[15] 王志红, 王娟, 初娜, 等. 辽宁省矿山地质环境评价与治理分区研究[J]. 矿产勘查, 2023, 14(3): 510-517.
Wang Z H, Wang J, Chu N, et al. Study on mine geological environment evaluation and treatment zoning in Liaoning province[J]. Mineral Exploration, 2023, 14(3): 510-517.
[16] 王立朝, 侯圣山, 董英, 等. 甘肃积石山Ms6.2级地震的同震地质灾害基本特征及风险防控建议[J]. 中国地质灾害与防治学报, 2024, 35(3): 108-118.
Wang L C, Hou S S, Dong Y, et al. Basic characteristics of co-seismic geological hazards induced by Jishishan Ms6.2 earthquake and suggestions for their risk control[J]. The Chinese Journal of Geological Hazard and Control, 2024, 35(3): 108-118.
[17] 孙丽影, 张弘怀, 邱昌骏, 等. 宁波地质灾害影响因子权重的时变性与雨量阈值研究[J]. 华东地质, 2024, 45(2): 218-227.
Sun L Y, Zhang H H, Qiu C J, et al. Temporal variability of influence factors weights and rainfall thresholds of geological hazards in Ningbo City[J]. East China Geology, 2024, 45(2): 218-227.
[18] 刘帅, 王涛, 曹佳文, 等. 基于优化随机森林模型的降雨群发滑坡易发性评价——以西秦岭极端降雨事件为例[J]. 地质通报, 2024, 43(6): 958-970.
Liu S, Wang T, Cao J W, et al. Susceptibility assessment of precipitation-induced mass landslides based on optimal random forest model: Taking the extreme precipitation event in western Qinling mountains as an example[J]. Geological Bulletin of China, 2024, 43(6): 958-970.
[19] 徐伟, 铁永波, 郑玄, 等. 凉山州地质灾害发育特征与时空分布规律[J]. 沉积与特提斯地质, 2024, 44(3): 478-492.
Xu W, Tie Y B, Zheng X, et al. Development characteristics and temporal-spatial distribution of geological hazards in Liangshan Prefecture[J]. Sedimentary Geology and Tethyan Geology, 2024, 44(3): 478-492.
[20] 赵旭. 辽宁省海岸带地质环境适宜性研究[D]. 大连: 吉林大学, 2014.
Zhao X. The Study of Coastal Zone Geological Environment Suitability, Liaoning Province[D]. Dalian: Jilin University, 2014.
[21] 万芳. 关于辽宁省高职教育特色建设的几点建议[J]. 才智, 2014(36): 264-265.
Wan F. Some suggestions on the characteristic construction of higher vocational education in Liaoning province[J]. Intelligence, 2014(36): 264-265.
[22] 李志远, 刘超. 简述岫岩县西北部地质灾害调查[J]. 科技传播, 2016, 8(8): 121-122.
Li Z Y, Liu C. Brief description of the geological hazard survey in northwest Xiuyan Manchu Autonomous County[J]. Public Communication of Science & Technology, 2016, 8(8): 121-122.
[23] 丁阳. 辽宁省山地灾害特点及对策[J]. 东北水利水电, 2005, 23(12): 48-49, 56. doi: 10.3969/j.issn.1002-0624.2005.12.024
Ding Y. Characteristics and measures of mountainous damage in Liaoning province[J]. Water Resources & Hydropower of Northeast China, 2005, 23(12): 48-49, 56. doi: 10.3969/j.issn.1002-0624.2005.12.024
[24] 韩明友, 赵锡刚. 辽宁省泥石流特点及灾害防治对策[J]. 东北水利水电, 2009, 27(5): 49-50. doi: 10.3969/j.issn.1002-0624.2009.05.025
Han M Y, Zhao X G. Characteristics and prevention measure of debris flow in Liaoning province[J]. Water Resources & Hydropower of Northeast China, 2009, 27(5): 49-50. doi: 10.3969/j.issn.1002-0624.2009.05.025
[25] 罗锡宜, 邹杰, 易守勇, 等. 佛山市南海区里水石塘村猪仔狸岗滑坡特征与成因研究[J]. 西部资源, 2017(4): 118-119, 150. doi: 10.3969/j.issn.1672-562X.2017.04.050
Luo X Y, Zou J, Yi S Y, et al. Research for characteristics and genesis of Zhu Zai Li gang landslide in Nanhai District of Foshan city Shuitang village[J]. Western Resources, 2017(4): 118-119, 150. doi: 10.3969/j.issn.1672-562X.2017.04.050
[26] 徐静. 皖南山区斜坡碎石土工程地质特性研究[D]. 成都: 成都理工大学, 2013.
Xu J. Study on Engineering-Geological Characteristics of Gravel-Soil Slopes In Southern Mountainous Area of Anhui Province[D]. Chengdu: Chengdu University of Technology, 2013.
[27] 辽宁省地质勘查院. 中国区域地质志[M]. 北京: 地质出版社, 2017: 1171-1177.
Liaoning Institute of Geological Exploration Co., Ltd. Regional Geology of China[M]. Beijing: Geology Press, 2017: 1171-1177.
[28] 徐江, 罗本全, 李卿辰, 等. 四川宜宾井场滑坡成因分析与治理措施[J]. 中国地质调查, 2024, 11(1): 75-82. doi: 10.19388/j.zgdzdc.2024.01.09
Xu J, Luo B Q, Li Q C, et al. Cause analysis and control measures of landslide in Yibin well site of Sichuan province[J]. Geological Survey of China, 2024, 11(1): 75-82. doi: 10.19388/j.zgdzdc.2024.01.09
[29] 刘文, 王猛, 王朋, 等. 国道219沿线崩滑地质灾害隐患遥感调查及发育分布规律[J]. 中国地质调查, 2023, 10(5): 99-108. doi: 10.19388/j.zgdzdc.2023.05.12
Liu W, Wang M, Wang P, et al. Remote sensing investigation and development distribution regularity of collapse and landslide geological hazard potentials along National Highway 219[J]. Geological Survey of China, 2023, 10(5): 99-108. doi: 10.19388/j.zgdzdc.2023.05.12
[30] 唐雯. 辽宁省北镇市地质灾害形成条件及影响因素分析[J]. 硅谷, 2015, 8(1): 204-205.
Tang W. Analysis on formation conditions and influencing factors of geological hazards in Beizhen City, Liaoning province[J]. Silicon Valley, 2015, 8(1): 204-205.
[31] 赵亚雄. 浅析山西省沁源县地形地貌与地质灾害的关系[J]. 华北自然资源, 2019(1): 101, 103.
Zhao Y X. An analysis of the relationship between the landforms and geological disasters in Qinyuan County, Shanxi province[J]. Huabei Natural Resources, 2019(1): 101, 103.
-