中国地质科学院水文地质环境地质研究所主办
Groundwater Science and Engineering Limited出版
Bahrami Mehdi, Khaksar Elmira, Khaksar Elahe. 2020. Spatial variation assessment of groundwater quality using multivariate statistical analysis(Case Study: Fasa Plain, Iran). Journal of Groundwater Science and Engineering, 8(3): 230-243. doi: 10.19637/j.cnki.2305-7068.2020.03.004
Citation: Bahrami Mehdi, Khaksar Elmira, Khaksar Elahe. 2020. Spatial variation assessment of groundwater quality using multivariate statistical analysis(Case Study: Fasa Plain, Iran). Journal of Groundwater Science and Engineering, 8(3): 230-243. doi: 10.19637/j.cnki.2305-7068.2020.03.004

Spatial variation assessment of groundwater quality using multivariate statistical analysis(Case Study: Fasa Plain, Iran)

More Information
  • 加载中
  • Figure 1. 

    Figure 2. 

    Figure 3. 

    Figure 4. 

    Figure 5. 

    Figure 6. 

    Table 1.  The ID of sampling wells

    ID Sampling site ID Sampling site
    1 Jangalkari 12 Qanatno
    2 Tonbakan 13 Kamal Abad
    3 Toureh 14 Kheir Abad
    4 Baniyan 15 Firuzemard
    5 Kahnekoyeh 16 Dastjeh
    6 Shomal Fasa 17 Baghe Jafari
    7 Kushk Qazi 1 18 Sahraroud
    8 Kushk Qazi 2 19 Saad Abad
    9 Rahmat Abad 20 Ghiyas Abad
    10 Harom 21 Soghad
    11 Chaghad 22 Cheshme Abnarak
    下载: 导出CSV

    Table 2.  Descriptive statistics of groundwater quality parameters ranges and their comparison with the Iranian standard for drinking water

    Variable Iranian permissible limit N Minimum Maximum Mean Std. Deviation
    EC (µmhos/cm) 1 400 110 333 52 00 1 441.43 843.99
    Cl- (ppm) 400 110 0.15 22.50 4.89 3.73
    TH (ppm as CaCO3) 500 110 166 2 000 570.79 367.80
    SAR (-) - 110 0.11 4.17 1.56 0.92
    K+ (ppm) 12 110 0.01 0.32 0.07 0.05
    Na+ (ppm) 200 110 0.15 17.39 3.77 2.80
    Mg2+ (ppm) 30 110 0.20 22.50 5.30 3.85
    Ca2+ (ppm) 300 110 2.00 27.00 6.11 4.44
    Cations (ppm) - 110 3.72 57.66 15.26 9.40
    SO42- (ppm) 400 110 0.19 33.92 5.47 6.14
    Valid N (listwise) 110
    下载: 导出CSV

    Table 3.  Spatial clustering of sampling wells

    Groups EC Cl- TH SAR K+ Na+ Mg2+ Ca2+ Cations SO42- No. of wells
    1 1 154.7 4.0 445.4 1.4 0.06 3.1 4.1 4.8 12.1 3.4 18
    2 2 731.8 9.1 1 135 2.1 0.14 6.8 10.7 12.0 29.7 14.6 4
    下载: 导出CSV

    Table 4.  Independent sample test

    Levene's test for equality of variances t-test for equality of means
    Variable F sig. t df Sig.
    (2-tailed)
    Mean difference
    (LP-HP)
    Std. error difference
    EC Equal variances assumed 4.215 0.053 -8.462 20 0.000 -1 577.222 186.374
    Cl- Equal variances assumed 1.047 0.318 -4.777 20 0.000 -5.122 1.072
    TH Equal variances assumed 0.547 0.468 -8.305 20 0.000 -689.589 83.031
    SAR Equal variances not assumed 7.445 0.013 -1.219 3.380 0.150 -0.626 0.514
    K+ Equal variances assumed 0.079 0.782 -7.410 20 0.000 -0.077 -0.010
    Na+ Equal variances not assumed 9.556 0.006 -2.570 3.293 0.037 -3.750 1.460
    Mg2+ Equal variances assumed 0.862 0.364 -6.679 20 0.000 -6.595 0.987
    Ca2+ Equal variances not assumed 19.526 0.000 -2.545 3.073 0.041 -7.193 2.826
    Cations Equal variances assumed 2.731 0.114 -9.022 20 0.000 -17.613 1.952
    SO42- Equal variances not assumed 10.417 0.004 -3.891 3.138 0.014 -11.186 2.875
    下载: 导出CSV

    Table 5.  Resulted coefficients of LDA method

    Variable EC Cl- TH SAR K+ Na+ Mg2+ Ca2+ Cations SO42-
    LDA coefficient -0.423 -0.215 -0.388 0.000 -0.297 -0.144 -0.351 -0.298 -0.430 -0.345
    下载: 导出CSV

    Table 6.  Classification matrix obtained from LDA of spatial variation of the groundwater in the Fasa Plain

    Predicted cluster determined by LDA
    Actual cluster Cluster 1 Cluster 2
    Cluster 1 95.60 4.40
    Cluster 2 10.00 90.00
    Total accuracy 92.80
    下载: 导出CSV

    Table 7.  Results of KMO and Bartlett's tests

    Kaiser-Meyer-Olkin measure of sampling adequacy 0.623
    Bartlett's Test of Sphericity Approx. Chi-Square 919.709
    df 45
    Sig. 0.000
    下载: 导出CSV

    Table 8.  Total variance explained with two principal components

    Component Initial eigenvalues Extraction sums of squared loadings Rotation sums of squared loadings
    Total Variance
    (%)
    Cumulative
    (%)
    Total Variance
    (%)
    Cumulative
    (%)
    Total Variance
    (%)
    Cumulative
    (%)
    1 7.960 79.600 79.600 7.960 79.600 79.600 5.839 58.393 58.393
    2 1.633 16.327 95.928 1.633 16.327 95.928 3.753 37.534 95.928
    3 0.284 2.837 98.765
    4 0.084 0.842 99.607
    5 0.010 0.253 99.860
    6 0.004 0.098 99.958
    7 0.017 0.035 99.993
    8 0.001 0.007 100.000
    9 2.774E-6 2.774E-5 100.000
    10 3.456E-9 3.456E-8 100.000
    Extraction method: Principal component analysis
    下载: 导出CSV

    Table 9.  Rotated component matrixa

    Component
    Variable 1 2
    EC (µmhos/cm) 0.828 0.559
    Cl- (ppm) 0.516 0.799
    TH (ppm as CaCO3) 0.943 0.329
    SAR 0.013 0.954
    K+ (ppm) 0.883 0.445
    Na+ (ppm) 0.339 0.932
    Mg2+ (ppm) 0.697 0.638
    Ca2+ (ppm) 0.976 0.008
    Cations (ppm) 0.851 0.525
    SO42- (ppm) 0.970 0.187
    Extraction method: Principal component analysis
    Rotation method: Varimax with Kaiser Normalizationa
    a. Rotation converged in 3 iterations.
    下载: 导出CSV

    Table 10.  Correlation matrixa of studied variables

    Variable EC Cl- TH SAR K+ Na+ Mg2+ Ca2+ Cations SO42-
    EC 1.000
    Cl- 0.878 1.000
    TH 0.966 0.757 1.000
    SAR 0.535 0.694 0.317 1.000
    K+ 0.978 0.787 0.977 0.462 1.000
    Na+ 0.798 0.903 0.622 0.908 0.713 1.000
    Mg2+ 0.946 0.908 0.879 0.542 0.883 0.804 1.000
    Ca2+ 0.804 0.490 0.917 0.068 0.875 0.354 0.616 1.000
    Cations 0.998 0.860 0.975 0.509 0.982 0.779 0.930 0.833 1.000
    SO42- 0.904 0.609 0.972 0.226 0.944 0.514 0.771 0.961 0.923 1.000
    a. Determinant = 1.87E-024
    下载: 导出CSV
  • Alavi M. 2004. Regional stratigraphy of the Zagros fold-thrust belt of Iran and its pro-foreland evolution. American Journal of Science, 304: 1-20. doi: 10.2475/ajs.304.1.1

    Amiri MJ, Bahrami M, Beigzadeh B, et al. 2018. A response surface methodology for optimization of 2, 4-dichlorophenoxyacetic acid removal from synthetic and drainage water: A comparative study. Environmental Science and Pollution Research, 25(34): 34277-34293. doi: 10.1007/s11356-018-3327-x

    Azhar SC, Aris AZ, Yusoff MK, et al. 2015. Classification of river water quality using multivariate analysis. Procedia Environmental Sciences, 30: 79-84. doi: 10.1016/j.proenv.2015.10.014

    Bagheri R, Bagheri F, Eggenkamp HGM. 2017. Origin of groundwater salinity in the Fasa Plain, southern Iran, hydrogeochemical and isotopic approaches. Environmental Earth Sciences, 76: 662. doi: 10.1007/s12665-017-6998-6

    Bahrami M, Amiri MJ, Beigzadeh B. 2018. Adsorption of 2, 4-dichlorophenoxyacetic acid using rice husk biochar, granular activated carbon, and multi-walled carbon nanotubes in a fixed bed column system. Water Science and Technology, 78(8): 1812-1821. doi: 10.2166/wst.2018.467

    Bahrami M, Brumand-Nasab S, Kashkooli HA, et al. 2013. Cadmium removal from aqueous solutions using modified magnetite nanoparticles. Iranian Journal of Health and Environment, 6(2): 221-232. http://www.researchgate.net/publication/313403189_Cadmium_removal_from_aqueous_solutions_using_modified_magnetite_nanoparticles

    Bahrami M, Zarei AR, Chakav S. 2017. Analysis of drought transitions using log-linear models in Iran. International Journal of Water, 11(3): 266-278. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=53a548b314951d9d6fa4ebe78702fb2a

    Bencer S, Boudoukha A, Mouni L. 2016. Multivariate statistical analysis of the ground-water of Ain Djacer area (Eastern of Algeria). Arabian Journal of Geosciences, 9(4): 1-10. http://link.springer.com/article/10.1007/s12517-015-2277-6

    Dehghani R, Mahvi AH, Rabani D, et al. 2015. Evaluation of chemical quality and salinity origin of groundwater in a semi aried area; Seyed Gholi region Saveh, Iran. Archives of Hygiene Sciences, 4(2): 100-108. http://jhygiene.muq.ac.ir/article-1-142-en.html

    Ebrahimzadeh S, Boustani F, Shakeri A. 2011. Groundwater quality assessment of the Zarghan Plain, Shiraz, Iran. 2nd International Conference on Environmental Science and Technology IPCBEE, 6. Singapore: IACSIT Press.

    El Alfy M, Faraj T. 2016. Spatial distribution and health risk assessment for groundwater contamination from intensive pesticide use in arid areas. Environmental Geochemistry and Health, 39: 231-253. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=a1c0d801ff212841c8abbf755852ea01

    El Alfy M, Lashin A, Abdalla F, et al. 2017. Assessing the hydrogeochemical processes affecting groundwater pollution in arid areas using an integration of geochemical equilibrium and multivariate statistical techniques. Environmental Pollution, 229: 760-770. doi: 10.1016/j.envpol.2017.05.052

    Freeze RA, Cherry JA. 1979. Groundwater. Newjersey: Prentice-Hall, inc: 604.

    Ghassemi Dehnavi A. 2018. Hydrochemical assessment of groundwater using statistical methods and ionic ratios in Aliguodarz, Lorestan, west of Iran. Journal of Advances in Environmental Health Research, 6: 193-201. http://cn.bing.com/academic/profile?id=66059a58629cb5afd206a8f45101e331&encoded=0&v=paper_preview&mkt=zh-cn

    Hardle W, Simar L. 2007. Applied multivariate statistical analysis, 2nd edn. Berlin: Springer.

    Helena B, Pardo R, Vega M, et al. 2000. Temporal evolution of groundwater composition in an alluvial aquifer (Pisuerga River, Spain) by principal component analysis. Water Research, 34(3): 807-816. http://www.cabdirect.org/abstracts/20001907737.html

    Hummel M, Edelmann D, Kopp-Schneider A. 2017. Clustering of samples and variables with mixed-type data. PLOS ONE, 12(11):e0188274. https://doi.org/10.1371/journal.pone.0188274 doi: 10.1371/journal.pone.0188274

    Institute of Standards and Industrial Research of Iran. 2009. Drinking water-physical and chemical specifications. ISIRI No. 1053, the 5th Revision. http://www.isiri.org/Portal/Home/Default.aspx?CategoryID=5f6bbf1b-ac23-4362-a309-9ee95a439628

    Lokhande PB, Patil VV, Mujawar HA. 2008. Multivariate statistical analysis of ground-water in the vicinity of Mahad industrial area of Konkan Region, India. International Journal of Applied Environmental Sciences, 3(2): 149-163. http://www.highbeam.com/doc/1G1-216041380.html

    Mahmood A, Muqbool W, Mumtaz MW, et al. 2011. Application of multivariate statistical techniques for the characterization of groundwater quality of Lahore, Gujranwala and Sialkot (Pakistan). Pakistan Journal of Analytical & Environmental Chemistry, 12(1): 102-112. http://www.oalib.com/paper/2093766

    Matiatos I, Alexopoulos A, Godelitsas A. 2014. Multivariate statistical analysis of the hydrogeochemical and isotopic composition of the groundwater resources in northeastern Peloponnesus (Greece). Science of the Total Environment: 476-477, 577-590. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dccb7a7f1a26b0a4426d481f6e8ccabb

    Matiatos I. 2016. Nitrate source identification in groundwater of multiple land-use areas by combining isotopes and multivariate statistical analysis: A case study of Asopos basin (Central Greece). Science of the Total Environment, 541: 802-814. doi: 10.1016/j.scitotenv.2015.09.134

    Matiatos I, Evelpidou N. 2013. Assessment of groundwater quality contamination by nitrate leaching using multivariate statistics and Geographic Information Systems. Understanding freshwater quality problems in a changing world, 361: 183-190. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=CC0214089213

    Matiatos I, Paraskevopoulou V, Botsou F, et al. 2016. Hydrogeochemical assessment of groundwater quality in a river delta using multivariate statistical techniques. EGU General Assembly Conference Abstracts, 18: 14568. http://adsabs.harvard.edu/doi/2016EGUGA..1814568M

    McKenna Jr JE. 2003. An enhanced cluster analysis program with bootstrap significance testing for ecological community analysis. Environmental Modelling and Software, 18(3): 205-220. doi: 10.1016/S1364-8152(02)00094-4

    Mozafarizadeh J, Sajadi Z. 2013. Investigation of saline water intrusion in the Borazjan freshwater aquifer from the Dalaki and Helleh rivers. Journal of Electromagnetic and Application, 6(16): 69-78. http://openurl.ebscohost.com/linksvc/linking.aspx?stitle=Journal%20of%20Electromagnetic%20Waves%20and%20Applications&volume=27&issue=18&spage=2298

    Noshadi M, Ghafourian A. 2016. Groundwater quality analysis using multivariate statistical techniques (Case study: Fars Province, Iran). Environmental Monitoring and Assessment, 188: 1-13. doi: 10.1007/s10661-015-4999-z

    Nosrati K, Van Den Eeckhaut M. 2012. Assessment of groundwater quality using multivariate statistical techniques in the Hashtgerd Plain, Iran. Environmental Earth Sciences, 65(1): 331-344. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=4e5c8d7399179d583e4877b20172da8f

    Pandit S, Gupta S. 2011. A comparative study on distance measuring approaches for clustering. International Journal of Computer Science, 2(1): 29-31. http://www.oalib.com/paper/2758894

    Rogerson PA. 2001. Statistical methods for geography. London: Sage Publications Ltd.

    Sarbu C, Pop HF. 2005. Principal component analysis versus fuzzy principal component analysis. A case study: The quality of Danube water (1985-1996). Talanta, 65: 1215-1220. http://cn.bing.com/academic/profile?id=b77299b2e3cdaae5fa7f659261ff8787&encoded=0&v=paper_preview&mkt=zh-cn

    Singh KP, Malik A, Sinha S. 2005. Water quality assessment and apportionment of pollution sources of Gomti River (India) using multivariate statistical techniques: A case study. Analytica Chimica Acta, 538(1-2): 355-374. doi: 10.1016/j.aca.2005.02.006

    Singh A, Yadav A, Rana A. 2013. K-means with three different distance metrics. International Journal of Computer Applications, 67(10): 13-17. doi: 10.5120/11430-6785

    Srivastava SK, Ramanathan AL. 2008. Geo-chemical assessment of groundwater quality in vicinity of Bhalswa landfill, Delhi, India, using graphical and multivariate statistical methods. Environmental Geology (Berlin), 53: 1509-1528. doi: 10.1007/s00254-007-0762-2

    US Salinity Laboratory Staff. 1954. Diagnosis and improvement of saline and alkali soils. Washington DC: US Department of Agriculture Handbook, 60: 160.

    Usman UN, Toriman ME, Juahir H, et al. 2014. Assessment of groundwater quality using multivariate statistical techniques in Terengganu. Science and Technology, 4(3):42-49. DOI: 10.5923/j.scit.20140403.02

    Witten DM, Tibshirani R. 2011. Penalized classification using Fisher's linear discriminant. Journal of the Royal Statistical Society, 73(5): 753-772. doi: 10.1111/j.1467-9868.2011.00783.x

    Yidana SM. 2010. Groundwater classification using multivariate statistical methods: Birimian Basin, Ghana. Journal of Environmental Engineering, 136(12): 1379-1388. doi: 10.1061/(ASCE)EE.1943-7870.0000291

    Zarei AR, Bahrami M. 2016. Evaluation of quality and quantity changes of undergroundwater in the Fasa Plain, Fars (2006-2013). Iranian Journal of Irrigation & Water Engineering, 6(24): 103-113. http://www.researchgate.net/publication/309291575_Evaluation_of_quality_and_quantity_changes_of_underground_water_in_Fasa_plain_Fars_2006_-_2013

  • 加载中

(6)

(10)

计量
  • 文章访问数:  2194
  • PDF下载数:  69
  • 施引文献:  0
出版历程
收稿日期:  2019-12-16
录用日期:  2020-03-22
刊出日期:  2020-09-25

目录