Risk assessment and prevention and control measures for individual landslide disaster: A case study of Laodianchang landslide in Sangzhi County of Huaihua City
-
摘要:
单体滑坡定量风险评价一直是滑坡研究领域的重点及难点,通过对不同降雨重现期下滑坡危险性的分析,定量计算单体滑坡风险对滑坡风险防控具有重要意义。以怀化市桑植县城老电厂滑坡为研究对象,结合Gumbel分布理论、滑坡灾害强度和易损性定量评估,建立了单体滑坡灾害风险定量评价的方法及评价过程,得出了不同降雨条件下老电厂滑坡的经济损失和人员伤亡风险,提出了滑坡风险防控优选方案比选方法。结果表明: ①滑坡风险评价应综合考虑滑坡体的运动特征和影响范围内的承灾体分布及易损性等因素,采用定性-定量相结合的方法,确保评估结果的准确性和科学性,同时,风险评价结果可用于确定差异化的滑坡防控措施,以实现经济效益、社会效益和环境效益的最优化; ②20 a和50 a降雨重现期的人员伤亡风险与经济风险较10 a、20 a分别增加了11.41%、18.64%,说明随着暴雨重现期的延长,滑坡区域内室内人员和经济风险值也呈现出递增的趋势; ③对比各种风险控制方案,推荐采用抗滑桩+截排水沟的整体治理措施。研究成果丰富了滑坡灾害风险评价的理论体系,可为政府和相关部门制定科学合理的防控策略提供科学依据和技术支撑。
Abstract:Quantitative risk assessment of individual landslide has always been a focal and challenging aspect of landslide research. The quantitative calculation of individual landslide risk and analysis of landslide risk during different rainfall return periods is of great significance for landslide risk prevention and control. The authors took Laodianfang landslide in Sangzhi County of Huaihua City as the research object and combined Gumbel distribution theory, landslide disaster intensity, and vulnerability quantitative assessment to establish the method and evaluation process of the quantitative assessment of individual landslide disaster risk. The economic losses and casualty risks of Laodianfang landslide under different rainfall conditions have been obtained, and a method for comparing and selecting optimal landslide risk prevention and control schemes has been proposed. The results are as follows. ① The movement characteristics of the landslide mass and the distribution and vulnerability of the disaster bearing bodies within the influence range should be comprehensively considered during landslide risk assessment. And the qualitative-quantitative combination method should be adopted to ensure the accuracy and scientificity of the assessment results. At the same time, the risk assessment results can be used to determine differentiated landslide prevention and control measures to achieve the optimization of economic, social, and environmental benefits. ② The casualty risks and economic risks during 20-year and 50-year rainfall return periods both have increased by 11.41% and 18.64% compared with those during 20-year rainfall return period. This indicates that as the rainstorm return period extends, the indoor personnel and economic risk values within the landslide area also show an increasing trend. ③ The overall treatment measures of anti-slide piles and drainage ditches were adopted after comparing various risk control schemes. The research results could enrich the theoretical system of landslide disaster risk assessment and provide scientific basis and technical support for the government and relevant departments to formulate scientific and reasonable prevention and control strategies.
-
-
表 1 桑植县不同降雨重现期下的降雨极值
Table 1. Extreme rainfall under different rainfall return periods in Sangzhi County
重现期/a T=10 T=20 T=50 3 d连续降雨量/mm 287.51 334.46 396.86 注: T为重现期,a 表 2 研究区滑坡稳定性计算参数
Table 2. Landslide stability calculation parameters of the study area
参数 天然 饱和 重度/m3 22.50 23.70 黏聚力/kPa 均值 30.30 29.50 标准差 3.25 2.67 内摩擦角/(°) 均值 19.30° 15.40° 标准差 1.67 0.50 饱和渗透系数/(m·s-1) - 1.86×10-4 注: “-”表示无数据。 表 3 研究区不同工况下稳定系数与破坏概率
Table 3. Stability coefficient and failure probability under different working conditions of the study area
计算结果 工况 工况1 工况2 工况3 工况4 稳定系数 1.072 1.000 0.983 0.954 破坏概率/% 29.06 50.46 56.22 66.70 表 4 老电厂滑坡承灾体信息
Table 4. Information of Laodianchang landslide hazard- bearing bodies
建筑物编号 总人口/人 室内财产/万元 层数/ 层 栋数/栋 结构类型 用途 1 - 20 2 1 钢架砖混结构 电厂储煤厂 2 - 80 4 1 钢架砖混结构 发电厂房 3 1 2 2 1 砖木 住宅+仓库 4 5 8 2 2 砖木 住宅+仓库 5 4 10 2 2 砖混 住宅 6 20 15 3 1 砖混 电厂员工宿舍 注: “-”表示无数据。 表 5 不同工况下老电厂滑坡室内人员风险值
Table 5. Indoor personnel risk results of Laodianchang landslide under different working conditions
滑坡分区 建筑物编号 室内人员风险值/人 工况2 工况3 工况4 ① 1 0 0 0 ① 2 0 0 0 ① 3 0.284 0.316 0.375 ② 4 0.852 0.949 1.126 ① 5 1.135 1.265 1.501 ② 6 3.406 3.795 4.502 总计 5.677 6.325 7.504 表 6 不同工况下老电厂滑坡经济风险值
Table 6. Economic risk results of Laodianchang landslides under different working conditions
滑坡分区 建筑物编号及土地、公路 经济风险值/万元 工况2 工况3 工况4 ① 1 69.565 77.506 91.954 ① 2 241.761 269.358 319.569 ① 3 5.186 5.777 6.854 ② 4 2.196 2.447 2.903 ① 5 43.192 48.122 57.092 ② 6 8.366 9.322 11.059 ② 公路 0.619 0.689 0.818 ② 水泥硬化场 4.857 5.412 6.420 总计 375.742 418.633 496.669 表 7 老电厂滑坡风险控制方案比选表
Table 7. Risk control scheme comparison of Laodianchang landslide
风险控制方案 防治措施 投资预算/万元 50 a暴雨滑坡的破坏概率/% 室内人员风险 经济风险 推荐方案 50 a暴雨工况下人员风险值/人 残余风险/% 50 a暴雨工况下经济风险值/万元 残余风险/% 整体治理 16根抗滑桩+376 m截排水沟(宽、深各0.5 m) 206.00 66.70 7.504 0 496.669 0 整体治理 局部治理 693 m截排水沟(宽深各0.5 m) 14.00 70 75 监测预警 专业监测+群测群防 29.64 85 90 搬迁避让 搬迁避让 334.00 0 60 -
[1] 黄润秋. 20世纪以来中国的大型滑坡及其发生机制[J]. 岩石力学与工程学报, 2007, 26(3): 433-454. doi: 10.3321/j.issn:1000-6915.2007.03.001
Huang R Q. Large-scale landslides and their sliding mechanisms in China since the 20th century[J]. Chinese Journal of Rock Mechanics and Engineering, 2007, 26(3): 433-454. doi: 10.3321/j.issn:1000-6915.2007.03.001
[2] 吴越, 刘东升, 陆新, 等. 单体滑坡灾害财产风险定量评估模型[J]. 岩土力学, 2010, 31(S2): 342-348.
Wu Y, Liu D S, Lu X, et al. A quantitative assessment model for property risk caused by single landslide[J]. Rock and Soil Mechanics, 2010, 31(S2): 342-348.
[3] 铁永波, 孙强, 徐勇, 等. 南方山地丘陵区典型地质灾害成因机制与风险评价[J]. 中国地质调查, 2022, 9(4): 1-9. doi: 10.19388/j.zgdzdc.2022.04.01
Tie Y B, Sun Q, Xu Y, et al. Genetic mechanism and risk assessment of typical geological hazards in mountainous and hilly areas of South China[J]. Geological Survey of China, 2022, 9(4): 1-9. doi: 10.19388/j.zgdzdc.2022.04.01
[4] 吴越, 向灵均, 吴同情, 等. 基于受灾体空间概率的滑坡灾害财产风险定量评估[J]. 岩石力学与工程学报, 2020, 39(S2): 3464-3474.
Wu Y, Xiang L J, Wu T Q, et al. Quantitative assessment of landslide property risk based on impact probability of element at risk[J]. Chinese Journal of Rock Mechanics and Engineering, 2020, 39(S2): 3464-3474.
[5] 刘强, 汤爱平. 基于概率分析的公路系统灾害风险研究[J]. 西南交通大学学报, 2021, 56(6): 1268-1274, 1289.
Liu Q, Tang A P. Highway system disaster risk based on probability analysis[J]. Journal of Southwest Jiaotong University, 2021, 56(6): 1268-1274, 1289.
[6] Fu S, Chen L X, Woldai T, et al. Landslide hazard probability and risk assessment at the community level: A case of western Hubei, China[J]. Natural Hazards and Earth System Sciences, 2020, 20(2): 581-601. doi: 10.5194/nhess-20-581-2020
[7] Paliaga G, Faccini F, Luino F, et al. Geomorphic processes and risk related to a large landslide dam in a highly urbanized Mediterranean catchment (Genova, Italy)[J]. Geomorphology, 2019, 327: 48-61. doi: 10.1016/j.geomorph.2018.10.020
[8] Bojadjieva J, Sheshov V, Bonnard C. Hazard and risk assessment of earthquake-induced landslides-case study[J]. Landslides, 2018, 15(1): 161-171. doi: 10.1007/s10346-017-0905-9
[9] 刘长春. 三峡库区万州城区滑坡灾害风险评价[D]. 武汉: 中国地质大学, 2014.
Liu C C. Landslide Risk Assessment at Wanzhou Urban Area in the Three Gorges Reservoir[D]. Wuhan: China University of Geosciences, 2014.
[10] 林高聪, 刘欢, 王洪磊, 等. 不同比例尺度下的地质灾害风险评价分析--以湖南黄溪口镇为例[J]. 中国地质调查, 2024, 11(6): 100-110. doi: 10.19388/j.zgdzdc.2024.141
Lin G C, Liu H, Wang H L, et al. Risk assessment of geological hazards under different plotting scales: A case study of Huangxikou Town in Hunan Province[J]. Geological Survey of China, 2024, 11(6): 100-110. doi: 10.19388/j.zgdzdc.2024.141
[11] 陈强, 李耀庄. 边坡稳定的可靠度分析与评价[J]. 路基工程, 2007(1): 1-2. doi: 10.3969/j.issn.1003-8825.2007.01.001
Chen Q, Li Y Z. The analysis and evaluation to reliability of slope stability[J]. Subgrade Engineering, 2007(1): 1-2. doi: 10.3969/j.issn.1003-8825.2007.01.001
[12] Hungr O, McDougall S. Two numerical models for landslide dynamic analysis[J]. Computers&Geosciences, 2009, 35(5): 978-992.
[13] 罗冠枝, 陈全明, 王国卫. 坡面泥石流灾变易损性分析评价及防灾模式[J]. 防灾减灾学报, 2018, 34(4): 19-25.
Luo G Z, Chen Q M, Wang G W. Analysis evaluation and disaster prevention model of slope debris flow disaster vulnerability[J]. Journal of Disaster Prevention and Reduction, 2018, 34(4): 19-25.
[14] 高玉欣, 刘德成, 高雪媛. 区县地质灾害风险评价中易损性评价研究[J]. 环境生态学, 2021, 3(5): 49-54.
Gao Y X, Liu D C, Gao X Y. Study on vulnerability assessment of geological hazard risk assessment in districts and counties[J]. Environmental Ecology, 2021, 3(5): 49-54.
[15] Chen L, Young M H. Green-Ampt infiltration model for sloping surfaces[J]. Water Resources Research, 2006, 42(7): W07420.
[16] Zhang S, Zhang L M, Li X Y, et al. Physical vulnerability models for assessing building damage by debris flows[J]. Engineering Geology, 2018, 247: 145-158. doi: 10.1016/j.enggeo.2018.10.017
[17] 周礼. 崩塌灾害作用下砌体结构损伤效应与易损性定量评价方法研究[D]. 成都: 成都理工大学, 2020.
Zhou L. Research on Quantitative Evaluation Method of Damage Effect and Vulnerability of Masonry Structure Under Collapse Disaster[D]. Chengdu: Chengdu University of Technology, 2020.
[18] 陈宾, 魏娜, 张联志, 等. 基于斜坡单元灾害强度的滑坡灾害易损性评价--以湖南省湘乡市为例[J]. 中国地质灾害与防治学报, 2024, 35(2): 137-145.
Chen B, Wei N, Zhang L Z, et al. Vulnerability assessment of landslide hazards based on hazard intensity at slope level: A case study in Xiangxiang county of Hunan[J]. The Chinese Journal of Geological Hazard and Control, 2024, 35(2): 137-145.
[19] 中华人民共和国自然资源部. DZ/T 0438-2023地质灾害风险调查评价规范(1: 50 000)[S]. 北京: 地质出版社, 2023.
Ministry of Natural Resources of the People's Republic of China. DZ/T 0438-2023 Specification of Geological Hazard Risk Survey and Assessment (1: 50 000)[S]. Beijing: Geological Publishing House, 2023.
[20] Varnes D J. Landslide Hazard Zonation: A Review of Principles and Practice[M]. Paris: United Nations Educational, Scientific and Cultural Organization, 1984.
[21] Corominas J. The angle of reach as a mobility index for small and large landslides[J]. Canadian Geotechnical Journal, 1996, 33(2): 260-271. doi: 10.1139/t96-005
-