Application of comprehensive electric (magnetic) method in the exploration of gold polymetallic deposits in Xirehada exploration area of Inner Mongolia
-
摘要:
内蒙古北山希热哈达勘查区具有良好的金多金属矿找矿潜力,为查明该区地质构造格架、断裂、岩体等控矿要素的分布特征,更好地指导详查工作布设并圈定找矿靶区,在研究区开展了激电中梯、激电测深和音频大地电磁(audio-magnetotellurics, AMT)测深综合电(磁)法的应用研究。研究结果显示: 激电中梯异常特征反映研究区存在4条NWW向断裂F1、F2、F3及F4,圈定与断裂相关的3个异常区IP1、IP2及IP3,音频大地电磁测深异常特征反映断裂构造的空间展布特征为F1、F2、F3断裂倾向北东,F4断裂倾向南西,激电测深进一步反映出F3断裂的产状和成矿有利区的埋深特征。经过探槽工程的验证,在IP2异常区识别一条金矿脉,取得了良好的找矿效果。研究基本建立了一套厚覆盖区的电(磁)法找矿勘探方法,可为在浅表芒硝层开展激电测深工作提供借鉴。多种物探方法的综合应用能大致推断出构造及矿体的深部展布特征,同时也缩小了找矿的有利区域,为下一步地质钻探工作提供依据。
Abstract:Xirehada exploration area in Beishan of Inner Mongolia has great potential for gold polymetallic deposit prospecting. In order to identify the distribution characteristics of ore controlling elements such as geological structure framework, faults, and rock masses in the area, and better guide the detailed survey work and delineate the prospecting target area, the authors applied comprehensive electrical (magnetic) methods such as induced polarization middle gradient, induced polarization sounding, and audio magnetotelluric sounding in the study area. The research results show that the anomalous features of the induced polarization gradient reflected the existence of four NWW oriented fault structures F1, F2, F3, and F4, and three related anomaly areas IP1, IP2, and IP3 were delineated. The anomalous features of the audio magnetotelluric sounding reflected the spatial distribution characteristics of the fault structures F1, F2, and F3 dipping to the northeast, and F4 dipping to the southwest. The induced polarization sounding further reflected the occurrence of the fault structure F3 and the burial depth characteristics of the favorable mineralization area. After verification by the trench engineering, a gold vein was identified in IP2 anomaly area, and good prospecting results were achieved. A set of electric (magnetic) exploration methods for thick coverage areas was established, providing references for conducting induced polarization soun-ding in shallow saltpeter layers. The deep distribution characteristics of structures and ore bodies can be roughly inferred by comprehensive application of multiple geophysical methods. Meanwhile, the favorable areas for mineral exploration were also reduced, providing basis for the geological drilling work in the future.
-
-
表 1 研究区岩石标本电性参数测量统计结果
Table 1. Statistical results of electrical parameters measurement of rock specimens in the study area
岩石类型 数量/块 电阻率/(Ω·m) 极化率/% 变化范围 算数平均值 变化范围 算数平均值 闪长斑岩 167 2 231.55~3 495.20 2 821.86 1.16~1.86 1.59 结晶灰岩 30 227.29~7 244.36 2 120.12 0.91~5.56 2.59 流纹岩 30 197.34~17 095.82 5 627.85 0.54~36.66 3.18 流纹斑岩 115 155.85~79 882.17 7 338.86 0.46~19.92 3.67 黄铁矿化
石英斑岩35 107.92~16 883.61 3 322.58 1.03~37.81 5.93 -
[1] 杨合群, 赵国斌, 李文明, 等. 内蒙古盘陀山—鹰嘴红山含钨花岗岩带形成时代及源区示踪[J]. 地质与勘探, 2010, 46(3): 407-413.
Yang H Q, Zhao G B, Li W M, et al. Formation age and source tracing of the tungsten-bearing granite belt in the Pantuoshan-Yingzuihonghsna area, inner Mongolia[J]. Geology and Prospecting, 2010, 46(3): 407-413.
[2] 杨合群, 赵国斌, 李英, 等. 新疆—甘肃—内蒙古衔接区古生代构造背景与成矿的关系[J]. 地质通报, 2012, 31(2/3): 413-421.
Yang H Q, Zhao G B, Li Y, et al. The relationship between the Paleozoic tectonic setting and mineralization in the Xinjiang-Gansu-Inner Mongolia junction area[J]. Geological Bulletin of China, 2012, 31(2/3): 413-421.
[3] 朱江, 吕新彪, 陈超, 等. 东天山东段—北山地区三叠纪钼矿床地质特征、时空分布及含矿花岗岩成岩-成矿构造背景[J]. 新疆地质, 2013, 31(1): 21-28. doi: 10.3969/j.issn.1000-8845.2013.01.007
Zhu J, Lv X B, Chen C, et al. Geological characteristics, metallogenic time and tectonic setting of the traiassic molybdenum deposits in the east part of the east Tianshan and the Beishan area, NW China[J]. Xinjiang Geology, 2013, 31(1): 21-28. doi: 10.3969/j.issn.1000-8845.2013.01.007
[4] 丁嘉鑫, 韩春明, 肖文交, 等. 北山造山带花牛山岛弧东段钨矿床成矿时代和成矿动力学过程[J]. 岩石学报, 2015, 31(2): 594-616.
Ding J X, Han C M, Xiao W J, et al. Geochemistry and U-Pb geochronology of tungsten deposit of Huaniushan island arc in the Beishan Orogenic Belt, and its geodynamic background[J]. Acta Petrologica Sinica, 2015, 31(2): 594-616.
[5] 贺锋, 苏茂荣, 杨建军, 等. 内蒙古额济纳旗乌珠尔嘎顺铁矿地质特征及成因类型[J]. 西部资源, 2017(6): 1-4. doi: 10.3969/j.issn.1672-562X.2017.06.001
He F, Su M R, Yang J J, et al. Geological characteristics and genetic type of Wuzhuergashun iron deposit in Ejinaqi, Inner Mongolia[J]. Western Resources, 2017(6): 1-4. doi: 10.3969/j.issn.1672-562X.2017.06.001
[6] 刘永慧, 肖荣阁, 赵清旭. 内蒙古北山北带铜多金属成矿地质特征及成矿规律分析[J]. 西部资源, 2014(2): 87-91.
Liu Y H, Xiao R G, Zhao Q X. Analysis on the mineralizing regularities and the minerogenetic conditions of Cu multi-metal mining area in the Northern belt of Beishan in Inner Mongolia[J]. Western Resources, 2014(2): 87-91.
[7] 位鸥祥. 东天山—北山地区小狐狸山钼多金属矿床的成因研究[D]. 合肥: 合肥工业大学, 2019.
Wei O X. Research on the Genesis Xiaohulishan Molybdenum Polymetallic Deposit in the Eastern Tianshan-Beishan Area[D]. Hefei: Hefei University of Technology, 2019.
[8] 侯朝勇, 蒋加燥, 裴森龙. 综合物探在内蒙古闹牛山金多金属矿勘查中的应用[J]. 矿产勘查, 2019, 10(9): 2306-2312. doi: 10.3969/j.issn.1674-7801.2019.09.023
Hou C Y, Jiang J Z, Pei S L. Application of integrated geophysical exploration method to the prospecting for the Naoniushan gold polymetallic mine in Inner Mongolia[J]. Mineral Exploration, 2019, 10(9): 2306-2312. doi: 10.3969/j.issn.1674-7801.2019.09.023
[9] 郝智慧, 胡二红, 张善明, 等. 内蒙古额济纳旗半岛山金锑矿区地质特征及成矿潜力[J]. 中国地质调查, 2022, 9(1): 41-53. doi: 10.19388/j.zgdzdc.2022.01.05
Hao Z H, Hu E H, Zhang S M, et al. Geological characteristics and metallogenic potential of Bandaoshan gold-antimony ore area in Ejina Banner of Inner Mongolia[J]. Geological Survey of China, 2022, 9(1): 41-53. doi: 10.19388/j.zgdzdc.2022.01.05
[10] 张家嘉, 张顺林, 汪青松, 等. 综合物探方法在覆盖区找矿中的应用——以皖东五河金矿整装勘查为例[J]. 中国地质调查, 2020, 7(6): 109-115. doi: 10.19388/j.zgdzdc.2020.06.14
Zhang J J, Zhang S L, Wang Q S, et al. Application of comprehensive geophysical prospecting method in ore prospecting in coverage area: A case study of integrated survey area of Wuhe gold mine in eastern Anhui[J]. Geological Survey of China, 2020, 7(6): 109-115. doi: 10.19388/j.zgdzdc.2020.06.14
[11] 赵英福, 李小永. 内蒙古巴格贝银多金属矿地质特征及找矿远景[J]. 矿产与地质, 2012, 26(6): 464-468. doi: 10.3969/j.issn.1001-5663.2012.06.004
Zhao Y F, Li X Y. Geological characteristics and prospecting potential of the Bagbei silver polymetallic deposit in Inner Mongolia[J]. Mineral Resources and Geology, 2012, 26(6): 464-468. doi: 10.3969/j.issn.1001-5663.2012.06.004
[12] 温佩琳, 赵秋梅. 大深度激发极化法初步探讨[J]. 物探与化探, 1996, 20(5): 329-330, 344.
Wen P L, Zhao Q M. A preliminary discussion on the great depth induced polarization method[J]. Geophysical & Chemical Exploration, 1996, 20(5): 329-330, 344.
[13] Egbert G D. Robust multiple-station magnetotelluric data processing[J]. Geophysical Journal International, 1997, 130(2): 475-496. http://gji.oxfordjournals.org/content/130/2/475.full.pdf
[14] 岳大斌, 王章翔, 陈加中, 等. 综合技术方法在寻找含矿岩浆通道中的应用——以四川杨柳坪岩浆铜镍硫化物矿床为例[J]. 物探与化探, 2021, 45(3): 601-608.
Yue D B, Wang Z X, Chen J Z, et al. The application of integrated measures to the search of magma conduit: A case study of the Yangliuping Cu-Ni sulfide deposit, Sichuan province[J]. Geophysical and Geochemical Exploration, 2021, 45(3): 601-608.
[15] 张伟, 季国松, 廖国忠, 等. 黔西南"断控型"金矿床的找矿模式与勘探评价方法——以丫他金矿床为例[J]. 地质学报, 2021, 95(12): 3961-3978. doi: 10.3969/j.issn.0001-5717.2021.12.027
Zhang W, Ji G S, Liao G Z, et al. Prospecting model and exploration evaluation method of "fault controlled" gold deposits in southwest Guizhou: A case study of Yata gold deposit[J]. Acta Geologica Sinica, 2021, 95(12): 3961-3978. doi: 10.3969/j.issn.0001-5717.2021.12.027
[16] 高锋辉, 王树新, 梁新辉, 等. 激电测深在吉家洼金矿区找矿预测中的应用[J]. 黄金, 2024, 45(3): 78-84.
Gao F H, Wang S X, Liang X H, et al. Application of IP sounding method to prospecting and prediction in Jijiawa Gold District[J]. Gold, 2024, 45(3): 78-84.
-