天然氢对页岩油的资源意义——以阳信洼陷为例

孟庆强. 天然氢对页岩油的资源意义——以阳信洼陷为例[J]. 中国地质调查, 2025, 12(2): 1-8. doi: 10.19388/j.zgdzdc.2025.126
引用本文: 孟庆强. 天然氢对页岩油的资源意义——以阳信洼陷为例[J]. 中国地质调查, 2025, 12(2): 1-8. doi: 10.19388/j.zgdzdc.2025.126
MENG Qingqiang. Resource significance of natural hydrogen for shale oil: A case study of Yangxin Sag[J]. Geological Survey of China, 2025, 12(2): 1-8. doi: 10.19388/j.zgdzdc.2025.126
Citation: MENG Qingqiang. Resource significance of natural hydrogen for shale oil: A case study of Yangxin Sag[J]. Geological Survey of China, 2025, 12(2): 1-8. doi: 10.19388/j.zgdzdc.2025.126

天然氢对页岩油的资源意义——以阳信洼陷为例

  • 基金项目:
    国家自然科学基金“有机质外氢分子强化生烃率的反应历程与关键特征产物的精细识别研究(编号: 42172168)”及中国石化基础性前瞻性研究项目“天然氢气形成富集机理及资源潜力(编号: P25192)”联合资助
详细信息
    作者简介: 孟庆强(1978—),男,高级工程师,主要从事天然氢气形成机理与分布规律、油气成藏机理与分布预测方面的研究工作。Email: mengqq.syky@sinopec.com
  • 中图分类号: P618.13; TK91

Resource significance of natural hydrogen for shale oil: A case study of Yangxin Sag

  • 全球范围内,寻找低碳可持续供应的H2是氢能社会发展和能源绿色转型的重要议题。天然氢以其零碳、低价的独特优点,被视为未来氢能社会的重要H2供应方式,勘探开发天然氢已成为能源领域的研究热点。然而,由于天然氢具有独特的形成与富集过程,其有利分布区仍未取得共识。目前仅有小规模商业开发案例,大规模开发利用仍需要假以时日,因此,直接开发利用天然氢(即天然氢的直接能源意义)目前仍处于探索阶段。天然氢进入沉积盆地,特别是富有机质页岩后,促进有机质生烃作用(即天然氢的间接能源意义),这不仅对提升盆地油气资源潜力意义重大,更是现阶段探讨天然氢能源意义较为可行的技术路线。在前人研究的基础上,提出板块碰撞带附近的小型沉积盆地具有天然氢形成与保存的组合条件,是未来有望实现天然氢勘探和经济利用突破的最有利地区; 以济阳坳陷阳信洼陷沙四段烃源岩为例,探讨了多期叠加发育的具有较强生氢能力的侵入体促进烃源岩生烃的潜力,通过计算认为,阳信洼陷侵入体叠加面积为165 km2,可以影响约36.40 km3的烃源岩,提高沙四段烃源岩原油资源量约1 796.34×104 t,比原评估资源量提高了8.55%。研究为重新评估发育有多层深源岩席侵入的小型沉积盆地的资源量提供了一种新的视角,对传统观念中被认为因构造活跃导致勘探前景欠佳的区块进行重新认识具有重要意义。

  • 加载中
  • 图 1  中国主要含油气盆地天然氢分布

    Figure 1. 

    图 2  天然氢富集盆地板块构造位置示意图

    Figure 2. 

    图 3  阳信洼陷沙四段火成岩代表性井位及剖面示意图(据文献[30]修改)

    Figure 3. 

    表 1  阳信洼陷沙四段辉绿岩侵入体代表性井与烃源岩生烃阶段匹配关系(侵入体厚度据文献[33])

    Table 1.  Relationship between representative wells of gabbroic intrusive body and hydrocarbon stage of hydrocarbon source rock in Es4 section of Yangxin Sag (thickness of intrusive body according to reference [33])

    序号 井号 侵入岩单层最大厚度/m 影响时烃源岩成熟阶段
    1 阳161 17.50 成熟
    2 阳18 191.00 成熟
    3 阳14 198.90 成熟
    4 阳1 69.14 成熟
    5 阳29 60.50 成熟
    下载: 导出CSV
  • [1]

    Brear M J. Thoughts on the prospects of renewable hydrogen[J]. Engineering, 2020, 6(12): 1343-1345, doi: 10.1016/j.eng.2020.09.008.

    [2]

    IEA. Global Hydrogen Review 2023[EB/OL]. (2023-09). https://www.iea.org/reports/global-hydrogen-review-2023.

    [3]

    孟庆强, 金之钧, 刘全有, 等. 天然氢气研究的现状、进展及展望[J]. 石油与天然气地质, 2024, 45(5): 1483-1501.

    Meng Q Q, Jin Z J, Liu Q Y, et al. Current status, advances, and prospects of research on natural hydrogen[J]. Oil & Gas Geology, 2024, 45(5): 1483-1501.

    [4]

    田黔宁, 张炜, 王海华, 等. 能源转型背景下不可忽视的新能源: 天然氢[J]. 中国地质调查, 2022, 9(1): 1-15, doi: 10.19388/j.zgdzdc.2022.01.01.

    Tian Q N, Zhang W, Wang H H, et al. Non-negligible new energy in the energy transition context: Natural hydrogen[J]. Geological Survey of China, 2022, 9(1): 1-15, doi: 10.19388/j.zgdzdc.2022.01.01.

    [5]

    韩双彪, 唐致远, 杨春龙, 等. 天然气中氢气成因及能源意义[J]. 天然气地球科学, 2021, 32(9): 1270-1284, doi: 10.11764/j.issn.1672-1926.2021.04.005.

    Han S B, Tang Z Y, Yang C L, et al. Genesis and energy significance of hydrogen in natural gas[J]. Natural Gas Geoscience, 2021, 32(9): 1270-1284, doi: 10.11764/j.issn.1672-1926.2021.04.005.

    [6]

    刘全有, 吴小奇, 孟庆强, 等. 天然氢气: 一种潜在的零碳能源[J]. 科学通报, 2024, 69(17): 2344-2350.

    Liu Q Y, Wu X Q, Meng Q Q, et al. Natural hydrogen: a potential carbon-free energy source[J]. Chinese Science Bulletin, 2024, 69(17): 2344-2350.

    [7]

    Edlmann K. Hydrogen for Net Zero[D]. Edinburgh: The University of Edinburgh, 2023.

    [8]

    Ellis G S, Gelman S E. Model predictions of global geologic hydrogen resources[J]. Science Advances, 2024, 10(50): eado0955. doi: 10.1126/sciadv.ado0955

    [9]

    Milkov A V. Molecular hydrogen in surface and subsurface natural gases: abundance, origins and ideas for deliberate exploration[J]. Earth-Science Reviews, 2022, 230: 104063, doi: 10.1016/j.earscirev.2022.104063.

    [10]

    Moretti I, Bouton N, Ammouial J, et al. The H2 potential of the Colombian coals in natural conditions[J]. International Journal of Hydrogen Energy, 2024, 77: 1443-1456, doi: 10.1016/j.ijhydene.2024.06.225.

    [11]

    Boreham C J, Sohn J H, Cox N, et al. Hydrogen and hydrocarbons associated with the Neoarchean Frog's Leg Gold Camp, Yilgarn craton, western Australia[J]. Chemical Geology, 2021, 575: 120098, doi: 10.1016/j.chemgeo.2021.120098.

    [12]

    Boreham C J, Edwards D S, Czado K, et al. Hydrogen in Australian natural gas: occurrences, sources and resources[J]. The APPEA Journal, 2021, 61(1): 163-191, doi: 10.1071/AJ20044.

    [13]

    房大任, 裴秋明, 王海华, 等. 天然氢气成因与全球氢资源勘探进展[J]. 成都理工大学学报: 自然科学版, 2024, 51(6): 989-1007, 1021.

    Fang D R, Pei Q M, Wang H H, et al. Genesis of natural hydrogen and progress in global hydrogen resource exploration[J]. Journal of Chengdu University of Technology (Science & Technology Edition), 2024, 51(6): 989-1007, 1021.

    [14]

    王海华, 薛迎喜, 张炜, 等. 全球天然氢勘查开发最新发展态势分析[J]. 中国地质调查, 2024, 11(3): 1-8, doi: 10.19388/j.zgdzdc.2024.03.01.

    Wang H H, Xue Y X, Zhang W, et al. Analysis of the latest development trend of global natural hydrogen exploration and development[J]. Geological Survey of China, 2024, 11(3): 1-8, doi: 10.19388/j.zgdzdc.2024.03.01.

    [15]

    Zgonnik V. The occurrence and geoscience of natural hydrogen: a comprehensive review[J]. Earth-Science Reviews, 2020, 203: 103140, doi: 10.1016/j.earscirev.2020.103140.

    [16]

    孟庆强, 金之钧, 孙冬胜, 等. 高含量氢气赋存的地质背景及勘探前景[J]. 石油实验地质, 2021, 43(2): 208-216, doi: 10.11781/sysydz202102208.

    Meng Q Q, Jin Z J, Sun D S, et al. Geological background and exploration prospects for the occurrence of high-content hydrogen[J]. Petroleum Geology & Experiment, 2021, 43(2): 208-216, doi: 10.11781/sysydz202102208.

    [17]

    Prinzhofer A, Cissé C S T, Diallo A B. Discovery of a large accumulation of natural hydrogen in Bourakebougou (Mali)[J]. International Journal of Hydrogen Energy, 2018, 43(42): 19315-19326, doi: 10.1016/j.ijhydene.2018.08.193.

    [18]

    孙龙德, 冯子辉, 江航, 等. 松辽盆地富氢天然气地质调查与研究[J]. 大庆石油地质与开发, 2024, 43(3): 7-16, doi: 10.19597/J.ISSN.1000-3754.202403001.

    Sun L D, Feng Z H, Jiang H, et al. Geological survey and study of hydrogen-rich natural gas in Songliao basin[J]. Petroleum Geology & Oilfield Development in Daqing, 2024, 43(3): 7-16, doi: 10.19597/J.ISSN.1000-3754.202403001.

    [19]

    金之钧, 张刘平, 杨雷, 等. 沉积盆地深部流体的地球化学特征及油气成藏效应初探[J]. 地球科学——中国地质大学学报, 2002, 27(6): 659-665.

    Jin Z J, Zhang L P, Yang L, et al. Primary study of geochemical features of deep fluids and their effectiveness on oil/gas reservoir formation in sedimental basins[J]. Earth Science-Journal of China University of Geosciences, 2002(6): 659-665.

    [20]

    Meng Q Q, Sun Y H, Tong J Y, et al. Distribution and geochemical characteristics of hydrogen in natural gas from the Jiyang depression, eastern China[J]. Acta Geologica Sinica (English Edition), 2015, 89(5): 1616-1624, doi: 10.1111/1755-6724.12568.

    [21]

    Liu Q Y, Zhu D Y, Jin Z J, et al. Effects of deep CO2 on petroleum and thermal alteration: the case of the Huangqiao oil and gas field[J]. Chemical Geology, 2017, 469: 214-229, doi: 10.1016/j.chemgeo.2017.06.031.

    [22]

    李秀梅, 刘映辉, 温景萍. 楚雄盆地乌龙1井天然气的地球化学特征和地质意义[J]. 天然气工业, 2002, 22(5): 16-19, doi: 10.3321/j.issn:1000-0976.2002.05.004.

    Li X M, Liu Y H, Wen J P. Geochemical characteristics of the natural gas from well Wulong-1, Chuxiong basin, and its geological significance[J]. Natural Gas Industry, 2002, 22(5): 16-19, doi: 10.3321/j.issn:1000-0976.2002.05.004.

    [23]

    陶成, 刘文汇, 孟庆强, 等. 天然气中微痕量氢同位素的在线连续分析[J]. 分析化学, 2012, 40(3): 482-486.

    Tao C, Liu W H, Meng Q Q, et al. On-line continuous-flow microananlysis of hydrogen in natural gases[J]. Chinese Journal of Analytical Chemistry, 2012, 40(3): 482-486.

    [24]

    王晓梅, 何坤, 杨春龙, 等. 四川盆地深层天然氢气形成机制[J]. 中国科学: 地球科学, 2025, 55(2): 596-612.

    Wang X M, He K, Yang C L, et al. Formation mechanism of deep natural hydrogen in the Sichuan basin[J]. Science China Earth Sciences, 2025, 68(2): 581-597.

    [25]

    Liu Q Y, Wu X Q, Huang X W, et al. Integrated geochemical identification of natural hydrogen sources[J]. Science Bulletin, 2024, 69(19): 2993-2996, doi: 10.1016/j.scib.2024.07.004.

    [26]

    李志明, 刘惠民, 刘鹏, 等. 渤海湾盆地沾化凹陷BYP5导眼井古近系沙河街组三段下亚段岩心富氢气逸散气特征及其地质意义[J]. 石油实验地质, 2024, 46(5): 979-988, doi: 10.11781/sysydz202405979.

    Li Z M, Liu H M, Liu P, et al. Characteristics and geological significance of escaping gas rich in natural hydrogen from pilot well BYP5 cores of lower sub-member of third member of Shahejie formation in Zhanhua sag, Bohai Bay basin[J]. Petroleum Geology & Experiment, 2024, 46(5): 979-988, doi: 10.11781/sysydz202405979.

    [27]

    Meng Q Q, Jing J J, Li J Z, et al. New exploration strategy in igneous petroliferous basins-enlightenment from simulation experiments[J]. Energy Exploration & Exploitation, 2018, 36(4): 971-985, doi: 10.1177/0144598718758338.

    [28]

    张波, 吴智平, 刘华. 火成岩在阳信洼陷油气成藏中的地质意义[J]. 特种油气藏, 2014, 21(4): 80-84.

    Zhang B, Wu Z P, Liu H. Geological significance of igneous rock to oil/gas reservoir-forming in Yangxin sag[J]. Special Oil and Gas Reservoirs, 2014, 21(4): 80-84.

    [29]

    王永斌, 李鑫, 董冬, 等. 阳信洼陷成藏条件分析[J]. 科技视界, 2016(6): 278-279, doi: 10.19694/j.cnki.issn2095-2457.2016.06.207.

    Wang Y B, Li X, Dong D, et al. Analysis of hydrocarbon accumulation conditions in Yangxin sag[J]. Science & Technology Vision, 2016(6): 278-279, doi: 10.19694/j.cnki.issn2095-2457.2016.06.207.

    [30]

    王锋. 阳信洼陷油气生成与成藏模式研究[D]. 广州: 中国科学院研究生院(广州地球化学研究所), 2007.

    Wang F. Petroleum Generation and Accumulation Patten in the Yangxin Depression[D]. Guangzhou: Graduate Institute of Chinese Academy of Sciences (Guangzhou Institute of Geochemistry), 2007.

    [31]

    宋占东. 阳信洼陷火成岩对烃源岩生烃作用机理研究[D]. 青岛: 中国石油大学(华东), 2009.

    Song Z D. The Impacts of Igneous Rocks on Hydrocarbon Generating Mechanism of Source Rocks of Yangxin Sag, Huimin Depression[D]. Qingdao: China University of Petroleum (EastChina), 2009.

    [32]

    黄瑞芳, 孙卫东, 丁兴, 等. 橄榄岩蛇纹石化过程中氢气和烷烃的形成[J]. 岩石学报, 2015, 31(7): 1901-1907.

    Huang R F, Sun W D, Ding X, et al. Formation of hydrogen gas and alkane during peridotite serpentinization[J]. Acta Petrologica Sinica, 2015, 31(7): 1901-1907.

    [33]

    马丽新. 惠民凹陷火山活动的成烃热效应[D]. 青岛: 山东科技大学, 2009.

    Ma L X. Thermal Effect of Hydrocarbon Genenation Because of Volcano Activity in Huimin Sag[D]. Qingdao: Shandong University of Science and Technology, 2009.

    [34]

    程党性. 东营凹陷西部及阳信洼陷岩浆活动与油气藏形成的关系[D]. 西安: 西北大学, 2005.

    Cheng D X. The Relationship between Volcanic Activity and Pool in the West of Dongying Depression and Yangxin Low-Lying Billabong[D]. Xi'an: Northwest University, 2005.

  • 加载中

(3)

(1)

计量
  • 文章访问数:  104
  • PDF下载数:  4
  • 施引文献:  0
出版历程
收稿日期:  2025-03-12
修回日期:  2025-04-12
刊出日期:  2025-04-25

目录