Distribution characteristics of soil organic carbon in different land use types at the southern foot of Taihang Mountains
-
摘要:
太行山南麓济源段是黄河流域地形地貌、植被类型较为特殊的地区,估算和对比该区域不同土地利用类型的土壤物理性质、土壤有机碳密度,对于合理利用土地、土壤碳库管理等均有指导意义。以侧柏林、刺槐林、栓皮栎林、经济林、耕地、荒地的(0, 40] cm表层土壤为研究对象,通过野外调查取样和室内实验分析,对比分析不同土地利用类型的土壤容重、土壤有机碳(soil organic carbon, SOC)含量和土壤有机碳密度(soil organic carbon density, SOCD)垂向分布特征,并进一步分析土壤物理性质与有机碳的相关性。6种土地利用类型(0, 40] cm表层SOC均值变化范围为9.46×10-3~15.13×10-3,平均含量最低的为耕地,最高为侧柏林; SOCD均值为1.33~2.27 kg/m2,平均值最低的为经济林,最高为荒地。不同土地利用类型和不同深度的SOC含量、SOCD均表现为变异特征。除耕地和经济林外,SOC含量和SOCD均随着深度增加而减小,(0, 10] cm土层SOCD明显高于剖面其他层位。SOC含量与SOCD呈显著正相关,与土壤含水量呈负相关。土地利用类型的不同影响土壤碳源的输入,进而影响土壤物理性质、SOC含量和SOCD。研究成果可为该区土壤碳汇评估提供参考依据。
Abstract:Jiyuan section on the southern slope of Taihang Mountains is an area with relatively special topography, landforms and vegetation types in the Yellow River Basin. Estimating and comparing the soil physical properties and organic carbon density of different land use types in this area is of great guiding significance for rational land use and soil carbon pool management. By taking the(0, 40] cm surface soil of Platycladus orientalis forest, Robinia pseudoacacia forest, Quercus variabilis forest, economic forest, cultivated land and wasteland as the research objects, and through field investigation and sampling and indoor laboratory analysis, the authors compared and analyzed the vertical distribution characteristics of soil bulk density, organic carbon content (SOC) and soil organic carbon density (SOCD) of different land use types, and further analyzed the correlation between soil physical properties and organic carbon. The average range of organic carbon content of (0, 40] cm surface soil in six land use types is 9.46×10-3~15.13×10-3, and the average content is the lowest in cultivated land and the highest in wasteland. The average range of soil organic carbon density is between 1.33~2.27 kg/m-2, and the average value is the lowest in economic forest and the highest in wasteland. Both the soil organic carbon content and soil organic carbon density of different land use types and different depths show variation characteristics. The soil organic carbon content and soil organic carbon density decrease with the increase of depth, except cultivated land and economic forest. The soil organic carbon density in the (0, 10] cm soil layer is significantly higher than that in other layers of the profile. The soil organic carbon content is positively correlated with soil organic carbon density and negatively correlated with soil water content. Different land use types could affect the input of soil carbon sources, and thus affect soil physical properties, soil organic carbon content and soil organic carbon density. The research results could provide references for soil carbon sink assessment in this area.
-
-
表 1 不同土地利用类型SOC含量
Table 1. Soil organic carbon content of different land use types
土地利用方式 SOC含量/10-3 变异系数/% (0, 10] cm (10, 20] cm (20, 30] cm (30, 40] cm 均值 侧柏林 21.03±5.84aA 13.76±3.31bA 13.10±2.54bAB 11.20±1.94bAB 15.13 29.18 刺槐林 21.02±3.48aA 12.16±2.02bAB 11.47±2.66bAB 9.61±0.72bAB 13.16 37.49 栓皮栎林 24.28±6.64aA 10.96±1.96bAB 11.66±2.06bAB 10.72±1.42bAB 13.77 45.79 经济林 11.45±3.61aA 9.00±2.11aB 14.92±2.69B 10.71±1.77aAB 11.29 21.60 耕地 8.68±1.69aB 11.20±0.49aA 9.32±1.50aA 6.48±4.55aA 9.46 21.82 荒地 15.53±12.87aA 17.31±5.25aC 13.12±1.75aAB 13.08±1.34aB 14.76 13.89 变异系数/% 37.14 31.76 23.24 12.44 26.42 注:同行数据后凡具有一个相同小写字母者表示同一土地利用类型、不同土层之间的差异不显著(P>0.05, Duncan's法); 同列数据后凡具有一个相同大写字母者表示同一土层、不同土地利用类型之间的差异不显著(P>0.05, Duncan's法) 表 2 不同土地利用类型土壤容重
Table 2. Soil bulk density of different land use types
土地利用方式 土壤容重/10-3 (0, 10] cm (10, 20] cm (20, 30] cm (30, 40] cm 均值 侧柏林 1.24aA 1.37bA 1.44bA 1.41bA 1.37 刺槐林 1.11aA 1.35bA 1.52bAB 1.52bA 1.38 栓皮栎林 1.22aA 1.47abA 1.47abA 1.56bA 1.43 经济林 1.38aB 1.49aA 1.54aAB 1.57aA 1.50 耕地 1.53aB 1.53aA 1.65aB 1.64aA 1.59 荒地 1.46aB 1.55aA 1.57aAB 1.55aA 1.53 注:同行数据后凡具有一个相同小写字母者表示同一土地利用类型、不同土层之间的差异不显著(P>0.05, Duncan's法); 同列数据后凡具有一个相同大写字母者表示同一土层、不同土地利用类型之间的差异不显著(P>0.05, Duncan's法) 表 3 研究区土壤参数的相关性
Table 3. Correlation of soil parameters in the study area
SOC含量 SOCD 土壤容重 土壤含水量 毛管持水量 总孔隙度 毛管孔隙度 非毛管孔隙度 SOC含量 1 SOCD 0.932** 1 土壤容重 -0.243 -0.040 1 土壤含水量 -0.450* -0.202 0.346 1 毛管持水量 0.162 0.080 -0.740** 0.065 1 总孔隙度 0.064 0.054 -0.446* 0.192 0.743** 1 毛管孔隙度 -0.013 0.053 -0.184 0.403* 0.751** 0.701** 1 非毛管孔隙度 0.096 -0.007 -0.294 -0.311 -0.111 0.270 -0.497** 1 注: **在0.01级别(双尾),相关性显著; *在0.05级别(双尾),相关性显著。 -
[1] Lal R, Kimble J M, Stewart B A, et al. Global climate change and pedogenic carbonate[J]. Geoderma, 1999, 104(1): 135-141.
[2] Liao J D, Boutton T W, Jastrow J D. Organic matter turnover in soil physical fractions following woody plant invasion of grassland: evidence from natural 13C and 15N[J]. Soil Biology and Biochemistry, 2006, 38(11): 3197-3210. doi: 10.1016/j.soilbio.2006.04.004
[3] Martin M P, Wattenbach M, Smith P, et al. Spatial distribution of soil organic carbon stocks in France[J]. Biogeosciences, 2011, 8(5): 1053-1065. doi: 10.5194/bg-8-1053-2011
[4] Santini N S, Adame M F, Nolan R H, et al. Storage of organic carbon in the soils of Mexican temperate forests[J]. Forest Ecology and Management, 2019, 446: 115-125. doi: 10.1016/j.foreco.2019.05.029
[5] Lal R, Smith P, Jungkunst H F, et al. The carbon sequestration potential of terrestrial ecosystems[J]. Journal of Soil and Water Conservation, 2018, 73(6): 145A-152A.
[6] 冯嘉仪, 储双双, 王婧, 等. 华南地区几种典型人工林土壤有机碳密度及其与土壤物理性质的关系[J]. 华南农业大学学报, 2018, 39(1): 85-92.
Feng J Y, Chu S S, Wang J, et al. Soil organic carbon density and its relationship with soil physical properties of typical plantations in South China[J]. Journal of South China Agricultural University, 2018, 39(1): 85-92.
[7] 苗蕾, 杨喜田, 王婷, 等. 太行山南麓不同演替阶段土壤有机碳含量及季节变化特征[J]. 河南农业大学学报, 2016, 50(3): 318-324.
Miao L, Yang X T, Wang T, et al. Seasonal dynamics and content of soil organic carbon of Southern foot of Taihang Mountains during different natural successions[J]. Journal of Henan Agricultural University, 2016, 50(3): 318-324.
[8] Jobbágy E G, Jackson R B. The vertical distribution of soil organic carbon and its relation to climate and vegetation[J]. Ecological Applications, 2000, 10(2): 423-436. doi: 10.1890/1051-0761(2000)010[0423:TVDOSO]2.0.CO;2
[9] 张立, 金晶泽, 姜侠, 等. 1986—2019年黑龙江省松嫩平原表层土壤有机碳变化及固碳潜力估算[J]. 现代地质, 2021, 35(04): 914-922.
Zhang L, Jin J Z, Jiang X, et al. Variations of Organic Carbon and Evaluation of Carbon Sequestration Potential in Surface Soil in Songnen Plain of Heilongjiang Province from 1986 to 2019[J]. Geoscience, 2021, 35(04): 914-922.
[10] 张艳, 刘彦伶, 李渝, 等. 喀斯特石漠化地区土地利用方式对土壤团聚体稳定性及其有机碳分布特征的影响[J]. 土壤通报, 2021, 52(6): 1308-1315.
Zhang Y, Liu Y L, Li Y, et al. Effects of land use patterns on soil aggregate stability and organic carbon distribution in the Karst rocky desertification area[J]. Chinese Journal of Soil Science, 2021, 52(6): 1308-1315.
[11] 王平, 张劲松, 孟平, 等. 华北低丘山地栓皮栎人工林土壤呼吸变化特征及其与撂荒地的差异[J]. 中国农业气象, 2011, 32(3): 346-349. doi: 10.3969/j.issn.1000-6362.2011.03.005
Wang P, Zhang J S, Meng P, et al. Comparison of soil respiration variation characteristics between quercus variabilis plantation and abandoned land in the south hilly region of North China[J]. Chinese Journal of Agrometeorology, 2011, 32(3): 346-349. doi: 10.3969/j.issn.1000-6362.2011.03.005
[12] 黄辉, 孟平, 张劲松, 等. 华北低丘山地人工林蒸散的控制因子[J]. 生态学报, 2014, 34(3): 667-673.
Huang H, Meng P, Zhang J S, et al. Stomatal and environmental control on evapotranspiration in a plantation in the lower mountain areas of North China[J]. Acta Ecologica Sinica, 2014, 34(3): 667-673.
[13] 何林倩, 刘倩, 王德彩, 等. 基于数字土壤制图技术的土壤有机碳储量估算[J]. 应用生态学报, 2021, 32(2): 591-600.
He L Q, Liu Q, Wang D C, et al. Estimation of soil organic carbon storage based on digital soil mapping technique[J]. Chinese Journal of Applied Ecology, 2021, 32(2): 591-600.
[14] 施梦月. 基于时间序列HJ-1A/1B数据的林型识别——以济源南山林场为例[D]. 郑州: 河南农业大学, 2022.
Shi M Y. Forest Type Recognition Based on Time Series HJ-1A/1B data: Taking Nanshan Forest Farmin Jiyuan As an Example[D]. Zhengzhou: Henan Agricultural University, 2022.
[15] 鲍士旦. 土壤农化分析[M]. 3版. 北京: 中国农业出版社, 2000.
Bao S D. Soil Agrochemical Analysis[M]. 3rd ed. Beijing: China Agricultural Press, 2000.
[16] 中国科学院南京土壤研究所. 土壤理化分析[M]. 上海: 上海科学技术出版社, 1978.
Institute of Soil Science, Chinese Academy of Sciences. Soil Physical and Chemical Analysis[M]. Shanghai: Shanghai Scientific & Technical Publishers, 1978.
[17] 陈伟志, 张亚, 李静婷, 等. 川滇干热河谷区土壤容重空间变异特征——以滇中楚雄地区为例[J]. 中国地质调查, 2024, 11(2): 62-71. doi: 10.19388/j.zgdzdc.2024.02.08
Chen W Z, Zhang Y, Li J T, et al. Spatial variability characteristics of the soil bulk density in the dry hot valley of Sichuan-Yunnan region: Taking Chuxiong area in Central Yunnan as an example[J]. Geological Survey of China, 2024, 11(2): 62-71. doi: 10.19388/j.zgdzdc.2024.02.08
[18] 薄会娟, 董晓华, 郭梁锋, 等. 湖北省土壤有机碳垂直分布及储量估算[J]. 环境科学与技术, 2018, 41(12): 290-296.
Bo H J, Dong X H, Guo L F, et al. Vertical distribution and storage estimation of soil organic carbon in Hubei province[J]. Environmental Science & Technology, 2018, 41(12): 290-296.
[19] Suuster E, Ritz C, Roostalu H, et al. Soil bulk density pedotransfer functions of the humus horizon in arable soils[J]. Geoderma, 2011, 163(1-2): 74-82. doi: 10.1016/j.geoderma.2011.04.005
[20] 覃智莲, 杨孝民, 宋照亮, 等. 成土母质和土地利用方式对土壤有机碳化学组成的影响[J]. 土壤通报, 2020, 51(3): 621-629.
Qin Z L, Yang X M, Song Z L, et al. Effects of parent materials and land uses on soil organic carbon fractions[J]. Chinese Journal of Soil Science, 2020, 51(3): 621-629.
[21] 梁启鹏, 余新晓, 庞卓, 等. 不同林分土壤有机碳密度研究[J]. 生态环境学报, 2010, 19(4): 889-893. doi: 10.3969/j.issn.1674-5906.2010.04.026
Liang Q P, Yu X X, Pang Z, et al. Study on soil organic carbon density of different forest types[J]. Ecology and Environmental Sciences, 2010, 19(4): 889-893. doi: 10.3969/j.issn.1674-5906.2010.04.026
[22] 辛文杰, 苏印泉, 朱铭强, 等. 千阳县不同林分土壤有机碳的分布特征[J]. 中南林业科技大学学报, 2014, 34(5): 66-69, 78.
Xin W J, Su Y Q, Zhu M Q, et al. Distribution characteristics of soil organic carbon of different forests in Loess Plateau of Qianyang county[J]. Journal of Central South University of Forestry & Technology, 2014, 34(5): 66-69, 78.
[23] 贾俊平, 何晓群, 金勇进. 统计学[M]. 7版. 北京: 中国人民大学出版社, 2018: 179-181.
Jia J P, He X Q, Jin Y J. Statistics[M]. 7th ed. Beijing: China Renmin University Press, 2018: 179-181.
[24] 田舒怡, 满秀玲. 大兴安岭北部森林土壤微生物量碳和水溶性有机碳特征研究[J]. 土壤通报, 2016, 47(4): 838-845.
Tian S Y, Man X L. Characteristics of soil microbial biomass carbon and dissolved organic carbon in northern forest region of Daxing'an Montains[J]. Chinese Journal of Soil Science, 2016, 47(4): 838-845.
[25] Lal R. Soil carbon sequestration impacts on global climate change and food security[J]. Science, 2004, 304(5677): 1623-1627. doi: 10.1126/science.1097396
[26] 王芳, 黄玫, 孙希华, 等. 大小兴安岭林区不同林型土壤养分综合评价[J]. 水土保持通报, 2013, 33(1): 182-187.
Wang F, Huang M, Sun X H, et al. Evaluation of soil nutrients for different forest types in Xing'an Mountains forest area[J]. Bulletin of Soil and Water Conservation, 2013, 33(1): 182-187.
[27] 冯雪瑾, 张志华, 杨喜田, 等. 太行山低山丘陵区人工林表层土壤有机碳和全氮分布特征[J]. 应用生态学报, 2019, 30(2): 511-517.
Feng X J, Zhang Z H, Yang X T, et al. Distribution characteristics of surface soil organic carbon and total nitrogen in forest plantation of hilly area of Taihang Mountains, China[J]. Chinese Journal of Applied Ecology, 2019, 30(2): 511-517.
[28] 郭胜利, 刘文兆, 史竹叶, 等. 半干旱区流域土壤养分分布特征及其与地形、植被的关系[J]. 干旱地区农业研究, 2003, 21(4): 40-43.
Guo S L, Liu W Z, Shi Z Y, et al. Soil nutrients distribution and its relation to landform and vegetation at small watershed in semiarid area[J]. Agricultural Research in the Arid Areas, 2003, 21(4): 40-43.
[29] 方运霆, 莫江明, 彭少麟, 等. 森林演替在南亚热带森林生态系统碳吸存中的作用[J]. 生态学报, 2003, 23(9): 1685-1694.
Fang Y T, Mo J M, Peng S L, et al. Role of forest succession on carbon sequestration of forest ecosystems in lower subtropical China[J]. Acta Ecologica Sinica, 2003, 23(9): 1685-1694.
[30] 王海稳, 张金柱, 许中旗, 等. 太行山区不同土地利用方式下土壤碳贮量的研究[J]. 水土保持学报, 2007, 21(2): 89-91, 132.
Wang H W, Zhang J Z, Xu Z Q, et al. Soil carbon storage patterns of different land use systems in Taihang Mountain[J]. Journal of Soil and Water Conservation, 2007, 21(2): 89-91, 132.
[31] 张志良. 植物生理学实验指导[M]. 2版. 北京: 高等教育出版社, 1990.
Zhang Z L. Experimental Course of Plant Physiology[M]. 2nd ed. Beijing: Higher Education Press, 1990.
[32] 魏强, 凌雷, 柴春山, 等. 甘肃兴隆山森林演替过程中的土壤理化性质[J]. 生态学报, 2012, 32(15): 4700-4713.
Wei Q, Ling L, Chai C S, et al. Soil physical and chemical properties in forest succession process in Xinglong Mountain of Gansu[J]. Acta Ecologica Sinica, 2012, 32(15): 4700-4713.
[33] Chow A T, Tanji K K, Gao S D, et al. Temperature, water content and wet-dry cycle effects on DOC production and carbon mineralization in agricultural peat soils[J]. Soil Biology and Biochemistry, 2006, 38(3): 477-488.
[34] 王棣, 耿增超, 佘雕, 等. 秦岭典型林分土壤活性有机碳及碳储量垂直分布特征[J]. 应用生态学报, 2014, 25(6): 1569-1577.
Wang D, Geng Z C, She D, et al. Vertical distribution of soil active carbon and soil organic carbon storage under different forest types in the Qinling Mountains[J]. Chinese Journal of Applied Ecology, 2014, 25(6): 1569-1577.
[35] 魏亚伟, 于大炮, 王清君, 等. 东北林区主要森林类型土壤有机碳密度及其影响因素[J]. 应用生态学报, 2013, 24(12): 3333-3340.
Wei Y W, Yu D P, Wang Q J, et al. Soil organic carbon density and its influencing factors of major forest types in the forest region of Northeast China[J]. Chinese Journal of Applied Ecology, 2013, 24(12): 3333-3340.
[36] 王军广, 王鹏, 赵志忠, 等. 海南岛东部地区土地利用方式对土壤有机碳含量的影响[J]. 广西师范大学学报: 自然科学版, 2023, 41(5): 171-179.
Wang J G, Wang P, Zhao Z Z, et al. Effects of land use types on soil organic carbon content in eastern Hainan Island[J]. Journal of Guangxi Normal University (Natural Science Edition), 2023, 41(5): 171-179.
[37] 刘世荣, 王晖, 栾军伟. 中国森林土壤碳储量与土壤碳过程研究进展[J]. 生态学报, 2011, 31(19): 5437-5448.
Liu S R, Wang H, Luan J W. A review of research progress and future prospective of forest soil carbon stock and soil carbon process in China[J]. Acta Ecologica Sinica, 2011, 31(19): 5437-5448.
[38] Sombroek W G, Nachtergaele F, Hebel A. Amounts, dynamics and sequestering of carbon in tropical and subtropical soils[J]. Ambio A Journal of the Human Environment, 1993, 22(7): 417-426.
[39] 曾宪勤, 庄严, 张天宇, 等. 北方石质山区表层土壤有机碳密度特征分析——以密云县为例[J]. 资源科学, 2009, 31(4): 669-673.
Zeng X Q, Zhuang Y, Zhang T Y, et al. Analysis of soil organic carbon density in the lithoid mountainous area in North China: A case study in Miyun county[J]. Resources Science, 2009, 31(4): 669-673.
[40] 王群, 尹飞, 郝四平, 等. 下层土壤容重对玉米根际土壤微生物数量及微生物量碳、氮的影响[J]. 生态学报, 2009, 29(6): 3096-3104.
Wang Q, Yin F, Hao S P, et al. Effects of subsoil bulk density on rhizospheric soil microbial population, microbial biomass carbon and nitrogen of corn (Zea mays L. ) field[J]. Acta Ecologica Sinica, 2009, 29(6): 3096-3104.
-