Analysis of rock and soil mass bearing capacity and engineering geological zoning in the spatial development main axis area of Liaoyang
-
摘要:
地质环境是决定城镇规划及城镇用地选择的主要因素,深入认识、分析岩土地层结构特征可为地下空间开发利用打下坚实基础。按地层成因、岩性、岩土体工程地质性质等因素,辽阳空间发展主轴区岩土体可划分为人工填土层、黏性土层、粉土层、砂土层、卵砾石层、泥岩层、页岩层和灰岩层8个基本类型,其中黏性土层、粉土层、砂土层及卵砾石层为主要岩土体类型。通过分析岩土体地质结构特征,按照“平面分区、垂向评价”的原则,从表层[0,5) m、浅层[5,10) m、中层[10,30) m、深层[30,50) m 4个不同深度范围,对岩土体承载力进行了评价,并划分了工程地质分区(3个工程地质区、5个亚区),提出了对应的工程建设建议。研究成果可为未来辽阳空间发展主轴区地下和地上空间开发提供地学依据,为城镇发展规划提供重要服务支撑。
Abstract:Geological environment is the primary factor determining urban planning and land use selection. A deep understanding and analysis of the rock and soil stratigraphic characteristics in a region can lay a solid foundation for the development and utilization of its underground space. The strata in the spatial development main axis area of Liaoyang can be divided into eight basic types according to the formation causes, lithology, and engineering geological properties of the rock and soil mass, including artificial fill layers, clay layers, silty soil layers, sand layers, gravel layers, mudstone layers, shale layers, and limestone layers. Among these layers, the clay layers, silty soil layers, sand layers, and gravel layers are the main rock and soil masses. By analyzing the geological structure characteristics of the rock and soil masses, following the principle of "planar zoning and vertical evaluation", the authors evaluated the bearing capacity of rock and soil mass from four different depth ranges, including surface layer [0, 5) m, shallow layer [5, 10) m, middle layer [10, 30) m, and deep layer [30, 50) m. Besides, the engineering geological zones (3 engineering geological zones and 5 sub-zones) were divided, and the corresponding engineering construction suggestions were put forward. The research results could provide geological basis for future development of underground and above-ground space in the spatial development main axis area of Liaoyang, and provide important service support for urban planning and development.
-
-
表 1 研究区黏性土及粉土物理力学指标统计
Table 1. Statistics of physical and mechanical indices of clay and silty soil in the study area
物理力学指标 含水率/% 湿密度/(g·cm-3) 天然重度/(kN·m-3) 土粒比重 饱和度/% 孔隙率/% 孔隙比 黏性土层 黏土 坚硬-硬塑状黏土 17.50~30.50 1.88~2.09 18.44~20.50 2.70~2.75 84.00~99.00 36.30~46.80 0.57~0.88 可塑状黏土 22.00~33.50 1.85~2.08 18.14~20.40 2.74~2.75 85.00~99.90 37.90~48.10 0.61~0.93 粉质黏土 坚硬-硬塑状粉质黏土 19.60~26.10 1.96~2.07 19.22~20.30 2.71~2.74 85.90~98.90 36.80~42.00 0.58~0.72 可塑状粉质黏土 16.70~31.90 1.80~2.13 17.65~20.89 2.66~2.74 72.40~98.80 33.00~49.90 0.49~1.00 软塑性黏土及淤泥质土 26.50~44.80 1.63~1.93 1.76~18.93 2.71~2.76 76.00~99.70 44.50~58.30 0.80~1.40 粉土层 14.80~29.20 1.77~2.05 17.36~20.10 2.70~2.78 77.00~99.10 33.90~48.70 0.51~0.95 黏性土层 黏土 坚硬-硬塑状黏土 0.52~0.86 9.60~21.50 -0.15~0.34 0.07~0.24 7.30~23.30 21.20~69.50 8.50°~22.40° 可塑状黏土 0.58~0.83 17.10~20.20 0.06~0.56 0.16~0.55 3.30~9.90 31.10~59.20 10.20°~14.20° 粉质黏土 坚硬-硬塑状粉质黏土 0.47~0.68 10.40~16.60 0.01~0.64 0.10~0.22 7.80~15.30 24.20~42.30 13.60°~19.10° 可塑状粉质黏土 0.42~0.84 0.18~16.80 0.03~14.90 0.12~0.83 2.40~14.20 4.50~40.50 11.10°~21.80° 软塑性黏土及淤泥质土 0.68~1.30 9.80~29.00 0.02~1.38 0.27~1.47 1.50~7.90 6.80~48.30 7.60°~37.00° 粉土层 0.47~0.90 -0.14~9.80 0.04~18.30 0.20~0.60 3.10~8.30 2.80~26.40 13.90°~41.60° 表 2 研究区表层岩土体地层岩性及承载力
Table 2. Lithology and bearing capacity of the surface rock and soil mass in the study area
地层岩性 标贯击数/击 动探击数/击 地基承载力/kPa 人工填土 3~8 - 80~120 粉质黏土 6~13 - 90~130 粉土 7~13 - 90~140 粉细砂 11~16 - 120~150 卵砾石 - 21~24 350~600 注: “-”表示无数据。 表 3 研究区浅层岩土体地层岩性及承载力
Table 3. Lithology and bearing capacity of shallow rock and soil mass in the study area
地层岩性 标贯击数/击 动探击数/击 地基承载力/kPa 粉质黏土 6~12 - 140~200 粉土 7~14 - 90~140 粉细砂 12~15 - 120~200 卵砾石 - 22~25 300~500 注: “-”表示无数据。 表 4 研究区中层岩土体地层岩性及承载力
Table 4. Lithology and bearing capacity of the middle rock and soil mass in the study area
地层岩性 标贯击数/击 动探击数/击 地基承载力/kPa 粉质黏土 10~22 - 130~220 粉细砂 12~16 - 150~200 卵砾石 - 24~30 300~600 注: “-”表示无数据。 表 5 研究区深层岩土体地层岩性及承载力
Table 5. Lithology and bearing capacity of the deep strata rock and soil mass in the study area
地层岩性 标贯击数/击 动探击数(修正后)/击 地基承载力/kPa 含砾细砂 - 9~12 >200 含砾中砂 - 12~14 >200 卵砾石 - 32~39 [500, 900] 粉质黏土 11~20 - [220, 320] 注: “-”表示无数据。 -
[1] Tan Z, Roberts C A, Christopoulos I G, et al. Working in underground spaces: Architectural parameters, perceptions and thermal comfort measurements[J]. Tunnelling and Underground Space Technology incorporating Trenchless Technology Research, 2018, 71: 428-439.
[2] 邢怀学, 窦帆帆, 葛伟亚等. 城市地下空间开发利用地质适宜性三维评价指标体系研究——以杭州市为例[J]. 地质论评, 2022, 68(02): 607-614.
Xing H X, Dou F F, Ge W Y, et al. A Study on the Three Dimensional Evaluation Index System of Geological Suitability for Urban Underground Space Development and Utilization: A Case Study of Hangzhou City[J]. Geological Review, 2022, 68(02): 607-614.
[3] 张建羽, 吕敦玉, 刘长礼等. 河南郑州市岩土地层结构特征及地下空间开发利用建议[J]. 地质论评, 2023, 69(01): 305-315.
Zhang J Y, Lv D Y, Liu C L, et al. Characteristics of rock-soil stratigraphic structure in Zhengzhou City and suggestions for development and utilization of underground space[J]. Geological Review, 2023, 69(01): 305-315.
[4] Li X, Li C, Parriaux A, et al. Multiple resources and their sustainable development in Urban Underground Space[J]. Tunnelling and Underground Space Technology incorporating Trenchless Technology Research, 2016, 55: 59-66
[5] 夏伟强, 董杰, 何鹏等. 青岛主城区地下空间开发利用地质因素的影响评价及适宜性分区[J]. 地质学报, 2019, 93(S1): 233-240.
Xia W Q, Dong J, He P, et al. Evaluation and suitabiity zoning geological factors affecting the development and utilization of underground space in the main urban area of Qingdao[J]. Acta Geologica Sinica, 2019, 93(S1): 233-240.
[6] 韩博, 夏雨波, 裴艳东等. 雄安新区地下空间工程地质特征及环境地质效应[J]. 工程勘察, 2020, 48(03): 1-8.
Han B, Xia Y B, Pei Y D, et al. Engineering geology characteristic and environmental geological effect of Underground space in Xiongan New Area[J]. Geotechnical Investigation & Surveying, 2020, 48(03): 1-8.
[7] 李晓昭, 王睿, 顾倩等. 城市地下空间开发的战略需求[J]. 地学前缘, 2019, 26(03): 032-038.
Li X Z, Wang R, Gu Q, et al, Prediction of strategic demand of urban underground space development, Earth Science Frontiers, 2019 26(3): 032-038.
[8] 程光华, 王睿, 赵牧华等. 国内城市地下空间开发利用现状与发展趋势[J]. 地学前缘, 2019, 26(03): 039-047.
Cheng G H, Wang R, Zhao M H, et al, Present situation and developmental trend of urban underground space development and utilization in China. Earth Science Frontiers, 2019, 26(3): 039-047.
[9] 胡荣华. 辽阳地区工程地质条件的综合分析研究[D]. 沈阳: 沈阳建筑大学, 2008.
Hu R H, Analysis and Research of Engineering Geological Conditions in Liaoyang Areas. Shenyang: Shenyang Jianzhu University, 2008.
[10] 高欣, 熊德新. 辽阳地区地基土的工程地质特点分析[J]. 辽宁省交通高等专科学校学报, 2006, 8(04): 025-026.
Gao X, Xiong D X. Analysis of foundation soil engineering properties in Liaoyang Areas, 2006, 8(04): 025-026.
[11] 杨中柱, 陈树良, 董万德等. 中国区域地质志-辽宁志[M]. 北京: 地质出版社, 2001.
Yang Z Z, Chen S L, Dong W D, et al. Regional Geological Records of China-Liaoning Records[M]. Beijing: Geological Publishing House, 2001.
[12] 赵博. 太子河辽阳至小林子段地下水与地表水相互转化研究[J]. 东北水利水电, 2021, 39(11): 29-31.
Zhao B. Research on the mutual transformation between groundwater and surface water in the Liaoyang to Xiaolinzi section of the Taizi River[J]. Water Resources & Hydropower of Northeast China, 2021, 39(11): 29-31.
[13] 彭建兵, 黄伟亮, 王飞永等. 中国城市地下空间地质结构分类与地质调查方法[J]. 地学前缘, 2019, 26(03): 9-21.
Peng J B, Huang W L, Wang F Y, et al. Geological structural classification of and geological survey method for urban underground space in China[J]. Earth Science Frontiers, 2019, 26(03): 9-21.
[14] 王建秀, 刘月圆, 刘笑天等. 上海市地下空间地质结构及其开发适应性[J]. 上海国土资源, 2017, 38(02): 39-53.
Wang J X, Liu Y Y, Liu X T, et al. Geological structure of the Shanghai underground space and a preliminary analysis of the development of adaption[J]. Shanghai Land & Resources, 2017, 38(02): 39-53.
[15] 么玉鹏, 姚坚毅, 唐世雄. 珠江口地区岩土层工程地质特征及物理力学性质研究[J]. 水文地质工程地质, 2022, 49(02): 64-70.
Yao Y P, Yao J Y, Tang S X. A study of the engineering geological characteristics and physicomechanical property of rock and soil layers in the Pearl River mouth area[J]. Hydrogeology & Engineering Geology, 2022, 49(02): 64-70.
[16] 中华人民共和国住房和城乡建设部. 工程岩体分级标准: GB/T 50218—2014[S]. 北京: 中国计划出版社, 2014.
Ministry of Housing and Urban-Rural Development of the People's Republic of China. Standard for Engineering Classification of Rock Mass: GB/T 50218—2014[S]. Beijing: China Planning Press, 2013.
[17] 宁国民, 陈国金, 徐绍宇等. 武汉城市地下空间工程地质研究[J]. 水文地质工程地质, 2006, (06): 29-35.
Ning G M, Chen G J, Xu S Y, et al. Engineering geological research on the underground space of Wuhan City[J]. Hydrogeology & Engineering Geology, 2006, (06): 29-35.
[18] 邱明明, 李晓敏, 杨果林等. 挡墙渗漏对富水砂层基坑变形性状的影响[J]. 水文地质工程地质, 2025, 52(1): 85-96.
Qiu M M, Li X M, Yang G L, et al. Effect of retaining wall leakage on the deformation behavior of foundation pit in water-rich sandy strata[J]. Hydrogeology & Engineering Geology, 2025, 52(1): 85-96.
[19] 张晓波, 刘凯, 蒋鹏等. 基于约束条件的深圳市南山区地下空间开发地质适宜性评价[J]. 水文地质工程地质, 2023, 50(4): 213-224.
Zhang X B, Liu K, Jiang P, et al. Geological suitability evaluation of underground space development in the Nanshan District of Shenzhen based on constraint conditions[J]. Hydrogeology & Engineering Geology, 2023, 50(4): 213-224.
[20] 殷玮民, 李远耀, 李星等. 考虑岩土体物理力学参数空间校准分区的滑坡危险性评价[J]. 中国地质灾害与防治学报, 2025, 36(2): 162-174.
Yin W M, Li Y Y, Li X, et al. Landslide assessment considering spatial calibration zoning of physical and mechanical parameters of rock and soil mass[J]. The Chinese Journal of Geological Hazard and Control, 2025, 36(2): 162-174.
-