三江源区冻融荒漠化遥感分析

朱刚, 高会军. 三江源区冻融荒漠化遥感分析[J]. 中国地质调查, 2025, 12(3): 57-65. doi: 10.19388/j.zgdzdc.2024.108
引用本文: 朱刚, 高会军. 三江源区冻融荒漠化遥感分析[J]. 中国地质调查, 2025, 12(3): 57-65. doi: 10.19388/j.zgdzdc.2024.108
ZHU Gang, GAO Huijun. Remote sensing analysis of freeze-thaw desertification in Sanjiangyuan region[J]. Geological Survey of China, 2025, 12(3): 57-65. doi: 10.19388/j.zgdzdc.2024.108
Citation: ZHU Gang, GAO Huijun. Remote sensing analysis of freeze-thaw desertification in Sanjiangyuan region[J]. Geological Survey of China, 2025, 12(3): 57-65. doi: 10.19388/j.zgdzdc.2024.108

三江源区冻融荒漠化遥感分析

  • 基金项目:
    中国地质调查局“全国地球关键带遥感地质调查项目(编号: DD20190536)”资助
详细信息
    作者简介: 朱刚(1980—),男,高级工程师,主要从事资源环境遥感方面的工作。Email: zhugang-2005@163.com
  • 中图分类号: P954

Remote sensing analysis of freeze-thaw desertification in Sanjiangyuan region

  • 冻融荒漠化的快速发展对青藏高原的生态安全构成了严重挑战, 为提升冻融荒漠化的研究水平, 推动冻融荒漠化的科学防治,以三江源区的冻融荒漠化为研究对象,构建基于地学特征的冻融荒漠化遥感信息提取方法,并应用该方法对三江源区的冻融荒漠化进行遥感调查,分析研究区冻融荒漠化的分布特征、成因与发展趋势。研究结果显示: 永久性冻土分布地区在不同地理位置形成的冻土地貌类型是冻融荒漠化的判读依据,综合评价地表裸露与破碎面积占比、植被覆盖度、地表景观特征等指标,将冻融荒漠化分为重度、中度、轻度3个级别; 构建研究区不同程度冻融荒漠化的遥感解译标志,获取的三江源区冻融荒漠化解译数据准确率达80%以上; 研究区冻融荒漠化以重度为主,长江源区是三江源区冻融荒漠化分布面积最大的区域; 多年冻土是冻融荒漠化发生的物质条件,区域性气候持续变暖是冻融荒漠化问题加剧的内在原因,过度放牧、草地超载是造成冻融荒漠化快速发展的主要人类活动影响因素; 由于青藏高原气候的暖湿化趋势,永久性冻土的持续退化将造成冻融荒漠化进一步加剧。研究表明遥感调查方法能够实现对冻融荒漠化信息的快速获取,具有一定的借鉴意义。

  • 加载中
  • 图 1  研究区冻融荒漠化分布图

    Figure 1. 

    图 2  不同冻土地貌实地照片及遥感影像特征

    Figure 2. 

    图 3  不同程度冻融荒漠化典型遥感影像

    Figure 3. 

    表 1  冻融荒漠化程度分级及遥感解译标志

    Table 1.  Degree classification and remote sensing interpretation marks of freeze-thaw desertification

    程度 地表景观特征 土地裸露与破碎面积占比/% 植被覆盖度/% 遥感解译标志 遥感影像特征
    重度 地表出现片状裸地及强烈的热融塌陷、热融滑塌、冻融侵蚀劣地,或雪线附近的岩屑坡、冻融泻溜土坎和裸露坡面等 >50 < 10 呈紫红色、棕灰色、灰色,局部由于积雪、冰川分布,呈黑色、白色斑片影纹,色彩较均匀,主要分布于山脊两侧,可解译程度高 图 2(b)
    中度 地表出现热融滑塌或形成碎石斑、片状流沙、冻融泻溜土坎和裸露坡面等 [10,50] [10,30] 呈紫红色、粉红色,具绿色、棕色斑点状影纹,不规则条带状分布,主要分布于山体中下部的坡面,可解译程度高 图 2(d)图 2(f)
    轻度 地表出现热融湖塘或形成冻融泻溜土坎、草皮土坎等 < 10 >30 呈浅紫红色,具绿色或蓝色斑点状影纹,不规则斑片状分布于低缓的河谷丘陵或河流、湖盆周边地区,可解译程度高。 图 2(h)
    下载: 导出CSV
  • [1]

    昝国盛, 王翠萍, 李锋, 等. 第六次全国荒漠化和沙化调查主要结果及分析[J]. 林业资源管理, 2023(1): 1-7.

    Zan G S, Wang C P, Li F, et al. Key data results and trend analysis of the sixth national survey on desertification and sandification[J]. Forest Resources Management, 2023(1): 1-7.

    [2]

    杨建平, 丁永建, 陈仁升, 等. 长江黄河源区多年冻土变化及其生态环境效应[J]. 山地学报, 2004, 22(3): 278-285. doi: 10.3969/j.issn.1008-2786.2004.03.004

    Yang J P, Ding Y J, Chen R S, et al. Permafrost change and its effect on eco-environment in the source regions of the Yangtze and Yellow Rivers[J]. Journal of Mountain Science, 2004, 22(3): 278-285. doi: 10.3969/j.issn.1008-2786.2004.03.004

    [3]

    张森琦, 王永贵, 赵永真, 等. 黄河源区多年冻土退化及其环境反映[J]. 冰川冻土, 2004, 26(1): 1-6. doi: 10.3969/j.issn.1000-0240.2004.01.001

    Zhang S Q, Wang Y G, Zhao Y Z, et al. Permafrost degradation and its environmental sequent in the source regions of the Yellow River[J]. Journal of Glaciology and Geocryology, 2004, 26(1): 1-6. doi: 10.3969/j.issn.1000-0240.2004.01.001

    [4]

    李森, 高尚玉, 杨萍, 等. 青藏高原冻融荒漠化的若干问题——以藏西—藏北荒漠化区为例[J]. 冰川冻土, 2005, 27(4): 476-485. doi: 10.3969/j.issn.1000-0240.2005.04.002

    Li S, Gao S Y, Yang P, et al. Some problems of freeze-thaw desertification in the Tibetan Plateau: A case study on the desertification regions of the Western and Northern Plateau[J]. Journal of Glaciology and Geocryology, 2005, 27(4): 476-485. doi: 10.3969/j.issn.1000-0240.2005.04.002

    [5]

    唐华, 徐琳, 格桑平措, 等. 藏西北革吉县雄巴乡场镇冻土灾害特征及防治措施[J]. 中国地质调查, 2022, 9(2): 100-109. doi: 10.19388/j.zgdzdc.2022.02.10

    Tang H, Xv L, Ge S P C, et al. Characteristics and preventive measures of permafrost disasters in Xiongba town of Geji County in northwestern Tibet[J]. Geological Survey of China, 2022, 9(2): 100-109. doi: 10.19388/j.zgdzdc.2022.02.10

    [6]

    赵云云, 赵其华. 黄河源头多年冻土退化原因及变化趋势[J]. 人民黄河, 2009, 31(6): 10-12.

    Zhao Y Y, Zhao Q H. Reasons of degeneration and tendency of variation of ever-frost of the Yellow River Source[J]. Yellow River, 2009, 31(6): 10-12.

    [7]

    史展, 陶和平, 刘淑珍, 等. 基于GIS的三江源区冻融侵蚀评价与分析[J]. 农业工程学报, 2012, 28(19): 214-221. doi: 10.3969/j.issn.1002-6819.2012.19.029

    Shi Z, Tao H P, Liu S Z, et al. Research of freeze-thaw erosion in the Three-River-Source area based on GIS[J]. Transactions of the Chinese Society of Agricultural Engineering, 2012, 28(19): 214-221. doi: 10.3969/j.issn.1002-6819.2012.19.029

    [8]

    王兮之, 何巧如, 李森, 等. 青藏高原土地退化类型及其退化程度评价[J]. 水土保持研究, 2009, 16(4): 14-18.

    Wang X Z, He Q R, Li S, et al. Assessment of land degradation on Qinghai-Tibet Plateau[J]. Research of Soil and Water Conservation, 2009, 16(4): 14-18.

    [9]

    冉有华, 李新, 程国栋, 等. 2005—2015年青藏高原多年冻土稳定性制图[J]. 中国科学: 地球科学, 2021, 51(2): 183-200.

    Ran Y H, Li X, Cheng G D, et al. Mapping the permafrost stability on the Tibetan Plateau for 2005—2015[J]. Science China Earth Sciences, 2021, 51(2): 183-200.

    [10]

    陈俊翰, 卢琦, 刘雨晴, 等. 青藏高原冻融荒漠化退化区分布及影响因素[J]. 水土保持研究, 2023, 30(3): 103-110, 120.

    Chen J H, Lu Q, Liu Y Q, et al. Distribution and influencing factors of freeze-thaw desertification degradation in Qinghai-Tibet Plateau[J]. Research of Soil and Water Conservation, 2023, 30(3): 103-110, 120.

    [11]

    高明, 李向全, 侯新伟, 等. 大通河源区冻融作用及其生态环境效应[J]. 山地学报, 2015, 33(2): 141-147.

    Gao M, Li X Q, Hou X W, et al. The freeze-thaw action and its eco-environmental effects in Datong river source region of Qinghai[J]. Mountain Research, 2015, 33(2): 141-147.

    [12]

    李兴隆, 王荚文. 高寒山区冻融侵蚀荒漠化形成及防治[J]. 沈阳师范大学学报: 自然科学版, 2017, 35(1): 80-83.

    Li X L, Wang J W. Investigation discussion on freeze-thaw erosion desertification formation and prevention in alpine areas, China[J]. Journal of Shenyang Normal University(Natural Science Edition), 2017, 35(1): 80-83.

    [13]

    崔娟娟, 信忠保, 黄艳章. 2003—2020年青藏高原冻融侵蚀时空变化特征[J]. 生态学报, 2023, 43(11): 4515-4526.

    Cui J J, Xin Z B, Huang Y Z. The spatiotemporal variations in freeze-thaw erosion in 2003—2020 on the Qinghai-Tibet Plateau[J]. Acta Ecologica Sinica, 2023, 43(11): 4515-4526.

    [14]

    黄婷婷, 赵辉, 赵院, 等. 三江源国家公园土壤侵蚀及其分布特征[J]. 水土保持通报, 2023, 43(5): 95-103, 110.

    Huang T T, Zhao H, Zhao Y, et al. Soil erosion and its spatial distribution characteristics in Three-River-Source National Park[J]. Bulletin of Soil and Water Conservation, 2023, 43(5): 95-103, 110.

    [15]

    张建国, 刘淑珍, 杨思全. 西藏冻融侵蚀分级评价[J]. 地理学报, 2006, 61(9): 911-918.

    Zhang J G, Liu S Z, Yang S Q. Classification and assessment of freeze-thaw erosion in Tibet[J]. Acta Geographica Sinica, 2006, 61(9): 911-918.

    [16]

    陈同德, 焦菊英, 王颢霖, 等. 青藏高原土壤侵蚀研究进展[J]. 土壤学报, 2020, 57(3): 547-564.

    Chen T D, Jiao J Y, Wang H L, et al. Progress in research on soil erosion in Qinghai-Tibet Plateau[J]. Acta Pedologica Sinica, 2020, 57(3): 547-564.

    [17]

    全国科学技术名词审定委员会. 林学名词[M]. 2版. 北京: 科学出版社, 2016: 342-350.

    China national Committee for Terminology in Sciences and Technology. Chinese terms in Forest Science[M]. 2nd ed. Beijing: Science Press, 2016: 342-350.

    [18]

    国家林草局. 全国荒漠化和沙化监测技术规定[S], 2009.

    National Forestry and Grassland Administration. National Technical Regulations for Desertification and Desertification Monitoring[S], 2009.

    [19]

    李红梅, 颜亮东, 温婷婷, 等. 三江源地区气候变化特征及其影响评估[J]. 高原气象, 2022, 41(2): 306-316.

    Li H M, Yan L D, Wen T T, et al. Characteristics of climate change and its impact assessment in the Three-River Regions[J]. Plateau Meteorology, 2022, 41(2): 306-316.

    [20]

    程国栋, 赵林, 李韧, 等. 青藏高原多年冻土特征、变化及影响[J]. 科学通报, 2019, 64(27): 2783-2795.

    Cheng G D, Zhao L, Li R, et al. Characteristic, changes and impacts of permafrost on Qinghai-Tibet Plateau[J]. Chinese Science Bulletin, 2019, 64(27): 2783-2795.

    [21]

    张倚浩, 阎建忠, 程先. 气候变化与人类活动对青藏高原湿地的影响研究进展[J]. 山地学报, 2023, 43(6): 2180-2193.

    Zhang Y H, Yan J Z, Cheng X. Advances in impact of climate change and human activities on wetlands on the Tibetan Plateau[J]. Acta Ecologica Sinica, 2023, 43(6): 2180-2193.

    [22]

    张江, 袁旻舒, 张婧, 等. 近30年来青藏高原高寒草地NDVI动态变化对自然及人为因子的响应[J]. 生态学报, 2020, 40(18): 6269-6281.

    Zhang J, Yuan M S, Zhang J, et al. Responses of the NDVI of alpine grasslands on the Qinghai-Tibetan Plateau to climate change and human activities over the last 30 years[J]. Acta Ecologica Sinica, 2020, 40(18): 6269-6281.

    [23]

    段安民, 肖志祥, 吴国雄. 1979—2014年全球变暖背景下青藏高原气候变化特征[J]. 气候变化研究进展, 2016, 12(5): 374-381.

    Duan A M, Xiao Z X, Wu G X. Characteristics of climate change over the Tibetan Plateau under the global warming during 1979-2014[J]. Climate Change Research, 2016, 12(5): 374-381.

    [24]

    赵亮, 李奇, 陈懂懂, 等. 三江源区高寒草地碳流失原因、增汇原理及管理实践[J]. 第四纪研究, 2014, 34(4): 795-802.

    Zhao L, Li Q, Chen D D, et al. Principles of alpine grassland ecosystems carbon sequestration and management practices on Sanjiangyuan regions, Qinghai-Tibetan plateau[J]. Quaternary Sciences, 2014, 34(4): 795-802.

    [25]

    钱前, 张秀娟, 王军邦, 等. 2005—2017年青海三江源区草地家畜承载力时空格局研究[J]. 草地学报, 2021, 29(6): 1311-1317.

    Qian Q, Zhang X J, Wang J B, et al. The spatio-temporal pattern of grazing pressure in the Three-River Headwaters in Qinghai Province from 2005 to 2017[J]. Acta Agrestia Sinica, 2021, 29(6): 1311-1317.

    [26]

    程国栋, 金会军. 青藏高原多年冻土区地下水及其变化[J]. 水文地质工程地质, 2013, 40(1): 1-11.

    Cheng G D, Jin H J. Groundwater in the permafrost regions on the Qinghai-Tibet Plateau and it changes[J]. Hydrogeology & Engineering Geology, 2013, 40(1): 1-11.

    [27]

    刘勇, 魏良帅, 黄安邦, 等. 气候变化下长江源土壤水时空演化及其环境响应[J]. 水文地质工程地质, 2023, 50(5): 39-52

    Liu Y, Wei L S, Huang A B, et al. Spatial and temporal evolution of soil water and its response to the environment in the Yangtze River source area under climate change[J]. Hydrogeology & Engineering Geology, 2023, 50(5): 39-52.

    [28]

    张中琼, 吴青柏. 气候变化情景下青藏高原多年冻土活动层厚度变化预测[J]. 冰川冻土, 2012, 34(3): 505-511.

    Zhang Z Q, Wu Q B. Predicting changes of active layer thickness on the Qinghai-Tibet Plateau as Climate Warming[J]. Journal of Glaciology and Geocryology, 2012, 34(3): 505-511.

  • 加载中

(3)

(1)

计量
  • 文章访问数:  25
  • PDF下载数:  4
  • 施引文献:  0
出版历程
收稿日期:  2024-01-05
修回日期:  2024-10-23
刊出日期:  2025-06-25

目录