碳同位素分析技术在非常规油气地质研究中的应用

段野, 李礼, 王春伟. 碳同位素分析技术在非常规油气地质研究中的应用[J]. 中国地质调查, 2025, 12(4): 1-8. doi: 10.19388/j.zgdzdc.2025.168
引用本文: 段野, 李礼, 王春伟. 碳同位素分析技术在非常规油气地质研究中的应用[J]. 中国地质调查, 2025, 12(4): 1-8. doi: 10.19388/j.zgdzdc.2025.168
DUAN Ye, LI Li, WANG Chunwei. Application of carbon isotope analysis technology in unconventional oil and gas geological research[J]. Geological Survey of China, 2025, 12(4): 1-8. doi: 10.19388/j.zgdzdc.2025.168
Citation: DUAN Ye, LI Li, WANG Chunwei. Application of carbon isotope analysis technology in unconventional oil and gas geological research[J]. Geological Survey of China, 2025, 12(4): 1-8. doi: 10.19388/j.zgdzdc.2025.168

碳同位素分析技术在非常规油气地质研究中的应用

  • 基金项目:
    深地国家科技重大专项“沉积盆地天然氢气成藏机制与资源探测(编号:2024ZD10)”资助
详细信息
    作者简介: 段野(1990—),男,高级工程师,博士在读,主要从事石油地质综合研究工作。Email:xianjian678@126.com
    通讯作者: 王春伟(1988—),男,高级工程师,主要从事油气藏地质研究工作。Email:happylife138647@163.com
  • 中图分类号: P618.13;TE122.3

Application of carbon isotope analysis technology in unconventional oil and gas geological research

More Information
  • 随着对非常规油气资源勘探开发的深入,碳同位素分析技术已成为揭示油气成因及成藏、富集产出等方面的关键手段,但目前对碳同位素分析技术在非常规油气地质研究中应用的总结较少。通过明确碳同位素分析技术的流程及关键参数,梳理其在非常规油气地质研究的应用情况,阐述目前存在的问题及发展方向。研究认为: 碳同位素分析技术可以进行油气成因判定、油气源对比、成熟度预测、储层连通性及物性判别、“甜点”评价及产能预测5个重点方向的应用研究,在非常规油气地质研究领域具有较好的应用效果。目前碳同位素分析技术存在样品代表性与预处理不足、标准化体系未统一、碳同位素分馏复杂等推广应用方面的困难与挑战,正朝着高精度、原位化和动态监测方向发展。此外,碳同位素分析技术在碳排放溯源、CO2地质封存及地热等场景也具有广阔的发展前景。研究成果可为碳同位素分析技术在非常规油气地质研究中的推广应用提供参考。

  • 加载中
  • 图 1  碳同位素分析工作流程

    Figure 1. 

    图 2  渤海湾盆地C27井区煤系气成藏模式示意图[26]

    Figure 2. 

  • [1]

    张家强, 毕彩芹, 徐银波, 等. 非常规油气地质调查工程进展与主要成果[J]. 中国地质调查, 2023, 10(1): 1-19. doi: 10.19388/j.zgdzdc.2023.01.01

    Zhang J Q, Bi C Q, Xu Y B, et al. Progresses and main achievements on unconventional oil and gas geological survey[J]. Geological Survey of China, 2023, 10(1): 1-19. doi: 10.19388/j.zgdzdc.2023.01.01

    [2]

    赵群, 赵萌, 赵素平, 等. 美国页岩油气发展现状、成本效益危机及解决方案[J]. 非常规油气, 2023, 10(5): 1-7.

    Zhao Q, Zhao M, Zhao S P, et al. The development status, cost-effectiveness crisis and solution of shale oil and gas in the United States[J]. Unconventional Oil & Gas, 2023, 10(5): 1-7.

    [3]

    戴金星, 倪云燕, 龚德瑜, 等. 中国大气田烷烃气碳同位素组成的若干特征[J]. 石油勘探与开发, 2024, 51(2): 223-233.

    Dai J X, Ni Y Y, Gong D Y, et al. Characteristics of carbon isotopic composition of alkane gas in large gas fields in China[J]. Petroleum Exploration and Development, 2024, 51(2): 223-233.

    [4]

    杨献忠, 袁学银, 王军, 等. 金刚石矿物学、包裹体及碳稳定同位素研究综述[J]. 中国地质调查, 2019, 6(6): 12-18. doi: 10.19388/j.zgdzdc.2019.06.02

    Yang X Z, Yuan X Y, Wang J, et al. Review of mineralogy, inclusion and carbon stable isotopic studies of diamond[J]. Geological Survey of China, 2019, 6(6): 12-18. doi: 10.19388/j.zgdzdc.2019.06.02

    [5]

    董海裕, 邹雨, 王国建, 等. 深层天然气扩散行为与碳同位素分馏模型研究进展[J]. 太原理工大学学报, 2023, 54(4): 599-608.

    Dong H Y, Zou Y, Wang G J, et al. Research progress on diffusion behavior and carbon-isotope fractionation models of deep natural gas[J]. Journal of Taiyuan University of Technology, 2023, 54(4): 599-608.

    [6]

    王宁, 明承栋, 杨晨艺, 等. 白云凹陷东部深水区混源油定量解析[J]. 山东科技大学学报: 自然科学版, 2022, 41(6): 24-31.

    Wang N, Ming C D, Yang C Y, et al. Quantitative study on mixed source oil in deep water area of eastern Baiyun sag[J]. Journal of Shandong University of Science and Technology (Natural Science), 2022, 41(6): 24-31.

    [7]

    陈聪, 龙祖烈, 熊永强, 等. 白云凹陷烃源岩分布与油气源差异性分析[J]. 山东科技大学学报: 自然科学版, 2022, 41(1): 1-12.

    Chen C, Long Z L, Xiong Y Q, et al. Analysis of source rock distribution and oil-gas source difference in Baiyun Sag[J]. Journal of Shandong University of Science and Technology (Natural Science), 2022, 41(1): 1-12.

    [8]

    张群, 何坤, 李贤庆, 等. 页岩高压解析放气过程中甲烷碳同位素分馏特征[J]. 天然气地球科学, 2023, 34(3): 540-550.

    Zhang Q, He K, Li X Q, et al. Characteristics of methane carbon isotope fractionation during high-pressure degassing of shale[J]. Natural Gas Geoscience, 2023, 34(3): 540-550.

    [9]

    马冬晨, 王文军, 张婷, 等. 正构烷烃单体碳同位素组成差异分析——以塔河油田奥陶系原油为例[J]. 沉积学报, 2024, 42(4): 1411-1421.

    Ma D C, Wang W J, Zhang T, et al. Analysis of carbon isotopic compositional differences of individual n-Alkane: Case study of ordovician crude oil in Tahe oilfield[J]. Acta Sedimentologica Sinica, 2024, 42(4): 1411-1421.

    [10]

    杨宗彩, 徐学敏, 杨佳佳, 等. 沉积岩有机碳同位素组成测定的前处理方法研究[J]. 岩矿测试, 2024, 43(6): 847-857.

    Yang Z C, Xu X M, Yang J J, et al. A pre-treatment method for the determination of organic carbon isotope composition in sedimentary rocks[J]. Rock and Mineral Analysis, 2024, 43(6): 847-857.

    [11]

    彭威龙, 刘全有, 胡国艺, 等. 天然气形成过程中碳同位素分馏机理——来自热模拟实验的地球化学证据[J]. 石油勘探与开发, 2020, 47(5): 972-983.

    Peng W L, Liu Q Y, Hu G Y, et al. Mechanisms of carbon isotope fractionation in the process of natural gas generation: Geochemical evidence from thermal simulation experiment[J]. Petroleum Exploration and Development, 2020, 47(5): 972-983.

    [12]

    张道锋, 孟康, 黄有根, 等. 鄂尔多斯盆地石炭系本溪组煤岩解析气甲烷碳同位素特征及其地质意义[J/OL]. 天然气地球科学, 1-24(2025-02-26)[2025-04-26]. http://kns.cnki.net/kcms/detail/62.1177.te.20250225.1906.006.html.

    Zhang D F, Meng K, Huang Y G, et al. Characteristics and geological significance of methane carbon isotope of released gas from Carboniferous Benxi coal rock in Ordos Basin[J/OL]. Natural Gas Geoscience, 1-24 (2025-02-26)[2025-04-26]. http://kns.cnki.net/kcms/detail/62.1177.te.20250225.1906.006.html.

    [13]

    焦梦妍, 袁玉洁, 王俊, 等. 奥陶纪/志留纪之交时期重大地质事件对沉积古环境及页岩有机质富集的影响——以中上扬子地区五峰组—龙马溪组页岩为例[J]. 非常规油气, 2024, 11(5): 82-94.

    Jiao M Y, Yuan Y J, Wang J, et al. Impacts of major geologic events on sedimentary paleoenvironments and organic matter enrichment of shales during the Ordovician-Silurian boundary: A case study of shales of Wufeng-Longmaxi formation in Middle and Upper Yangtze regions[J]. Unconventional Oil & Gas, 2024, 11(5): 82-94.

    [14]

    万延周, 陈春峰, 王大卫, 等. 东海盆地某凹陷中南部平湖组烃源岩有机质碳同位素组成特征[J]. 非常规油气, 2020, 7(2): 18-25.

    Wan Y Z, Chen C F, Wang D W, et al. The carbon isotopic component characteristics of organic matter of Pinghu formation source rocks in the center and south part of a certain depression, East China Sea shelf basin[J]. Unconventional Oil & Gas, 2020, 7(2): 18-25.

    [15]

    廖芸, 郭艳琴, 陈志鹏, 等. 烷烃碳同位素对页岩含气性的指示意义——以四川盆地及周缘龙马溪组为例[J]. 海相油气地质, 2021, 26(3): 224-230.

    Liao Y, Guo Y Q, Chen Z P, et al. Indicative significance of alkane carbon isotope to shale gas content: Taking Longmaxi Formation in Sichuan Basin and its surrounding areas as example[J]. Marine Origin Petroleum Geology, 2021, 26(3): 224-230.

    [16]

    赵圣贤, 杨学锋, 刘永旸, 等. 深层页岩气产出过程碳同位素分馏特征及其地质意义——以川南地区泸州区块奥陶系五峰组-志留系龙马溪组为例[J]. 天然气工业, 2024, 44(8): 72-84.

    Zhao S X, Yang X F, Liu Y Y, et al. Characteristics and geological implications of carbon isotope fractionation during deep shale gas production: A case study of the Ordovician Wufeng Formation-Silurian Longmaxi formation in the Luzhou Block of Southern Sichuan Basin[J]. Natural Gas Industry, 2024, 44(8): 72-84.

    [17]

    王学军, 张学军, 罗欢, 等. 碳同位素分馏效应对深层原油来源判识的影响[J]. 油气地质与采收率, 2024, 31(4): 154-163.

    Wang X J, Zhang X J, Luo H, et al. Influences of carbon isotope fractionation effects on identification of deep crude oil sources[J]. Petroleum Geology and Recovery Efficiency, 2024, 31(4): 154-163.

    [18]

    陶成, 王杰, 申宝剑, 等. 甲烷流动过程中碳同位素分馏实验[J]. 天然气地球科学, 2021, 32(11): 1709-1713.

    Tao C, Wang J, Shen B J, et al. Experimental study on carbon isotopic fractionation of methane flow[J]. Natural Gas Geoscience, 2021, 32(11): 1709-1713.

    [19]

    王卓, 赵靖舟, 陈军军, 等. 伊陕斜坡高熟天然气特征及碳同位素倒转成因[J]. 非常规油气, 2020, 7(2): 35-40.

    Wang Z, Zhao J Z, Chen J J, et al. Characteristics and carbon isotope inversion genesis of high mature natural gas in Yishan Slope[J]. Unconventional Oil & Gas, 2020, 7(2): 35-40.

    [20]

    谷元龙, 张仲达, 于双, 等. 准噶尔盆地玛湖凹陷西斜坡原油油源解析: 基于单体烃碳同位素组成、分子比值与浓度定量分析[J]. 地球化学, 2023, 52(3): 298-310.

    Gu Y L, Zhang Z D, Yu S, et al. Determination of oil sources on the western slope of Mahu Sag, Junggar Basin, based on compound-specific carbon isotopes and molecular parameters and concentrations[J]. Geochimica, 2023, 52(3): 298-310.

    [21]

    汤磊鑫, 周虎, 殷磊磊. 淮北地区含煤岩系有机地球化学特征及生烃潜力分析[J]. 非常规油气, 2022, 9(6): 51-60, 74.

    Tang L X, Zhou H, Yin L L. Analysis on organic geochemistry characteristics and hydrocarbon-generating potential of coal-bearing strata in Huaibei Area[J]. Unconventional Oil & Gas, 2022, 9(6): 51-60, 74.

    [22]

    李振雄, 胡博文, 王振华, 等. 地质构造控制下地热流体水化学、同位素及循环特征——以蔚县盆地为例[J]. 中国地质调查, 2024, 11(6): 64-75. doi: 10.19388/j.zgdzdc.2024.110

    Li Z X, Hu B W, Wang Z H, et al. Hydrochemistry, isotope and circulation characteristics of geothermal fluids controlled by geological structure: A case study of Yuxian Basin[J]. Geological Survey of China, 2024, 11(6): 64-75. doi: 10.19388/j.zgdzdc.2024.110

    [23]

    肖光武, 杨世亮. 碳同位素录井技术在古龙青山口组页岩油中的应用——以GY3井为例[J]. 录井工程, 2022, 33(4): 6-12.

    Xiao G W, Yang S L. Application of carbon isotope logging technology in shale oil of Gulong Qingshankou Fm: A case study of well GY3[J]. Mud Logging Engineering, 2022, 33(4): 6-12.

    [24]

    文杰, 徐尚, 苟启洋, 等. 页岩油微运移研究进展及意义[J]. 地质科技通报, 2024, 43(4): 1-14.

    Wen J, Xu S, Gou Q Y, et al. Research status and significance of shale oil micromigration[J]. Bulletin of Geological Science and Technology, 2024, 43(4): 1-14.

    [25]

    李博偲, 潘志强, 何大祥, 等. 利用生物标志物和正构烷烃单体烃碳同位素判识原油受气侵程度——以塔里木盆地塔中地区为例[J]. 天然气地球科学, 2025, 36(4): 665-676.

    Li B C, Pan Z Q, He D X, et al. Biomarker and carbon isotope of individual n-alkane as indicators to assess the degree of gas invasion of crude oil: A case study of Tazhong area, Tarim Basin[J]. Natural Gas Geoscience, 2025, 36(4): 665-676.

    [26]

    孙永革, 孔丽姝, 路清华, 等. 塔里木盆地古城墟隆起顺南1井古油藏热裂解过程的分子碳同位素地球化学记录[J]. 石油实验地质, 2023, 45(5): 904-911.

    Sun Y G, Kong L S, Lu Q H, et al. Molecular carbon isotopic geochemistry records of thermal cracking in the palaeo-reservoir of well Shunnan 1 in Guchengxu Uplift, Tarim Basin[J]. Petroleum Geology & Experiment, 2023, 45(5): 904-911.

    [27]

    陈建平, 王绪龙, 陈践发, 等. 甲烷碳同位素判识天然气及其源岩成熟度新公式[J]. 中国科学: 地球科学, 2021, 51(4): 560-581.

    Chen J P, Wang X L, Chen J F, et al. A new formula for identifying the maturity of natural gas and its source rocks by methane carbon isotopes[J]. Scientia Sinica Terrae, 2021, 51(4): 560-581.

    [28]

    徐伟. 车镇凹陷车西北带下古生界煤成气成藏差异及模式分析[J]. 油气地质与采收率, 2021, 28(5): 13-21.

    Xu W. Differences and control modes of coal gas accumulations in Lower Paleozoic in northwest of Chezhen Sag, Jiyang Depression, Bohai Bay Basin[J]. Petroleum Geology and Recovery Efficiency, 2021, 28(5): 13-21

    [29]

    胡益涛, 张焕旭, 倪朋勃, 等. 多组分碳同位素录井在天然气勘探中的应用——以琼东南盆地BD21地区为例[J]. 物探与化探, 2024, 48(2): 348-355.

    Hu Y T, Zhang H X, Ni P B, et al. Application of multi-component carbon isotope logging in natural gas exploration: A case study of the BD21 area, Qiongdongnan Basin[J]. Geophysical and Geochemical Exploration, 2024, 48(2): 348-355.

    [30]

    徐璐, 刘睿, 张康斌, 等. 页岩气保存条件的碳同位素约束: 以上扬子板块五峰-龙马溪组页岩为例[J]. 沉积与特提斯地质, 2024, 44(3): 630-640.

    Xu L, Liu R, Zhang K B, et al. Shale gas preservation conditions and their carbon isotope constraints: a case study of the Wufeng-Longmaxi Shale in the Upper Yangtze Block[J]. Sedimentary Geology and Tethyan Geology, 2024, 44(3): 630-640.

    [31]

    牛强, 慈兴华. 碳同位素录井技术在胜利油区页岩油评价中的应用——以渤南洼陷YYP 1井为例[J]. 录井工程, 2023, 34(2): 9-14.

    Niu Q, Ci X H. Application of carbon isolope mud logging technology in shale oil evaluation of Shengli Oilfield: A case study of well YYP 1, Bonan Sag[J]. Mud Logging Engineering, 2023, 34(2): 9-14.

    [32]

    郝为, 耿恒, 王瑞科, 等. 涠西南凹陷页岩油碳同位素录井特征分析[J]. 录井工程, 2024, 35(4): 32-38.

    Hao W, Geng H, Wang R K, et al. Analysis of carbon isotope logging characteristics of shale oil in Weixinan Sag[J]. Mud Logging Engineering, 2024, 35(4): 32-38.

    [33]

    杨光, 孙合辉, 吐洪江, 等. 甲烷碳同位素在川南威远地区页岩气井产能预测中的应用[J]. 录井工程, 2025, 36(1): 27-33.

    Yang G, Sun H H, Tu H J, et al. Application of methane carbon isotope in the productivity prediction of shale gas wells in Weiyuan area, southern Sichuan[J]. Mud Logging Engineering, 2025, 36(1): 27-33.

  • 加载中

(2)

计量
  • 文章访问数:  47
  • PDF下载数:  6
  • 施引文献:  0
出版历程
收稿日期:  2025-04-26
修回日期:  2025-07-30
刊出日期:  2025-08-25

目录