Characteristics and activity of Sanzao fault zone in Lianhuashan tectonic zone of Guangdong
-
摘要:
三灶断裂带是莲花山构造带西束的分支,是构造带在珠江口西岸的延伸,已有资料和研究认为该断裂带可能为活动断裂。通过野外地质调查、微动法勘探、浅层地震法勘探、钻孔验证、碎粉岩年代测试,对三灶断裂带在横琴地区的展布特征及活动性开展研究。结果表明:三灶断裂带总体走向为NE—NEE向,倾向北西,错断了上更新统三角层,断裂带内的碎粉岩光释光(optically stimulated luminescence, OSL)测年结果为(27.77±2.99) ka和(22.24±1.04) ka,指示横琴地区在晚更新世晚期发生过一次较大规模的脆性断裂活动。研究可为横琴粤澳深度合作区的城市建设和防灾减灾提供参考。
Abstract:Sanzao fault zone is a branch of the western beam of Lianhuashan tectonic zone, and also the extension of the fault zone on the west bank of Pearl River estuary. This fault was defined as an active fault by existing data and research. The distribution characteristics and activity of Sanzao fault zone in Hengqin area were studied through detailed field geological survey, micro-motion method, shallow seismic exploration, drilling verification and clastic rock age test. The results show that the overall strike of Sanzao fault zone is NE-NEE trending and dipping north west, which dislocated the mottled clay of the Upper Pleistocene deltaic deposits. The results of optically stimulated luminescence (OSL) dating of clastic rocks in the fault zone are (27.77±2.99) ka and (22.24±1.04) ka, indicating a large-scale brittle fault activity in the Late Pleistocene in Hengqin area. The research could provide references for urban construction and disaster prevention and mitigation in Guangdong-Macao in-depth cooperation zone in Hengqin area.
-
-
表 1 横琴地区主要NE向断裂特征
Table 1. Main faults characteristics of Hengqin area
断裂名称(编号) 产状 断裂特征 断裂性质 调查方法 马骝洲(F1-1) 走向约65°,倾向东南,倾角60°~70° 微动法测线出现等值线凹陷和低速异常,岩面明显变深 - 微动法测线L3揭露 小横琴(F1-2) 150°~170°∠75°~80° 延伸长度约10 km,断面平直陡峭,断裂面发育硅质、铁质薄膜、擦痕等 多期活动断裂 地表追索 石头咀(F1-3) 倾向北,倾角约70° 微动法测线显示等值线凹陷和低速异常,岩面明显变深 - 微动法测线L2揭露 中心沟(F1-4) 走向约70°,倾向北西,倾角60°~70° 微动法测线出现等值线凹陷和向深部延伸的低速异常带;浅层地震横波反射出现向深部延伸的低速异常和波组不连续异常,反射波组同相轴均出现连续性变差、错断的现象 多期活动断裂 微动法测线L1、浅层地震法测线L6及L7揭露 牛角坑(F1-5) 320°~330°∠50°~60° 延伸长度约10 km,在牛角坑水库有露头,实际影响宽度超10 m,断裂具有明显分带性,从中心向两侧可以划分出硅化构造角砾岩带和花岗质碎裂岩带;在隐伏区布设的微动法测线出现等值线凹陷和低速异常,岩面明显变深 多期活动断裂 地表追索、隐伏段浅层地震法测线L6揭露 深井坳(F1-6) 330°~360°∠60°~80° 延伸长度约10 km,影响宽度超10 m。在横琴长隆站旁可见完整露头,发育的构造岩类型有碎粉岩、磨砾岩-压碎角砾岩、构造角砾岩、硅化岩、碎裂岩等。 以压扭性左行走滑断裂为主,晚期发育一期右行走滑断裂 地表追索、隐伏段通过钻孔GCZ04揭露 黄茅形(F1-7) 330°~350°∠50°~60° 断裂带宽约30 cm,主要由花岗质构造角砾岩,构造岩发生片理化,根据片理化的S-C组构可以判断为左行走滑断裂 压扭性左行走滑断裂 地表追索 南湾(F1-8) 320°~350°∠50°~70° 断裂带为宽约1.5 m的硅化岩带,围岩花岗岩也受硅化影响,硅化岩带内部空洞较多,指示硅化岩带是由于张性活动而形成 张性正断裂 地表追索 石栏洲(F1-9) 295°~330°∠75°~85° 断裂破碎带宽约1 m,主要由花岗质碎裂岩、构造透镜体和构造角砾岩组成,角砾呈棱角状,直径0.5~5 cm不等 左行走滑断裂 地表追索 注:“-”表示断裂性质不明。 表 2 样品特征及光释光分析结果
Table 2. Sample characteristics and optically stimulated luminescence analysis results
编号 岩性 成分 样品长度/cm ω(U)/10-6 ω(Th)/10-6 ω(K)/% 年龄/ka B038-1 花岗质碎粉岩 烟灰色石英、花岗岩角砾及少量花岗质糜棱岩 15 22.21±1.11 22.77±1.13 3.21 22.24±1.04 B038-2 花岗质碎粉岩 烟灰色石英、花岗岩角砾及少量花岗质糜棱岩 15 16.30±0.81 20.74±1.03 3.26 27.77±2.99 表 3 珠江口两岸NE向与NEE向断裂年龄统计
Table 3. Statistics of NE and NEE faults ages on both sides of the Pearl River estuary
地区 地点 断裂名称 断裂走向 样品类型 年龄/ka 测试方法 香港 屯门蝴蝶湾[31] 东涌—大埔海断裂 NE向 断层物质 110.8±9.2 TL 大屿山阴澳笃[31] NE向 断层泥 82±6.8 TL 黄泥屋[32] NE向 剪切带物质 98.3±6.3 TL 横琴 长隆站东侧 深井坳断裂 NEE向 花岗质碎粉岩 22.24±1.04 OSL 花岗质碎粉岩 27.77±2.99 OSL 三灶 东咀[13] 东咀断裂 EW向 碎粉岩 32.3±2 TL 老爷仔[13] 老爷仔断裂 EW向 碎粉岩 120 TL 斜尾村西南侧[33] 构造岩 183±15.6 TL 东咀[13] 欧排咀—东咀断裂 NE—NEE向 花岗质碎斑岩 180 TL 香洲 白莲山[33] 白藤山—吉大断裂 NE—NEE向 碎粉岩 142±11.3 ESR 湾仔[33] 湾仔断裂 NE向 糜棱质碎粉岩 540±48.6 ESR 江门 大襟岛[33] 高栏岛断裂 NE—NEE向 碎粉岩 172.8 TL -
[1] 邱元禧, 邱津松, 李建超, 等. 广东莲花山断裂带中、新生代多期复合变形变质带的基本特征及其形成机制的探讨[J]. 中国地质科学院地质力学研究所所刊, 1991: 93-106.
Qiu Y X, Qiu J S, Li J C, et al. Deformational and metamorphic features of Lianhuashan fault zone during Meso-Cenozoic time and mechanism of their formation[J]. Bulletin of the Institute of Geomechanics Cacs, 1991: 93-106.
[2] 邹和平, 王建华, 丘元禧. 广东南澳和莲花山韧性剪切带40Ar/39Ar年龄及其地质意义[J]. 地球学报, 2000, 21(4): 356-364. doi: 10.3321/j.issn:1006-3021.2000.04.004
Zou H P, Wang J H, Qiu Y X. 40Ar/39Ar ages of the Nan'ao Shear Zone and the Lianhuashan Shear Zone in Guangdong Province and their geological significance[J]. Acta Geoscientia Sinica, 2000, 21(4): 356-364. doi: 10.3321/j.issn:1006-3021.2000.04.004
[3] Mao J W, Cheng Y B, Chen M H, et al. Major types and time-space distribution of Mesozoic ore deposits in South China and their geodynamic settings[J]. Mineralium Deposita, 2013, 48(3): 267-294. doi: 10.1007/s00126-012-0446-z
[4] 汪礼明, 王军, 王核, 等. 粤东莲花山断裂带动力变质作用与动力变质热液成矿[J]. 大地构造与成矿学, 2018, 42(5): 908-917.
Wang L M, Wang J, Wang H, et al. Dynamic metamorphism origin for the tin-copper polymetallic mineralization in the Lianhuashan fault, Eastern Guangdong Province[J]. Geotectonica et Metallogenia, 2018, 42(5): 908-917.
[5] 丁志磊, 陈正乐, 王晓虎, 等. 粤东莲花山断裂带高山寨钨多金属矿床流体包裹体研究[J]. 矿物岩石, 2019, 39(1): 7-14.
Ding Z L, Chen Z L, Wang X H, et al. Study of fluid inclusions of the Gaoshanzhai tungsten polymetallic deposit in Lianhuashan fault zone, Eastern Guangdong Province[J]. Mineralogy and Petrology, 2019, 39(1): 7-14.
[6] 王晓虎, 张文高, 陈正乐, 等. 华南沿海莲花山断裂带控矿构造变形时限: 来自锆石U-Pb年龄与地层时代的约束[J]. 中国地质, 2020, 47(4): 985-997.
Wang X H, Zhang W G, Chen Z L, et al. Deformation time limit of ore-controlling structures in Lianhuashan fault zone along the South China Coast: Constraints from zircon U-Pb age and stratigraphic age[J]. Geology in China, 2020, 47(4): 985-997.
[7] 王军, 汪礼明, 公凡影, 等. 粤东莲花山断裂带韧性剪切的温压条件及其对钨锡铜多金属成矿作用的约束[J]. 岩石学报, 2021, 37(6): 1921-1932.
Wang J, Wang L M, Gong F Y, et al. Temperature and pressure conditions of dynamic metamorphism with its constraints on polymetallic mineralization of tungsten, tin and copper in Lianhuashan fault zone in Eastern Guangdong Province[J]. Acta Petrologica Sinica, 2021, 37(6): 1921-1932.
[8] 阳峰, 陆野, 李诗颖, 等. 横琴粤澳深度合作区海域表层沉积物微量元素地球化学特征[J]. 中国地质调查, 2024, 11(6): 76-85. doi: 10.19388/j.zgdzdc.2024.164
Yang F, Lu Y, Li S Y, et al. Geochemical characteristics of trace elements in marine surface sediments of Guangdong-Macao in-depth cooperation zone in Hengqin[J]. Geological Survey of China, 2024, 11(6): 76-85. doi: 10.19388/j.zgdzdc.2024.164
[9] 张孟然, 姜正龙. 珠江口盆地白云凹陷沉降特征分析[J]. 山东科技大学学报: 自然科学版, 2016, 35(1): 30-37.
Zhang M R, Jiang Z L. Analysis of subsidence characteristics of Baiyun Sag, Pearl River Mouth Basin[J]. Journal of Shandong University of science and Technology (Natural Science), 2016, 35(1): 30-37.
[10] 王国槐, 梁昊, 赵卫, 等. 珠江口南部海域表层沉积物中微塑料的空间分布及运移机制[J]. 中国地质调查, 2024, 11(3): 76-82. doi: 10.19388/j.zgdzdc.2024.03.10
Wang G H, Liang H, Zhao W, et al. Spatial distribution and migration mechanism of microplastics in the surface sediments of the southern Pearl River Estuary[J]. Geological Survey of China, 2024, 11(3): 76-82. doi: 10.19388/j.zgdzdc.2024.03.10
[11] 国家地震局地震研究所, 国家地震局地质研究所. 中国活动构造典型卫星影象集[M]. 北京: 地震出版社, 1982.
Earthquake Research Institute of the National Seismological Bureau, Geological Research Institute of the National Seismological Bureau. Typical Satellite Image Set of China Active Tectonics[M]. Beijing: Seismological Press, 1982.
[12] 广东省地质矿产局七五七地质大队. 珠海区域地质综合调查报告(1∶ 50 000) (唐家幅、斗门县幅、澳门幅、三灶圩幅、大横琴幅)[R]. 江门: 广东省地质矿产局七五七地质大队, 1989.
The 757 Geological Brigade of Guangdong Provincial Bureau of Geology and Mineral Resources. Comprehensive Geological Survey Report of Zhuhai(1∶ 50 000)(Tangjia, Doumen county, Sanzao, Large Henqin)[R]. Jiangmen: The 757 Geological Brigade of Guangdong Provincial Bureau of Geology and Mineral Resources: 1989.
[13] 潘建雄, 黄日恒, 陈定国. 广东三灶岛发现史前大地震[J]. 南海研究与开发, 1994(2): 45-50.
Pan J X, Huang R H, Chen D G. A prehistoric earthquake was found in Sanzao Island, Guangdong Province[J]. Research and Development of the South China Sea, 1994(2): 45-50.
[14] Shu L S, Faure M, Jiang S Y, et al. SHRIMP zircon U-Pb age, litho- and biostratigraphic analyses of the Huaiyu Domain in South China-evidence for a neoproterozoic orogen, not Late Paleozoic-Early Mesozoic collision[J]. Episodes, 2006, 29(4): 244-252.
[15] Shu L S, Faure M, Wang B, et al. Late Palaeozoic-Early Mesozoic geological features of South China: response to the Indosinian collision events in Southeast Asia[J]. Comptes Rendus Geoscience, 2008, 340(2-3): 151-165.
[16] 张文高, 王晓虎, 陈正乐, 等. 广东莲花山断裂带韧性剪切带变形特征及其与成矿的关系[J]. 中国地质, 2020, 47(4): 932-943.
Zhang W G, Wang X H, Chen Z L, et al. The deformation characteristics of ductile shear zone and its relationship with mineralization in Lianhuashan fault zone, Guangdong Province[J]. Geology in China, 2020, 47(4): 932-943.
[17] 杜继宇. 莲花山断裂带和长乐—南澳断裂带构造特征及活动时代[D]. 长春: 吉林大学, 2012.
Du J Y. The Structural Features and Ages of Activities of Lianhuashan Fault and Changle-Nan'ao Fault[D]. Changchun: Jilin University, 2012.
[18] Li J H, Cawood P A, Ratschbacher L, et al. Building Southeast China in the late Mesozoic: Insights from alternating episodes of shortening and extension along the Lianhuashan fault zone[J]. Earth-Science Reviews, 2020, 201: 103056.
[19] 李出安, 阳峰, 林振文, 等. 珠海横琴粗中粒黑云母二长花岗岩的地质化学特征及年代学限制[J]. 广东地质, 2022(37): 1-8.
LI C A, Yang F, Lin Z W, et al. Geochemical characteristics and geochronological constraints of coarse-medium grained biotite monzonitic granite in Hengqin, Zhuhai[J]. Guangdong Geology, 2022(37): 1-8.
[20] 黄镇国, 李平日, 张仲英, 等. 珠江三角洲形成发育演变[M]. 广州: 科学普及出版社广州分社, 1982.
Huang Z G, Li P R, Zhang Z Y, et al. Formation, Development and Evolution of the Pearl River Delta[M]. Guangzhou: Science Popularization Press Guangzhou Branch, 1982.
[21] 杨小强, Grapes R, 周厚云, 等. 珠江三角洲沉积物的岩石磁学性质及其环境意义[J]. 中国科学D辑: 地球科学, 2007, 37(11): 1493-1503.
Yang X Q, Grapes R, Zhou H Y, et al. Magnetic properties of sediments from the Pearl River Delta, South China: paleoenvironmental implications[J]. Science in China Series D: Earth Sciences, 2007, 37(11): 1493-1503.
[22] 赵焕庭. 珠江河口湾伶仃洋的地形[J]. 海洋学报, 1981, 3(2): 255-274.
Zhao H T. Bottom relief of ling ding yang of the Zhujiang river estuary[J]. Acta Oceanologica Sinica, 1981, 3(2): 255-274.
[23] Liu C L, Fürsich F T, Wu J, et al. Late Quaternary palaeoenvironmental changes documented by microfaunas and shell stable isotopes in the southern Pearl River Delta plain, South China[J]. Journal of Palaeogeography, 2013, 2(4): 344-361.
[24] 郑思琦, 林振文, 李出安, 等. 珠江三角洲第四纪沉积物初始沉积年龄及沉积演化[J]. 海洋地质与第四纪地质, 2023, 43(6): 145-156.
Zheng S Q, Lin Z W, Li C A, et al. Discussion on the quaternary initial sedimentary age and sedimentary evolution in the Pearl River Delta[J]. Marine Geology & Quaternary Geology, 2023, 43(6): 145-156.
[25] 卢帮华, 王萍, 王慧颖, 等. 珠江三角洲西缘西江断裂鹤山-磨刀门段的活动性[J]. 地震地质, 2020, 42(6): 1370-1384.
Lu B H, Wang P, Wang H Y, et al. Latest progress on activity of Heshan-Modaomen segment, Xijiang Fault[J]. Seismology and Geology, 2020, 42(6): 1370-1384.
[26] 董好刚, 陈宇达. 西江断裂三水至磨刀门段第四纪活动性再研究[J]. 热带海洋, 2017, 36(2): 26-32.
Dong H G, Chen Y D. Re-visiting the quaternary activity of Xijiang fault from Sanshui to modaomen[J]. Journal of Tropical Oceanography, 2017, 36(2): 26-32.
[27] 张一梵. 微动勘探法在浅层探测中的研究与应用[D]. 北京: 中国地质大学(北京), 2019.
Zhang Y F. Research and Application of Microtremor Survey Method in Shallow Exploration[D]. Beijing: China University of Geosciences(Beijing), 2019.
[28] 刘远志, 刘胜, 李大虎, 等. 高分辨率反射波地震勘探在城市隐伏断裂探测中的应用——以成都天府新区苏码头断裂为例[J]. 大地测量与地球动力学, 2019, 39(9): 910-915.
Liu Y Z, Liu S, Li D H, et al. Application of high resolution reflected seismic exploration in the detection of urban buried faults: Sumatou fault of Tianfu new district[J]. Journal of Geodesy and Geodynamics, 2019, 39(9): 910-915.
[29] 赖忠平, 欧先交. 光释光测年基本流程[J]. 地理科学进展, 2013, 32(5): 683-693.
Lai Z P, Ou X J. Basic procedures of optically stimulated luminescence (OSL) dating[J]. Progress in Geography, 2013, 32(5): 683-693.
[30] Ding Y Z, LAI K W. Neotectonic fault activity in Hong Kong: evidence from seismic events and thermoluminescence dating of fault gouge[J]. Journal of the Geological Society, 1997, 154: 1001-1007.
[31] 丁原章, 黎权伟, 黄日恒, 等. 香港地区断裂构造的新活动性[J]. 华南地震, 1997, 17(2): 9-15.
Ding Y Z, Li Q W, Huang R H, et al. New activity of the faults in Hong Kong[J]. South China Journal Of Seismology, 1997, 17(2): 9-15.
[32] 广东省工程防震研究院. 新界西北部地震小区划试点研究: 地震对天然斜坡潜在影响调查[R]. 2010.
GEERRI (Guangdong Engineering Earthquake Resistance Research Institute). Pilot seismic microzonation study in northwest new territories for the study of potential effect of earthquake on Natural Terrain-Investigation[R]. 2010.
[33] 广东省工程防震研究院. 珠海横琴总部大厦工程场地地震安全评价报告[R]. 2011.
Guangdong Engineering Earthquake Prevention Research Institute. Seismic safety evaluation report of Zhuhai Hengqin Headquarters Building project site[R]. 2011.
-