Geological characteristics and tectonic significance of ophiolite mélange in Ma'anshan area of the eastern Inner Mongolia
-
摘要:
二连浩特—贺根山蛇绿岩带是中亚造山带东部出露面积最大的晚古生代蛇绿岩带,曾被认为是华北板块和西伯利亚板块最后碰撞的缝合线位置,关于其构造属性仍存在争议。新识别出的内蒙古马鞍山地区蛇绿混杂岩位于兴蒙造山带东部,是二连浩特—贺根山蛇绿岩带的东延部分,这套蛇绿混杂岩的发现填补了二连浩特—贺根山—黑河缝合带中段的空白,为古亚洲洋构造域演化提供了新的证据。通过对马鞍山地区蛇绿混杂岩开展岩相学、地球化学、年代学研究,发现马鞍山地区蛇绿混杂岩由岩块和基质构成,其中岩块主要为蛇纹石化橄榄岩、橄榄岩、辉绿岩、玄武岩、高镁安山岩、安山岩、流纹岩,基质主要为浊积岩; 蛇纹石化橄榄岩具有俯冲带(supra-subduction zone,SSZ)型蛇绿岩特征,辉绿岩具有SSZ型构造背景成因特征,玄武岩具有富集型洋中脊玄武岩(enriched mid-ocean ridge basalt, E-MORB)和岛弧玄武岩特征, 指示其形成于弧后盆地环境。从马鞍山地区蛇绿混杂岩中获得的辉绿岩锆石U-Pb年龄为(344.4±1.4) Ma,与前人在贺根山地区蛇绿岩中获得的年龄相近,证实本区存在板块消减带(缝合带),对厘定区域构造格架具有指导意义。
Abstract:Erlianhaote Hegenshan ophiolite belt is the largest exposed area of Late Paleozoic ophiolite in the eastern part of the Central Asian Orogenic Belt. It was once considered to be the suture zone of the last collision between the North China Craton and Siberian Plate, and there is still controversy in its tectonic attributes. The newly identified ophiolitic mélange in Ma'anshan area of Inner Mongolia is located in the eastern part of Xingmeng Orogenic Belt and is the eastern extension of the Erlianhaote-Hegenshan ophiolite belt. The discovery of the ophiolitic mélange fills the gap of the middle section of the Erlianhaote-Hegenshan-Heihe suture zone and provides new evidence for the evolution of Paleo-Asian Ocean tectonic domain. It was found that the mélange is composed of blocks and matrix through petrographic, geochemical and chronological studies of Ma'anshan ophiolitic mélange. The blocks are serpentinized peridotite, peridotite, diabase, basalt, high-magnesium andesite, andesite and rhyolite, and the matrix is mainly turbidite. The serpentinized peridotite has the characteristics of supra-subduction zone (SSZ) type ophiolite, and the diabase has the characteristics of SSZ tectonic background genesis. The basalt has the characteristics of (enriched mid-ocean ridge basult E-MORB) and island arc basalt, indicating that it was formed in a back-arc basin environment. The zircon U-Pb age (344.4±1.4) Ma of the diabase in Ma'anshan ophiolitic mélange is similar to the age obtained by previous researchers from Hegenshan ophiolite, confirming the existence of a subduction zone (suture zone) in this area, which is of great significance for the determination of the regional tectonic framework.
-
Key words:
- ophiolitic mélange /
- SSZ type /
- basalt /
- Ma'anshan area /
- Inner Mongolia
-
-
表 1 研究区样品主量元素、微量元素和稀土元素含量
Table 1. Content of major elements, trace elements and rare earth elements of samples in the study area
样品编号 岩性 主量元素含量/% SiO2 Al2O3 TiO2 Fe2O3 FeO CaO MgO K2O Na2O MnO P2O5 烧失量 总和 HP73S28 辉绿岩 48.23 15.34 2.34 3.06 7.73 8.86 6.50 0.65 3.71 0.23 0.290 2.88 99.83 HP73S42 辉绿岩 46.82 16.61 2.25 2.95 7.98 7.00 8.06 0.74 3.47 0.23 0.200 3.48 99.81 HP73S73 辉绿岩 48.39 15.58 1.71 2.04 8.42 10.64 7.60 0.38 2.47 0.19 0.140 2.31 99.88 HP73S78 辉绿岩 39.92 14.19 0.92 3.79 5.27 17.37 6.50 0.39 1.68 0.17 0.067 9.64 99.90 HP89-1S24-1 辉绿岩 59.27 15.87 1.15 2.47 5.38 5.62 3.08 0.37 4.21 0.17 0.200 2.09 99.89 HP94S14 玄武岩 47.95 17.48 0.90 1.65 6.49 13.62 8.20 0.15 1.63 0.23 0.061 1.52 99.87 M01 玄武岩岩 46.93 16.52 0.76 3.20 8.49 10.46 6.45 1.15 2.65 0.16 0.032 1.21 99.00 M02 玄武岩岩 49.64 17.32 1.07 2.52 7.58 8.56 6.95 0.96 2.30 0.21 0.025 1.46 99.52 HP98-1S8 橄榄岩 41.53 0.81 0.01 6.04 1.76 0.12 36.74 0.03 0.05 0.12 0.006 12.23 99.45 HP99S14 橄榄岩 41.10 0.66 0.01 4.73 2.39 0.13 38.12 0.01 0.01 0.11 0.004 12.23 99.50 WL-D0055 橄榄岩 41.93 3.47 0.14 5.56 2.44 0.96 33.78 0.15 0.07 0.07 0.020 11.10 99.69 贺根山蛇绿岩 橄榄岩平均值[25] 37.23 0.63 0.01 7.01 0.15 39.75 0.01 0.08 0.10 - 14.13 99.09 - 玄武岩平均值[21] 49.22 15.10 1.22 2.55 7.19 10.38 8.49 0.15 3.41 0.15 0.09 4.09 102.03 样品编号 岩性 稀土元素含量/10-6 La Ce Pr Nd Sm Eu Gd Tb Dy Ho Er Tm Yb HP73S28 辉绿岩 9.44 24.50 3.78 19.00 5.27 1.73 5.37 1.04 6.89 1.31 3.69 0.65 3.46 HP73S42 辉绿岩 5.87 17.60 2.97 16.00 5.06 1.42 5.53 1.12 7.84 1.54 4.45 0.81 4.44 HP73S73 辉绿岩 4.71 13.90 2.30 12.4 4.01 1.37 4.50 0.94 6.48 1.30 3.72 0.67 3.59 HP73S78 辉绿岩 2.28 6.49 1.10 6.27 2.17 0.96 2.55 0.54 3.82 0.75 2.14 0.38 2.16 HP89-1S24-1 辉绿岩 15.00 32.70 4.43 19.6 4.68 1.30 4.31 0.80 5.17 1.01 2.86 0.52 2.89 HP94S14 玄武岩 2.53 8.07 1.52 8.51 2.77 1.45 3.08 0.66 4.6 0.92 2.63 0.46 2.63 M01 玄武岩岩 4.64 9.65 1.61 7.98 2.02 0.71 2.75 0.43 3.42 0.54 1.98 0.26 1.83 M02 玄武岩岩 5.63 10.24 1.43 8.05 2.26 0.82 2.99 0.44 3.76 0.60 2.32 0.28 1.85 HP98-1S8 橄榄岩 0.66 1.06 0.14 0.54 0.10 0.04 0.11 0.02 0.12 0.02 0.07 0.02 0.09 HP99S14 橄榄岩 0.63 1.15 0.14 0.58 0.10 0.03 0.10 0.01 0.09 0.02 0.06 0.01 0.07 WL-D0055 橄榄岩 1.45 3.34 0.26 1.46 0.40 0.08 0.43 0.11 0.66 0.13 0.35 0.07 0.41 贺根山蛇绿岩 橄榄岩平均值[25] 0.02 0.05 0.01 0.01 0.00 0.00 0.01 0.00 0.01 0.00 0.01 0.00 0.02 玄武岩平均值[21] 2.65 7.38 1.32 7.03 2.54 0.91 3.36 0.69 4.43 0.94 2.78 0.43 2.76 样品编号 岩性 稀土元素含量/10-6 特征参数 微量元素含量/10-6 Lu ΣREE LREE HREE LREE/HREE (La/Yb)N (La/Sm)N Li Be Sc V Cr Co HP73S28 辉绿岩 0.55 86.69 63.71 22.98 2.77 2.73 1.79 51.40 1.03 52.5 267.0 155 42.8 HP73S42 辉绿岩 0.69 75.31 48.9 26.41 1.85 1.32 1.16 38.60 0.70 52.5 284.0 276 39.3 HP73S73 辉绿岩 0.58 60.51 38.72 21.79 1.78 1.31 1.17 14.00 0.50 39.9 244.0 192 37.4 HP73S78 辉绿岩 0.34 31.96 19.27 12.69 1.52 1.05 1.05 26.60 0.34 36.3 172.0 208 33.1 HP89-1S24-1 辉绿岩 0.48 95.77 77.73 18.04 4.31 5.20 3.21 11.20 1.34 27.6 201.0 56 23.0 HP94S14 玄武岩 0.41 40.24 24.85 15.39 1.61 0.97 0.92 4.60 0.27 29.4 236.0 403 44.7 M01 玄武岩岩 0.23 38.05 26.61 11.44 2.33 2.54 2.30 4.85 0.32 28.5 215.0 325 42.6 M02 玄武岩岩 0.27 40.94 28.43 12.51 2.27 3.04 2.49 4.76 0.26 31.0 223.0 237 43.2 HP98-1S8 橄榄岩 0.02 3.00 2.54 0.46 5.51 7.30 6.30 4.63 0.46 11.3 33.1 2 728 84.1 HP99S14 橄榄岩 0.01 3.02 2.65 0.38 6.97 9.04 6.03 20.10 0.10 14.1 31.4 2 343 95.9 WL-D0055 橄榄岩 0.05 9.20 6.99 2.21 3.16 3.54 3.63 18.10 0.20 12.1 32.4 2 260 85.6 贺根山蛇绿岩 橄榄岩平均值[25] 0.00 0.13 0.09 0.04 1.74 1.17 4.50 0.74 0.02 6.42 23.98 2 019.5 83.33 玄武岩平均值[21] 0.41 63.56 21.83 41.73 0.52 - - - - 44.82 93.53 17.51 151.23 样品编号 岩性 微量元素含量/10-6 Ni Ga Rb Sr Zr Nb Mo Cs Ba Hf Ta Th U HP73S28 辉绿岩 53.2 18.1 13.9 512.0 141.0 6.63 0.21 3.45 269.0 4.17 0.45 0.51 0.19 HP73S42 辉绿岩 117.0 19.1 31.0 354.0 159.0 2.57 0.27 3.83 300.0 4.29 0.18 0.45 0.16 HP73S73 辉绿岩 78.3 17.2 10.3 139.0 110.0 1.47 0.47 1.21 43.9 3.55 0.14 0.45 0.18 HP73S78 辉绿岩 66.4 17.5 11.5 236.0 67.3 0.81 0.33 0.53 39.3 1.92 0.07 0.28 0.55 HP89-1S24-1 辉绿岩 20.2 20.2 10.8 446.0 154.0 6.05 0.83 3.56 99.0 4.18 0.35 3.04 0.86 HP94S14 玄武岩 142.0 19.5 3.8 298.0 82.0 0.43 0.39 1.28 83.3 2.45 0.13 0.30 0.18 M01 玄武岩岩 98.0 20.7 5.3 313.0 75.0 7.96 0.36 0.94 86.5 1.72 0.67 0.97 0.16 M02 玄武岩岩 124.0 17.4 2.5 315.0 79.0 3.93 0.56 1.18 72.7 2.05 0.50 0.98 0.22 HP98-1S8 橄榄岩 2 663.0 1.23 1.1 9.3 30.9 0.14 0.57 0.61 16.2 0.81 0.03 0.16 0.78 HP99S14 橄榄岩 2 548.0 1.54 0.8 10.9 26.2 0.13 0.32 0.86 11.3 0.73 0.02 0.19 0.11 WL-D0055 橄榄岩 3 812.0 1.35 5.9 22.3 47.8 5.90 0.45 0.75 7.6 1.05 0.05 0.38 0.12 贺根山蛇绿岩 橄榄岩平均值[25] 1 749.5 1.14 0.1 11.38 0.16 0.01 - 0.01 1.02 - - 0.01 0.01 玄武岩平均值[21] 57.38 - 1.9 153.29 64.04 2.16 - - 68.27 2.3 0.3 0.32 0.13 注:“-”为无数据。 表 2 辉绿岩样品LA-ICP-MS锆石U-Pb测年结果
Table 2. LA-ICP-MS zircon U-Pb dating results of diabase samples
测点 元素含量/10-6 Th/U 同位素比值 年龄/Ma Pb Th U 207Pb/206Pb 1σ 207Pb/235U 1σ 206Pb/238U 1σ 206Pb/238U 1σ 207Pb/206Pb 1σ 2 17.81 129.40 280.95 0.46 0.057 7 0.001 5 0.431 7 0.010 2 0.054 6 0.000 5 342 3 517 57 3 16.34 160.09 252.62 0.63 0.054 1 0.001 3 0.412 2 0.011 4 0.055 2 0.000 6 346 2 376 56 4 24.88 340.41 343.23 0.99 0.060 2 0.001 4 0.455 2 0.011 4 0.054 8 0.000 5 344 3 609 47 5 20.82 187.87 329.47 0.57 0.055 3 0.001 1 0.415 8 0.008 5 0.054 5 0.000 5 342 3 433 44 7 32.76 441.27 470.45 0.94 0.059 0 0.001 0 0.443 5 0.008 2 0.054 5 0.000 4 342 2 565 39 9 39.56 406.46 604.12 0.67 0.057 1 0.000 9 0.432 8 0.007 1 0.055 1 0.000 5 345 2 494 35 10 17.49 117.71 288.58 0.41 0.056 1 0.004 3 0.420 7 0.033 9 0.054 3 0.001 0 340 5 457 172 11 19.87 210.34 307.97 0.68 0.053 9 0.001 2 0.404 6 0.009 2 0.054 8 0.000 6 343 3 365 47 12 22.01 235.86 337.96 0.70 0.053 4 0.001 3 0.406 5 0.010 4 0.055 2 0.000 6 346 3 346 83 13 28.86 331.14 426.63 0.78 0.056 3 0.001 3 0.428 1 0.011 5 0.054 9 0.000 4 344 2 465 52 15 16.39 190.30 241.62 0.79 0.063 6 0.003 0 0.476 1 0.027 7 0.053 9 0.001 2 338 7 728 103 16 17.89 140.85 263.26 0.54 0.077 2 0.002 6 0.587 7 0.020 5 0.055 3 0.000 7 346 4 1 126 67 17 10.62 154.14 147.70 1.04 0.052 7 0.002 0 0.399 0 0.015 0 0.055 2 0.000 6 346 3 317 119 18 10.68 190.56 139.11 1.37 0.055 9 0.002 3 0.421 7 0.017 8 0.055 1 0.000 8 345 4 456 123 19 16.05 199.56 224.32 0.89 0.062 2 0.001 7 0.477 1 0.013 2 0.055 7 0.000 6 349 3 683 53 21 26.06 194.77 381.28 0.51 0.090 0 0.010 1 0.695 2 0.085 9 0.054 6 0.000 8 342 4 1426 215 23 9.18 81.16 144.56 0.56 0.054 0 0.001 6 0.407 1 0.011 7 0.055 0 0.000 5 345 3 372 67 24 12.50 122.17 184.92 0.66 0.069 2 0.002 2 0.528 8 0.017 8 0.055 2 0.000 6 346 3 906 65 25 14.33 110.61 228.75 0.48 0.062 0 0.001 9 0.466 1 0.014 3 0.054 6 0.000 5 342 3 676 65 26 5.07 41.13 67.23 0.61 0.114 3 0.004 3 0.864 6 0.032 5 0.055 2 0.000 6 346 4 1 868 69 28 8.30 69.16 105.14 0.66 0.138 6 0.006 2 1.056 1 0.049 9 0.055 2 0.000 8 346 4 2 210 78 29 21.71 159.46 351.36 0.45 0.056 7 0.001 3 0.427 1 0.009 8 0.054 7 0.000 5 343 2 480 52 30 21.30 257.16 321.22 0.80 0.059 3 0.001 5 0.443 1 0.011 6 0.054 3 0.000 5 340 3 576 54 -
[1] 符安宗, 李金明, 吕石佳, 等. 黑龙江多宝山地区裸河岩体锆石U-Pb年龄、地球化学特征及地质意义[J]. 中国地质调查, 2023, 10(1): 52-61. doi: 10.19388/j.zgdzdc.2023.01.06
Fu A Z, Li J M, Lv S J, et al. Zircon U-Pb ages, geochemical characteristics and geological significance of Luohe pluton in Duobaoshan area, Heilongjiang Province[J]. Geological Survey of China, 2023, 10(1): 52-61. doi: 10.19388/j.zgdzdc.2023.01.06
[2] 郝书清, 贾士影, 戎秀伟. 兴安地块南段乌兰复合岩体年代学、地球化学及其地质意义[J]. 中国地质调查, 2022, 9(3): 40-51. doi: 10.19388/j.zgdzdc.2022.03.05
Hao S Q, Jia S Y, Rong X W. Geochronology, geochemistry and geological significance of the Wulan composite pluton in the southern Xing'an block[J]. Geological Survey of China, 2022, 9(3): 40-51. doi: 10.19388/j.zgdzdc.2022.03.05
[3] 宋树军, 宋立军, 陈志楠. 河北省大地构造相划分与成矿作用[J]. 中国地质调查, 2023, 10(3): 75-83. doi: 10.19388/j.zgdzdc.2023.03.09
Song S J, Song L J, Chen Z N. Tectonic facies classification and mineralization of Hebei Province[J]. Geological Survey of China, 2023, 10(3): 75-83. doi: 10.19388/j.zgdzdc.2023.03.09
[4] 朱永峰, 徐新. 新疆塔尔巴哈台山发现早奥陶世蛇绿混杂岩[J]. 岩石学报, 2006, 22(12): 2833-2842.
Zhu Y F, Xu X. The discovery of Early Ordovician ophiolite mélange in Taerbahatai Mts., Xinjiang, NW China[J]. Acta Petrologica Sinica, 2006, 22(12): 2833-2842.
[5] Xu J F, Castillo P R, Chen F R, et al. Geochemistry of late Paleozoic mafic igneous rocks from the Kuerti area, Xinjiang, northwest China: Implications for backarc mantle evolution[J]. Chemical Geology, 2003, 193(1/2): 137-154.
[6] 林敏, 马昌前, 徐立明, 等. 内蒙古海勒斯台俯冲增生混杂岩地质特征及发现的意义[J]. 地球科学, 2019, 44(10): 3279-3296.
Lin M, Ma C Q, Xu L M, et al. Geological characteristics of subduction-accretionary complexes in Hellestein District, Inner Mongolia and its discovery significance[J]. Earth Science, 2019, 44(10): 3279-3296.
[7] 曹从周, 杨芳林, 田昌烈, 等. 内蒙古贺根山地区蛇绿岩及中朝板块和西伯利亚板块之间的缝合带位置[M]//中国北方板块构造论文集编委会. 中国北方板块构造论文集(1). 北京: 地质出版社, 1986: 64-86.
Cao C Z, Yang F L, Tian C L, et al. Location of ophiolite and suture zone between Sino-Korean plate and Siberian plate in Hegenshan area, Inner Mongolia[M]//Committee of the Collection of Plate Tectonics in Northern China. Collection of Papers on Plate Tectonics in Northern China (1). Beijing: Geological Publishing House, 1986: 64-86.
[8] 李锦轶. 内蒙古东部中朝板块与西伯利亚板块之间古缝合带的初步研究[J]. 科学通报, 1986, 31(14): 1093-1096.
Li J Y. A preliminary study of the ancient suture zone between the Sino-Korean plate and the Siberian plate in eastern Inner Mongolia[J]. Chinese Science Bulletin, 1986, 31(14): 1093-1096.
[9] 田昌烈, 曹从周, 杨芳林. 中朝陆台北侧褶皱带(中段)蛇绿岩的地球化学特征[J]. 中国地质科学院院报, 1989: 107-129.
Tian C L, Cao C Z, Yang F L. Geochemical Features of ophiolite in the fold belt on the North side of the Sino-Korean platform[J]. Bulletin of the Chinese Academy of Geological Sciences, 1989: 107-129.
[10] 梁日暄. 内蒙古中段蛇绿岩特征及地质意义[J]. 中国区域地质, 1994, 13(1): 37-45.
Ling R X. The features of ophiolites in the gentral sector of Inner Mongolia and its geological significance[J]. Regional Geology of China, 1994, 13(1): 37-45.
[11] 包志伟, 陈森煌, 张桢堂. 内蒙古贺根山地区蛇绿岩稀土元素和Sm-Nd同位素研究[J]. 地球化学, 1994, 23(4): 339-349. doi: 10.3321/j.issn:0379-1726.1994.04.004
Bao Z W, Chen S H, Zhang Z T. Study on Ree and Sm-Nd isotopes of Hegenshan ophiolite, Inner Mongolia[J]. Geochimica, 1994, 23(4): 339-349. doi: 10.3321/j.issn:0379-1726.1994.04.004
[12] 孙德有, 吴福元, 李惠民, 等. 小兴安岭西北部造山后A型花岗岩的时代及与索伦山—贺根山—扎赉特碰撞拼合带东延的关系[J]. 科学通报, 2000, 45(20): 2217-2222. doi: 10.3321/j.issn:0023-074X.2001.05.019
Sun D Y, Wu F Y, Li H M, et al. Emplacement age of the postorogenic A-type granites in Northwestern Lesser Xing'an Ranges, and its relationship to the eastward extension of Suolushan-Hegenshan-Zhalaite collisional suture zone[J]. Chinese Science Bulletin, 2001, 46(5): 427-432. doi: 10.3321/j.issn:0023-074X.2001.05.019
[13] 苗来成, 范蔚茗, 张福勤, 等. 小兴安岭西北部新开岭—科洛杂岩锆石SHRIMP年代学研究及其意义[J]. 科学通报, 2003, 48(22): 2315-2323.
Miao L C, Fan W M, Zhang F Q, et al. Zircon SHRIMP geochronology of the Xinkailing-Kele complex in the northwestern Lesser Xing'an Range, and its geological implications[J]. Chinese Science Bulletin, 2004, 49(2): 201-209.
[14] 那福超, 付俊彧, 汪岩, 等. 内蒙古莫力达瓦旗哈达阳绿泥石白云母构造片岩LA-ICP-MS锆石U-Pb年龄及其地质意义[J]. 地质通报, 2014, 33(9): 1326-1332. doi: 10.3969/j.issn.1671-2552.2014.09.007
Na F C, Fu J Y, Wang Y, et al. LA-ICP-MS zircon U-Pb age of the chlorite-muscovite tectonic schist in Hadayang, Morin Dawa Banner, Inner Mongolia, and its tectonic significance[J]. Geological Bulletin of China, 2014, 33(9): 1326-1332. doi: 10.3969/j.issn.1671-2552.2014.09.007
[15] 付俊彧, 汪岩, 那福超, 等. 内蒙古哈达阳镁铁-超镁铁质岩锆石U-Pb年代学及地球化学特征: 对嫩江—黑河地区晚泥盆世俯冲背景的制约[J]. 中国地质, 2015, 42(6): 1740-1753.
Fu J Y, Wang Y, Na F C, et al. Zircon U-Pb geochronology and geochemistry of the Hadayang mafic-ultramafic rocks in Inner Mongolia: Constraints on the Late Devonian subduction of Nenjiang-Heihe area, Northeast China[J]. Geology in China, 2015, 42(6): 1740-1753.
[16] 黄波, 付冬, 李树才, 等. 内蒙古贺根山蛇绿岩形成时代及构造启示[J]. 岩石学报, 2016, 32(1): 158-176.
Huang B, Fu D, Li S C, et al. The age and tectonic implications of the Hegenshan ophiolite in Inner Mongolia[J]. Acta Petrologica Sinica, 2016, 32(1): 158-176.
[17] 李英杰, 王金芳, 王根厚, 等. 内蒙古迪彦庙蛇绿岩带达哈特前弧玄武岩的发现及其地质意义[J]. 岩石学报, 2018, 34(2): 469-482.
Li Y J, Wang J F, Wang G H, et al. Discovery and significance of the Dahate fore-arc basalts from the Diyanmiao ophiolite in Inner Mongolia[J]. Acta Petrologica Sinica, 2018, 34(2): 469-482.
[18] 许文良, 孙晨阳, 唐杰, 等. 兴蒙造山带的基底属性与构造演化过程[J]. 地球科学, 2019, 44(5): 1620-1646.
Xu W L, Sun C Y, Tang J, et al. Basement nature and tectonic evolution of the Xing'an-Mongolian orogenic belt[J]. Earth Science, 2019, 44(5): 1620-1646.
[19] 周建波, 石爱国, 景妍. 东北地块群: 构造演化与古大陆重建[J]. 吉林大学学报(地球科学版), 2016, 46(4): 1042-1055.
Zhou J B, Shi A G, Jing Y. Combined NE China blocks: tectonic evolution and supercontinent reconstruction[J]. Journal of Jilin University (Earth Science Edition), 2016, 46(4): 1042-1055.
[20] 黄金香, 赵志丹, 张宏飞, 等. 内蒙古温都尔庙和巴彦敖包—交其尔蛇绿岩的元素与同位素地球化学: 对古亚洲洋东部地幔域特征的限制[J]. 岩石学报, 2006, 22(12): 2889-2900.
Huang J X, Zhao Z D, Zhang H F, et al. Elemental and Sr-Nd-Pb isotopic geochemistry of the Wenduermiao and Bayanaobao-Jiaoqier ophiolites, Inner Mongolia: Constraints for the characteristics of the mantle domain of eastern Paleo-Asian Ocean[J]. Acta Petrologica Sinica, 2006, 22(12): 2889-2900.
[21] 王成, 任利民, 张晓军, 等. 内蒙古贺根山蛇绿岩中玄武岩锆石U-Pb年龄、地球化学特征及其地质意义[J]. 地质找矿论丛, 2018, 33(4): 617-626.
Wang C, Ren L M, Zhang X J, et al. Zircon U-Pb age and geochemical characteristics of basalt of the Hegenshan ophiolite in Inner Mongolia and the geological significance[J]. Contributions to Geology and Mineral Resources Research, 2018, 33(4): 617-626.
[22] 李英杰, 王金芳, 李红阳, 等. 内蒙西乌旗白音布拉格蛇绿岩地球化学特征[J]. 岩石学报, 2013, 29(8): 2719-2730.
Li Y J, Wang J F, Li H Y, et al. Geochemical characteristics of Baiyinbulage ophiolite in Xi Ujimqin Banner, Inner Mongolia[J]. Acta Petrologica Sinica, 2013, 29(8): 2719-2730.
[23] Robinson P T, Zhou M F, Hu X F, et al. Geochemical constraints on the origin of the Hegenshan ophiolite, Inner Mongolia, China[J]. Journal of Asian Earth Sciences, 1999, 17(4): 423-442. doi: 10.1016/S1367-9120(99)00016-4
[24] 王金芳, 李英杰, 李红阳, 等. 内蒙古乌兰沟埃达克岩锆石U-Pb年龄及构造环境[J]. 地质通报, 2018, 37(10): 1933-1943. doi: 10.12097/gbc.dztb-37-10-1933
Wang J F, Li Y J, Li H Y, et al. Zircon U-Pb dating and tectonic setting of the Wulan'gou adakite in Inner Mongolia[J]. Geological Bulletin of China, 2018, 37(10): 1933-1943. doi: 10.12097/gbc.dztb-37-10-1933
[25] 王智慧, 杨振宁, 王志伟, 等. 内蒙古贺根山蛇绿岩地幔属性: 来自方辉橄榄岩元素地球化学和Re-Os同位素的制约[J]. 岩石学报, 2023, 39(5): 1322-1338.
Wang Z H, Yang Z N, Wang Z W, et al. Mantle property of Hegenshan ophiolite in Inner Mongolia: Constrains from element geochemistry and Re-Os isotopes of harzburgite[J]. Acta Petrologica Sinica, 2023, 39(5): 1322-1338.
[26] 李英杰, 王金芳, 李红阳, 等. 内蒙古西乌珠穆沁旗迪彦庙蛇绿岩的识别[J]. 岩石学报, 2012, 28(4): 1282-1290.
Li Y J, Wang J F, Li H Y, et al. Recognition of Diyanmiao ophiolite in Xi Ujimqin Banner, Inner Mongolia[J]. Acta Petrologica Sinica, 2012, 28(4): 1282-1290.
[27] Pearce J A, Lippard S J, Roberts S. Characteristics and tectonic significance of supra-subduction zone ophiolites[J]. Geological Society, London, Special Publications, 1984, 16(1): 77-94. doi: 10.1144/GSL.SP.1984.016.01.06
[28] 李英杰, 王金芳, 李红阳, 等. 内蒙古西乌旗梅劳特乌拉蛇绿岩的识别[J]. 岩石学报, 2015, 31(5): 1461-1470.
Li Y J, Wang J F, Li H Y, et al. Recognition of Meilaotewula ophiolite in Xi Ujimqin Banner, Inner Mongolia[J]. Acta Petrologica Sinica, 2015, 31(5): 1461-1470.
[29] Pearce J A, Peate D W. Tectonic implications of the composition of volcanic ARC magmas[J]. Annual Review of Earth and Planetary Sciences, 1995, 23: 251-285. doi: 10.1146/annurev.ea.23.050195.001343
[30] 张旗, 周国庆. 中国蛇绿岩[M]. 北京: 科学出版社, 2001.
Zhang Q, Zhou G Q. Chinese Ophiolite[M]. Beijing: Science Press, 2001.
[31] 周国庆. 蛇绿岩研究新进展及其定义和分类的再讨论[J]. 南京大学学报: 自然科学版, 2008, 44(1): 1-24.
Zhou G Q. Ophiolite: some key aspects regarding its definition and classification[J]. Journal of Nanjing University (Natural Sciences), 2008, 44(1): 1-24.
[32] 吴元保, 郑永飞. 锆石成因矿物学研究及其对U-Pb年龄解释的制约[J]. 科学通报, 2004, 49(16): 1589-1604.
Wu Y B, Zheng Y F. Genesis of zircon and its constraints on interpretation of U-Pb age[J]. Chinese Science Bulletin, 2004, 49(15): 1554-1569.
[33] 杨宾, 张彬, 张庆奎, 等. 内蒙古东部马鞍山地区早石炭世高镁安山岩特征及地质意义[J]. 地质通报, 2018, 37(9): 1760-1770.
Yang B, Zhang B, Zhang Q K, et al. Characteristics and geological significance of Early Carboniferous high-Mg andesites in Ma'anshan area, east Inner Mongolia[J]. Geological Bulletin of China, 2018, 37(9): 1760-1770.
[34] 刘家义. 内蒙古贺根山地区蛇绿岩研究及构造意义[M]//中国北方板块构造文集编辑委员会. 中国北方板块构造文集(1). 沈阳: 中国地质科学院沈阳地质矿产研究所, 1983: 117-135.
Liu J Y. Research and tectonic significance of ophiolite in Hegenshan area, Inner Mongolia[M]//Board of the Collection of Plate Tectonics in Northern China. Collection of Papers on Plate Tectonics in Northern China (1). Shenyang: Shenyang Institute of Geology and Mineral Resources, Chinese Academy of Geological Sciences, 1983: 117-135.
[35] Miao L C, Fan W M, Liu D Y, et al. Geochronology and geochemistry of the Hegenshan ophiolitic complex: Implications for late-stage tectonic evolution of the Inner Mongolia-Daxinganling Orogenic Belt, China[J]. Journal of Asian Earth Sciences, 2008, 32(5-6): 348-370. doi: 10.1016/j.jseaes.2007.11.005
[36] Jian P, Kröner A, Windley B F, et al. Carboniferous and Cretaceous mafic-ultramafic massifs in Inner Mongolia (China): A SHRIMP zircon and geochemical study of the previously presumed integral "Hegenshan ophiolite"[J]. Lithos, 2012, 142-143: 48-66. doi: 10.1016/j.lithos.2012.03.007
[37] Zhang Z C, Li K, Li J F, et al. Geochronology and geochemistry of the eastern Erenhot ophiolitic complex: Implications for the tectonic evolution of the Inner Mongolia-Daxinganling Orogenic Belt[J]. Journal of Asian Earth Sciences, 2015, 97: 279-293. doi: 10.1016/j.jseaes.2014.06.008
[38] 祁晓鹏, 杨杰, 范显刚, 等. 东昆仑东段东昆中构造混杂岩带长石山蛇绿岩年代学、地球化学特征及其构造意义[J]. 中国地质, 2016, 43(3): 797-816.
Qi X P, Yang J, Fan X G, et al. Age, geochemical characteristics and tectonic significance of Changshishan ophiolite in central East Kunlun tectonic mélange belt along the east section of East Kunlun Mountains[J]. Geology in China, 2016, 43(3): 797-816.
[39] 朱小辉, 陈丹玲, 刘良, 等. 柴北缘绿梁山地区早古生代弧后盆地型蛇绿岩的年代学、地球化学及大地构造意义[J]. 岩石学报, 2014, 30(3): 822-834.
Zhu X H, Chen D L, Liu L, et al. Geochronology, geochemistry and significance of the Early Paleozoic back-arc type ophiolite in Lvliangshan area, North Qaidam[J]. Acta Petrologica Sinica, 2014, 30(3): 822-834.
[40] 张庆奎, 杨宾, 邵学峰, 等. 内蒙古巴拉格歹地区构造混杂岩带中浊积岩、震积岩特征及意义——以内蒙古哈拉黑等八幅1∶ 5万区域地质调查为例[J]. 地质通报, 2018, 37(9): 1731-1735.
Zhang Q K, Yang B, Shao X F, et al. The petrological characteristics and tectonic implications of turbidite and seismite in Balagedai tectonic melange belt, Inner Mongolia: Take regional geological survey scaled 1∶ 50 000 in Halahei area, Inner Mongolia as an example[J]. Geological Bulletin of China, 2018, 37(9): 1731-1735.
[41] 王树庆, 许继峰, 刘希军, 等. 内蒙朝克山蛇绿岩地球化学: 洋内弧后盆地的产物?[J]. 岩石学报, 2008, 24(12): 2869-2879.
Wang S Q, Xu J F, Liu X J, et al. Geochemistry of the Chaokeshan ophiolite: Product of intra-oceanic back-arc basin?[J]. Acta Petrologica Sinica, 2008, 24(12): 2869-2879.
[42] 王成, 任利民, 余国飞, 等. 内蒙古贺根山蛇绿岩中方辉橄榄岩岩石地球化学特征及构造环境分析[J]. 新疆地质, 2019, 37(2): 156-166. doi: 10.3969/j.issn.1000-8845.2019.02.003
Wang C, Ren L M, Yu G F, et al. Geochemical characteristics and tectonic setting of harzburgite from Hegenshan ophiolitic block in Inner Mongolia[J]. Xinjiang Geology, 2019, 37(2): 156-166. doi: 10.3969/j.issn.1000-8845.2019.02.003
[43] 黄竺, 杨经绥, 朱永旺, 等. 内蒙古贺根山蛇绿岩的铬铁矿中发现金刚石等深部地幔矿物[J]. 中国地质, 2015, 42(5): 1493-1514. doi: 10.3969/j.issn.1000-3657.2015.05.021
Huang Z, Yang J S, Zhu Y W, et al. The discovery of diamonds and deep mantle minerals in chromitites of Hegenshan ophiolite, Inner Mongolia[J]. Geology in China, 2015, 42(5): 1493-1514. doi: 10.3969/j.issn.1000-3657.2015.05.021
[44] Robinson P T, Trumbull R B, Schmitt A, et al. The origin and significance of crustal minerals in ophiolitic chromitites and peridotites[J]. Gondwana Research, 2015, 27(2): 486-506. doi: 10.1016/j.gr.2014.06.003
[45] Xiong F H, Yang J S, Robinson P T, et al. Origin of podiform chromitite, a new model based on the Luobusa ophiolite, Tibet[J]. Gondwana Research, 2015, 27(2): 525-542. doi: 10.1016/j.gr.2014.04.008
-