Infrared spectroscopy and XRF elemental characterization of Nanling scientific deep drilling NLSD-2
-
摘要:
南岭科学深钻NLSD-2作为我国深部资源探测的关键工程之一,对研究南岭盘古山钨矿深部地质特征及成矿规律具有重要意义。首次系统集成红外光谱(400~2 500 nm)、XRF元素扫描及电子探针技术,揭示深部矿物组合分布、元素富集特征及白云母成矿温度演化规律。研究结果表明: 钻孔岩性界面可通过红外光谱识别的石英、白云母、绿泥石等矿物组合进行有效区分; XRF元素分析显示,W、Pb、Zn等成矿元素在变质砂岩层及花岗岩顶部显著富集,与钨矿矿体空间分布一致; 白云母短波红外光谱特征受化学成分及成矿温度共同影响。结合根据电子探针数据计算的温度,认为成矿相关白云母以Pos2200在2 204 nm附近,相对中间成矿温度,相对富Al及贫Si、Fe、Mg为特征。研究证实了红外光谱与XRF技术对深部矿化信息提取的高效性,但脉状矿化识别需结合成像光谱技术。研究成果为南岭钨矿深部找矿提供了矿物-元素-温度多维标志,推动了深部资源勘探技术的创新。
Abstract:Nanling scientific deep drilling NLSD-2 is one of the key projects for deep resource exploration in China, which has great significance for understanding the deep geological characteristics and metallogenic regularity of Pangushan tungsten deposit in Nanling. The infrared spectroscopy (400~2 500 nm), XRF elemental scanning and electron microprobe techniques were systematically integrated for the first time in this research to reveal the distribution of deep mineral assemblages, element enrichment characteristics and the evolution of Muscovite metallogenic temperature. The results show that the lithological interfaces can be effectively distinguished by the mineral assemblages such as quartz, muscovite and chlorite identified by infrared spectroscopy. The XRF element analysis shows that W, Pb, Zn and other metallogenic elements are significantly enriched in the metamorphic sandstone layer and the top of the granite, which is consistent with the spatial distribution of the tungsten ore body. The short-wave infrared spectral characteristics of muscovite are affected by chemical composition and metallogenic temperature. The ore-forming related muscovite is characterized by at around Pos2200 near 2 204 nm, relative intermediate ore-forming temperature, rich in Al and poor in Si, Fe, Mg relatively, combined with the electron microprobe temperature. This study has confirmed the high efficiency of infrared spectroscopy and XRF technology in extracting deep mineralization information, but the identification of vein mineralization needs to be combined with imaging spectroscopy. The results could provide a multi-dimensional symbol of mineral-element-temperature for deep tungsten prospecting in Nanling, and promote the innovation of deep resource exploration technology.
-
Key words:
- scientific deep drilling /
- Nanling tungsten deposit /
- infrared spectroscopy /
- XRF element /
- muscovite
-
-
图 1 华南大地构造简图(a)与南岭盘古山钨矿地质简图(b)(据文献[8]修改)
Figure 1.
图 6 南岭科学深钻NLSD-2白云母分类图解(据文献[20]修改)
Figure 6.
图 7 南岭科学深钻NLSD-2白云母成分关系变化(据文献[21]修改)
Figure 7.
表 1 南岭科学深钻NLSD-2白云母电子探针结果
Table 1. Electron probe results of muscovite from Nanling scientific deep drilling NLSD-2
样号 元素含量/% K2O CaO Cs2O TiO2 Na2O MgO Al2O3 Rb2O SiO2 NiO FeO MnO Cr2O3 F Cl JG2-1 11.10 0.05 0.00 0.44 0.36 1.58 31.74 0.08 46.12 0.00 2.36 0.09 0.01 0.77 0.00 JG2-2 10.99 0.00 0.00 0.23 0.36 1.48 31.61 0.11 46.46 0.00 2.29 0.03 0.00 0.68 0.00 JG3-1 10.91 0.07 0.00 0.22 0.47 2.07 29.74 0.23 47.59 0.04 2.91 0.17 0.00 0.74 0.03 JG3-2 10.68 0.00 0.01 0.00 0.48 0.42 33.81 0.11 46.21 0.00 2.35 0.08 0.00 0.33 0.02 JG4-1 10.56 0.02 0.04 0.40 0.62 0.70 35.00 0.07 44.63 0.00 1.15 0.02 0.02 0.01 0.01 JG4-2 10.67 0.00 0.00 0.54 0.61 0.60 35.30 0.04 45.74 0.01 1.18 0.02 0.06 0.00 0.00 JG5-1 10.47 0.01 0.00 0.70 0.72 0.75 34.90 0.05 45.5 0.04 0.87 0.00 0.01 0.01 0.00 JG5-2 10.59 0.00 0.03 0.44 0.78 0.79 35.85 0.06 45.41 0.00 0.90 0.01 0.04 0.07 0.01 JG6-3 11.31 0.00 0.00 0.34 0.30 2.03 30.34 0.16 47.07 0.05 3.32 0.17 0.01 0.31 0.00 JG6-2 11.02 0.06 0.00 0.47 0.36 1.71 31.35 0.20 47.30 0.00 2.72 0.03 0.03 0.33 0.00 JG7-1 11.03 0.03 0.00 0.52 0.31 2.08 29.58 0.11 46.58 0.03 2.98 0.08 0.02 0.67 0.02 JG7-2 10.89 0.02 0.00 1.02 0.28 1.74 30.33 0.12 46.26 0.05 2.55 0.06 0.04 0.53 0.00 JG9-1 10.04 0.04 0.03 0.72 0.72 0.78 35.24 0.03 45.86 0.03 1.22 0.03 0.04 0.00 0.01 JG9-2 10.33 0.02 0.00 1.38 0.64 0.59 34.49 0.00 45.79 0.02 1.09 0.02 0.07 0.00 0.02 JG10-1 10.56 0.04 0.00 0.76 0.22 3.14 29.24 0.14 45.98 0.00 3.68 0.10 0.00 0.34 0.02 JG10-2 10.27 0.07 0.00 0.49 0.61 1.34 33.28 0.11 46.68 0.00 1.28 0.00 0.03 0.30 0.00 JG13-1 10.69 0.00 0.00 0.08 0.21 2.87 29.11 0.19 49.53 0.00 0.94 0.02 0.01 0.90 0.00 JG13-2 10.19 0.01 0.02 0.01 0.24 2.35 29.08 0.18 50.08 0.01 0.87 0.09 0.04 1.09 0.00 JG14-1 9.62 0.07 0.00 0.20 0.44 2.53 33.21 0.07 45.61 0.03 3.22 0.10 0.02 0.07 0.01 JG14-2 10.98 0.05 0.08 0.48 0.34 1.31 33.72 0.07 46.48 0.00 1.36 0.02 0.05 0.12 0.01 JG15-1 11.24 0.00 0.01 0.06 0.34 0.69 34.70 0.00 44.71 0.01 1.26 0.03 0.00 0.00 0.00 JG15-2 10.85 0.03 0.00 0.09 0.53 0.77 34.46 0.01 45.31 0.00 1.40 0.02 0.00 0.06 0.01 JG16-1 10.40 0.02 0.01 0.25 0.54 0.79 34.68 0.00 45.20 0.00 1.22 0.00 0.00 0.00 0.00 JG16-2 10.36 0.00 0.00 0.52 0.78 0.45 35.59 0.00 45.58 0.00 0.79 0.03 0.06 0.00 0.00 JG17-1 11.03 0.03 0.02 0.24 0.24 1.87 28.73 0.01 45.25 0.00 5.60 0.10 0.00 0.37 0.01 JG17-2 11.13 0.00 0.06 0.05 0.25 0.91 31.91 0.02 47.90 0.00 3.31 0.07 0.00 0.27 0.00 JG19-1 11.06 0.00 0.00 0.41 0.31 1.15 30.46 0.23 44.93 0.00 5.52 0.24 0.00 0.28 0.01 JG19-2 11.15 0.03 0.02 0.35 0.33 1.33 30.27 0.17 45.05 0.01 5.27 0.21 0.01 0.43 0.02 JG20-1 11.12 0.02 0.01 0.01 0.23 0.73 32.24 0.16 45.78 0.05 2.88 0.04 0.00 0.25 0.04 JG20-2 11.19 0.01 0.05 0.55 0.23 0.98 29.71 0.23 45.18 0.00 5.84 0.10 0.00 0.30 0.01 JG21-1 10.94 0.06 0.00 0.04 0.28 0.15 35.51 0.15 46.36 0.02 1.29 0.04 0.00 0.15 0.01 JG21-2 10.95 0.02 0.00 0.16 0.31 0.35 33.96 0.11 46.51 0.00 2.18 0.05 0.07 0.21 0.01 JG22-1 11.17 0.00 0.00 0.02 0.24 0.00 36.84 0.08 46.13 0.00 0.37 0.04 0.04 0.02 0.03 JG22-2 11.27 0.00 0.10 0.12 0.14 0.90 31.59 0.15 47.31 0.00 3.74 0.11 0.00 0.35 0.01 JG23-1 10.77 0.04 0.00 0.27 0.24 2.05 30.04 0.09 46.95 0.00 4.00 0.16 0.01 0.54 0.00 JG23-2 11.28 0.00 0.03 0.36 0.29 2.16 29.53 0.14 46.93 0.02 3.92 0.17 0.00 0.45 0.00 JG24-1 11.19 0.00 0.03 0.39 0.38 0.28 34.45 0.13 45.60 0.04 1.94 0.09 0.03 0.24 0.00 JG24-2 11.11 0.00 0.00 0.44 0.42 0.58 33.80 0.13 45.76 0.00 1.61 0.08 0.00 0.27 0.00 JG25-1 10.88 0.02 0.00 0.09 0.27 0.08 36.26 0.15 46.21 0.00 1.20 0.03 0.00 0.14 0.00 JG25-2 11.22 0.00 0.04 0.18 0.27 0.01 35.73 0.00 45.20 0.00 1.00 0.01 0.00 0.09 0.00 JG26-1 10.81 0.03 0.08 0.52 0.40 0.39 33.56 0.04 45.90 0.07 2.05 0.09 0.00 0.14 0.00 JG26-2 11.07 0.08 0.00 0.07 0.43 0.84 33.38 0.14 46.13 0.00 1.22 0.09 0.04 0.34 0.05 -
[1] 谢和平, 张茹, 张泽天, 等. 深地科学与深地工程技术探索与思考[J]. 煤炭学报, 2023, 48(11): 3959-3978, doi: 10.13225/j.cnki.jccs.2023.0989.
Xie H P, Zhang R, Zhang Z T, et al. Reflections and explorations on deep earth science and deep earth engineering technology[J]. Journal of China Coal Society, 2023, 48(11): 3959-3978, doi: 10.13225/j.cnki.jccs.2023.0989.
[2] 邹长春, 王成善, 彭诚, 等. 中国大陆科学深钻发展的若干思考与建议[J]. 现代地质, 2023, 37(1): 1-14.
Zou C C, Wang C S, Peng C, et al. Development of the Chinese continental scientific deep drilling: perspectives and suggestions[J]. Geoscience, 2023, 37(1): 1-14.
[3] 林彬, 唐菊兴, 唐攀, 等. 超大型斑岩成矿系统浅部岩浆储库时空结构——来自西藏甲玛矿区3 000 m科学深钻的证据[J]. 矿床地质, 2024, 43(6): 1360-1379.
Lin B, Tang J X, Tang P, et al. Temporal-spatial structure of shallow magma reservoir of giant porphyry metallogenic system: Evidence from 3 000 m scientific deep drilling at Jiama deposit, Xizang[J]. Mineral Deposits, 2024, 43(6): 1360-1379.
[4] 周新鹏, 项彪, 邹长春, 等. 南岭地区多金属矿NLSD-2孔综合地球物理测井研究[J]. 地质学报, 2014, 88(4): 686-694.
Zhou X P, Xiang B, Zou C C, et al. Integrated geophysical logging study on the borehole NLSD-2 of the polymetallic ore in the Nanling district[J]. Acta Geologica Sinica, 2014, 88(4): 686-694.
[5] 陈伟, 曾载淋, 陈郑辉, 等. 南岭盘古山科学钻探(NLSD-2)选址及深部找矿意义[C]//2016年江西省地质学会论文汇编集Ⅲ. 2017: 91-105.
Chen W, Zeng Z L, Chen Z H, et al. Site selection and deep prospecting significance of the Pangushan scientific drilling (NLSD-2) in Nanling Mountains[C]//Proceedings of 2016 Annual Meeting of Jiangxi Geological Society. 2017: 91-105.
[6] 方贵聪, 陈郑辉, 陈毓川, 等. 南岭科学钻探第二孔(NLSD-2)0~500 m岩芯地质特征及其深部成矿指示意义[J]. 矿床地质, 2012, 31(S1): 1123-1124.
Fang G C, Chen Z H, Chen Y C, et al. Geological characteristics of core 0 ~ 500 m from the second borehole of Nanling Mountains scientific drilling (NLSD-2) and their deep metallogenic implications[J]. Mineral Deposits, 2012, 31(S1): 1123-1124.
[7] 肖昆, 邹长春, 尚景涛, 等. 南岭多金属矿集区科学钻探孔成像测井技术应用[J]. 科学技术与工程, 2018, 18(2): 72-78. doi: 10.3969/j.issn.1671-1815.2018.02.010
Xiao K, Zou C C, Shang J T, et al. Application of ultrasonic imaging log technology of scientific drilling boreholes in Nanling district[J]. Science Technology and Engineering, 2018, 18(2): 72-78. doi: 10.3969/j.issn.1671-1815.2018.02.010
[8] 方贵聪. 碲在钨矿床中的矿化特征及富集机制: 以赣南盘古山大型钨矿床为例[R]. 桂林: 桂林理工大学, 2018.
Fang G C. Mineralization Characteristics and Enrichment Mechanism of Tellurium in Tungsten Deposits: A Case Study of Pangushan Large-scale Tungsten Deposit in Southern Jiangxi Pro-vince[R]. Guilin: Guilin University of Technology, 2018.
[9] 方贵聪, 王登红, 冯佐海, 等. 赣南盘古山钨铋矿床发现扇状成矿现象[J]. 地质论评, 2021, 67(6): 1780-1784.
Fang G C, Wang D H, Feng Z H, et al. Discovery of fan-liked mineralization in Pangushan tungsten-bismuth deposit, southern Jiangxi[J]. Geological Review, 2021, 67(6): 1780-1784.
[10] 沈浩, 林锦杰. 江西省于都县盘古山钨矿找矿实践与资源潜力分析[J]. 世界有色金属, 2020(23): 63-64. doi: 10.3969/j.issn.1002-5065.2020.23.032
Shen H, Lin J J. Prospecting practice and resource potential analysis of Pangushan tungsten deposit in Yudu County, Jiangxi Province[J]. World Nonferrous Metals, 2020(23): 63-64. doi: 10.3969/j.issn.1002-5065.2020.23.032
[11] 方贵聪, 陈毓川, 王登红, 等. 江西盘古山钨矿发现新的矿化石英细脉带[J]. 地质论评, 2019, 65(6): 1435-1438.
Fang G C, Chen Y C, Wang D H, et al. Discovery of a new quartz veinlets zone in Pangushan tungsten deposit, Jiangxi Province[J]. Geological Review, 2019, 65(6): 1435-1438.
[12] 方贵聪, 陈毓川, 赵正, 等. 赣南于都—赣县钨多金属矿集区成矿模式[J]. 地质论评, 2017, 63(S1): 215-216.
Fang G C, Chen Y C, Zhao Z, et al. Metallogenic model of Yudu-Ganxian W-polymetallic ore-concentrated area in South Jiangxi Province[J]. Geological Review, 2017, 63(S1): 215-216.
[13] 方贵聪, 陈毓川, 陈郑辉, 等. 赣南盘古山钨矿隐伏花岗岩体岩石学与地球化学特征[J]. 中国地质, 2016, 43(5): 1558-1568.
Fang G C, Chen Y C, Chen Z H, et al. Petrology and geochemistry of granite in the Pangushan tungsten deposit, south Jiangxi Province[J]. Geology in China, 2016, 43(5): 1558-1568.
[14] 周瑶, 陶建利, 康小龙, 等. 江西盘古山钨矿床中基性岩脉地球化学特征及其年代学研究[J]. 中国钨业, 2015, 30(5): 7-16.
Zhou Y, Tao J L, Kang X L, et al. Geological characteristics and chronology study for the intermediate-basic dyke of Pangushan tungsten ore deposit[J]. China Tungsten Industry, 2015, 30(5): 7-16.
[15] 于萍, 王东明. 赣南盘古山钨矿黑钨矿矿物学特征研究[J]. 矿床地质, 2012, 31(S1): 387-388, doi: 10.16111/j.0258-7106.2012.s1.196.
Yu P, Wang D M. Study on mineralogical characteristics of wolframite from Pangushan tungsten deposit in southern Jiangxi[J]. Mineral Deposits, 2012, 31(S1): 387-388, doi: 10.16111/j.0258-7106.2012.S1.196.
[16] 曾载淋, 张永忠, 陈郑辉, 等. 江西省于都县盘古山钨铋(碲)矿床地质特征及成矿年代学研究[J]. 矿床地质, 2011, 30(5): 949-958. doi: 10.3969/j.issn.0258-7106.2011.05.016
Zeng Z L, Zhang Y Z, Chen Z H, et al. Geological characteristics and metallogenic epoch of Pangushan W-Bi(Te) ore deposit in Yudu County, Jiangxi Province[J]. Mineral Deposits, 2011, 30(5): 949-958. doi: 10.3969/j.issn.0258-7106.2011.05.016
[17] 谭运金, 童启荃, 皮俊明, 等. 盘古山钨矿床近矿热液蚀变岩石的地质地球化学[J]. 中国钨业, 2002, 17(5): 21-26.
Tan Y J, Tong Q Q, Pi J M, et al. Geological-geochemical features of ore-near hydrothermal alteration rocks in Pangushan tungsten deposit[J]. China Tungsten Industry, 2002, 17(5): 21-26.
[18] 赵龙贤, 代晶晶, 林彬, 等. 西藏甲玛3 000 m深钻蚀变矿物短波-热红外光谱特征[J]. 地质学报, 2023, 97(4): 1342-1359. doi: 10.3969/j.issn.0001-5717.2023.04.022
Zhao L X, Dai J J, Lin B, et al. Short-wave-thermal infrared spectra characteristics of altered minerals from the Jiama 3 000 m deep borehole in Tibet[J]. Acta Geologica Sinica, 2023, 97(4): 1342-1359. doi: 10.3969/j.issn.0001-5717.2023.04.022
[19] 代晶晶, 赵龙贤, 姜琪, 等. 热红外高光谱技术在地质找矿中的应用综述[J]. 地质学报, 2020, 94(8): 2520-2533, doi: 10.19762/j.cnki.dizhixuebao.2020172.
Dai J J, Zhao L X, Jiang Q, et al. Review of thermal-infrared spectroscopy applied in geological ore exploration[J]. Acta Geologica Sinica, 2020, 94(8): 2520-2533, doi: 10.19762/J.CNKI.Dizhixuebao.2020172.
[20] Tischendorf G, Gottesmann B, Förster H J, et al. On Li-bearing micas: estimating Li from electron microprobe analyses and an improved diagram for graphical representation[J]. Mineralogical Magazine, 1997, 61(409): 809-834.
[21] Uribe-Mogollon C, Maher K. White mica geochemistry of the copper cliff porphyry Cu deposit: insights from a vectoring tool applied to exploration[J]. Economic Geology, 2018, 113(6): 1269-1295.
[22] 薛君治, 白学让, 陈武. 成因矿物学[M]. 2版. 北京: 中国地质大学出版社, 1991: l-123.
Xue J Z, Bai X R, Chen W. Genetic Mineralogy[M]. 2nd ed. Beijing: China University of Geosciences Press, 1991: 1-123.
-