中国地质科学院水文地质环境地质研究所主办
Groundwater Science and Engineering Limited出版
CAO Yan-ling, SONG Liang, LIU Lian, ZHU Wen-feng, CUI Su, WANG Yan-ting, GUO Peng. 2020. Preliminary study on strontium-rich characteristics of shallow groundwater in Dingtao Area, China. Journal of Groundwater Science and Engineering, 8(3): 244-258. doi: 10.19637/j.cnki.2305-7068.2020.03.005
Citation: CAO Yan-ling, SONG Liang, LIU Lian, ZHU Wen-feng, CUI Su, WANG Yan-ting, GUO Peng. 2020. Preliminary study on strontium-rich characteristics of shallow groundwater in Dingtao Area, China. Journal of Groundwater Science and Engineering, 8(3): 244-258. doi: 10.19637/j.cnki.2305-7068.2020.03.005

Preliminary study on strontium-rich characteristics of shallow groundwater in Dingtao Area, China

More Information
  • 加载中
  • Figure 1. 

    Figure 2. 

    Figure 3. 

    Figure 4. 

    Figure 5. 

    Figure 6. 

    Figure 7. 

    Figure 8. 

    Figure 9. 

    Figure 10. 

    Figure 11. 

    Figure 12. 

    Figure 13. 

    Table 1.  Statistical analysis of test results of shallow groundwater in the study area

    Items Maximum value Minimum value Average value Standard deviation Variation coefficient(%)
    K+ 118.20 0.63 6.56 19.19 2.93
    Na+ 610.00 53.75 213.31 116.26 0.54
    Ca2+ 142.90 23.82 48.08 26.67 0.55
    Mg2+ 291.75 36.73 132.44 55.91 0.42
    NH4+ 60.00 0.04 3.66 12.61 3.44
    Fe 0.16 0.00 0.02 0.04 2.44
    Al3+ 0.05 0.05 0.05 / /
    Cl- 790.47 47.50 266.06 174.67 0.66
    SO42- 443.61 32.62 191.91 119.57 0.62
    HCO3- 949.22 316.41 589.32 157.32 0.27
    CO32- 103.74 0.00 40.57 28.03 0.69
    F- 2.60 0.20 1.12 0.44 0.39
    Br- 0.10 0.10 0.10 / /
    B- 0.57 0.21 0.37 0.10 0.26
    NO2- 9.00 0.02 0.70 1.55 2.21
    NO3- 10.95 0.30 0.77 1.65 2.14
    HPO42- 8.76 0.00 1.63 1.67 1.02
    Total 2 163.04 571.47 1 077.29 391.81 0.36
    Total hardness 1 469.92 210.72 665.44 269.47 0.40
    Permanent hardness 920.03 0.00 161.22 210.05 1.30
    Temporary hardness 840.28 210.72 504.22 131.74 0.26
    Negative hardness 147.64 0.00 14.94 38.43 2.57
    Total alkalinity 840.28 302.75 519.15 121.07 0.23
    Strontium (Sr) 5.14 0.71 2.40 0.88 0.37
    Lithium (Li) 0.07 0.01 0.03 0.01 0.38
    Barium (Ba) 0.67 0.01 0.10 0.14 1.38
    Manganese (Mn) 2.32 0.01 0.51 0.75 1.47
    Intracellular free CO2 2.10 2.10 2.10 / /
    COD 102.84 0.62 15.62 16.88 1.08
    H2SiO3 29.12 5.19 18.70 3.95 0.21
    SiO2 22.40 3.99 14.38 3.04 0.21
    PH 8.73 7.15 7.74 0.29 0.04
    Salinity 3 057.69 753.64 1 510.40 562.90 0.37
    Solids 2 594.38 535.17 1 215.74 506.30 0.42
    下载: 导出CSV

    Table 2.  Correlation coefficient matrix of main chemical elements of groundwater in the study area (n=40)

    Number K+ Na+ Ca2+ Mg2+ NH4+ Fe Cl- SO42- HCO3- CO32- NO3- Total hardness Sr Li Ba H2SiO3 pH Salinity Solids
    K+ 1.000 -0.099 0.194 -0.157 0.126 0.513 -0.045 -0.059 0.040 -0.144 0.947 -0.087 -0.154 0.635 -0.146 0.462 -0.008 -0.007 -0.014
    Na+ 1.000 0.392 0.632 0.391 0.308 0.789 0.823 0.668 0.044 -0.178 0.637 0.526 0.288 -0.109 -0.043 -0.356 0.902 0.899
    Ca2+ 1.000 0.495 0.676 0.614 0.697 0.625 0.250 0.009 0.114 0.670 0.692 0.066 -0.164 -0.006 -0.423 0.621 0.651
    Mg2+ 1.000 0.089 -0.007 0.889 0.791 0.580 -0.054 -0.172 0.977 0.884 0.088 -0.024 -0.109 -0.449 0.853 0.858
    NH4+ 1.000 0.892 0.361 0.341 0.431 0.051 -0.034 0.244 0.322 0.006 -0.081 0.040 -0.276 0.459 0.443
    Fe 1.000 0.276 0.291 0.263 -0.031 0.259 0.146 0.220 -0.036 -0.102 -0.068 -0.243 0.339 0.335
    Cl- 1.000 0.858 0.544 -0.038 -0.070 0.932 0.848 0.166 -0.028 -0.090 -0.464 0.934 0.954
    SO42- 1.000 0.475 0.050 -0.142 0.831 0.719 0.174 -0.106 -0.154 -0.341 0.898 0.924
    HCO3- 1.000 -0.323 -0.091 0.557 0.483 0.223 -0.103 0.162 -0.599 0.753 0.682
    CO32- 1.000 -0.109 -0.044 0.043 -0.027 0.029 -0.174 0.606 -0.042 0.003
    NO3- 1.000 -0.118 -0.154 0.545 -0.089 0.441 0.044 -0.095 -0.091
    Tota hardness 1.000 0.926 0.092 -0.061 -0.094 -0.488 0.882 0.894
    Sr 1.000 -0.068 -0.053 -0.187 -0.427 0.784 0.797
    Li 1.000 -0.236 0.599 -0.055 0.247 0.240
    Ba 1.000 -0.080 0.012 -0.099 -0.095
    H2SiO3 1.000 -0.263 -0.022 -0.049
    pH 1.000 -0.500 -0.463
    Salinity 1.000 0.995
    下载: 导出CSV

    Table 3.  Matrix of significant differences of major chemical elements of groundwater in the study area (n=40)

    Number Na+ Ca2+ Mg2+ NH4+ Fe Cl- SO42- HCO3- CO32- NO3- Total hardness Sr Li Ba H2SiO3 pH Salinity Solids
    K+ 0.000 0.000 0.000 0.428 0.037 0.000 0.000 0.000 0.000 0.061 0.000 0.175 0.035 0.037 0.000 0.697 0.000 0.000
    Na+ 0.000 0.000 0.000 0.000 0.116 0.419 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
    Ca2+ 0.000 0.000 0.000 0.000 0.000 0.000 0.223 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
    Mg2+ 0.000 0.000 0.000 0.006 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
    NH4+ 0.075 0.000 0.000 0.000 0.000 0.155 0.000 0.528 0.072 0.078 0.000 0.044 0.000 0.000
    Fe 0.000 0.000 0.000 0.000 0.006 0.000 0.000 0.074 0.001 0.000 0.000 0.000 0.000
    Cl- 0.030 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
    SO42- 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
    HCO3- 0.000 0.000 0.127 0.000 0.000 0.000 0.000 0.000 0.000 0.000
    CO32- 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
    NO3- 0.000 0.000 0.006 0.013 0.000 0.000 0.000 0.000
    Total hardness 0.000 0.000 0.000 0.000 0.000 0.000 0.000
    Sr 0.000 0.000 0.000 0.000 0.000 0.000
    Li 0.002 0.000 0.000 0.000 0.000
    Ba 0.000 0.000 0.000 0.000
    H2SiO3 0.000 0.000 0.000
    pH 0.000 0.000
    Salinity 0.016
    下载: 导出CSV

    Table 4.  Statistical table of strontium content in groundwater and shallow soil at the same sampling site

    Number Ground-water Sr (mg/L) Shallow soil Sr (mg/L) Number Ground-water Sr (mg/L) Shallow soil Sr (mg/L) Number Groundwater Sr (mg/L) Shallow soil Sr (mg/L)
    DQ01 3.44 208.60 DQ14 2.75 263.70 DQ28 3.25 250.20
    DQ02 2.09 214.60 DQ15 0.71 192.80 DQ29 1.71 234.52
    DQ03 2.91 248.10 DQ17 1.27 244.30 DQ30 1.97 184.80
    DQ04 2.18 222.42 DQ18 4.73 268.10 DQ31 2.11 205.17
    DQ05 2.06 230.20 DQ19 1.85 190.50 DQ32 1.81 207.79
    DQ06 2.52 227.78 DQ20 1.89 215.40 DQ33 3.09 173.20
    DQ07 1.96 267.80 DQ21 2.74 194.40 DQ34 2.77 235.40
    DQ08 3.31 204.00 DQ22 1.92 252.90 DQ35 1.95 242.00
    DQ09 2.14 217.27 DQ23 1.58 245.70 DQ36 2.30 216.50
    DQ10 5.14 230.50 DQ24 2.19 229.80 DQ37 1.73 219.14
    DQ11 3.25 200.60 DQ25 2.58 183.10 DQ38 1.73 217.20
    DQ12 3.74 196.50 DQ26 2.75 252.20 DQ39 2.53 189.37
    DQ13 2.66 209.65 DQ27 1.23 205.10 DQ40 1.72 199.10
    下载: 导出CSV

    Table 5.  Statistical table of strontium content in groundwater, shallow soil, and deep soil at the same sampling site

    Number Groundwater Sr (mg/L) Shallow soil Sr (mg/L) Deep soil Sr (mg/L) Number Groundwater Sr (mg/L) Shallow soil Sr (mg/L) Deep soil Sr (mg/L)
    DQ03 2.91 248.10 208.58 DQ19 1.85 190.50 208.10
    DQ04 2.18 222.42 253.44 DQ20 1.89 215.40 218.90
    DQ06 2.52 227.78 253.43 DQ21 2.74 194.40 217.10
    DQ08 3.31 204.00 193.10 DQ24 2.19 229.80 217.11
    DQ11 3.25 200.60 212.40 DQ30 1.97 184.80 243.90
    DQ12 3.74 196.50 220.50 DQ34 2.77 235.40 212.10
    DQ13 2.66 209.65 213.76 DQ39 2.53 189.37 254.28
    DQ15 0.71 192.80 215.60
    下载: 导出CSV
  • Badger CW, Cummings AD, Whitmore RL. 1956. The disintegration of shales in water. Journal of the Institute of Fuel, 29(3): 417-423. https://www.researchgate.net/publication/284055878_The_disintegration_of_shales_in_water

    FAN Wei, YANG Yue-suo, YE Xue-yan, et al. 2010. Hydrogeochemical and environmental characteristics of strontium-enrichment in groundwater and its genesis in Qingken Lake Area. Journal of Jilin University (Earth Science Edition), 40(2): 349-355, 367. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=cckjdxxb201002017

    Feth JH, Gibbs RJ. 1971. Mechanisms controlling world water chemistry: Evaporation-crystallization process. Science, 172: 870-872. doi: 10.1126/science.172.3985.870

    Hale PA. 2003. A laboratory investigation of the effects of cyclic heating and cooling, wetting and drying and freezing and thawing on the compressive strength of selected sandstones. Environmental & Engineering Geoscience, 9(2): 117-130. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=bb3821aecadb4d4347aa3b6f18d2b9f0

    HONG Tao, XIE Yun-qiu, YU Qi-wen, et al. 2016. Hydrochemical characteristics study and genetic analysis of groundwater in a key region of the Wumeng Mountain, Southwestern China. Earth and Environment, 44(1):11-18. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dzdqhx201601002

    HU Jin-wu, WANG Zeng-yin, ZHOU Lian, et al. 2004. Hydrogeochemical characteristics of the strontium in karst water. Carsologica Sinica, 23(1): 38-43. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=zgyr200401007

    KILHAM P. 1990. Mechanisms controlling the chemical composition of lakes and rivers: Data from Africa. Limnology & Oceanography, 35(1): 80-83. doi: 10.4319/lo.1990.35.1.0080

    LEI Kun, HE Shou-yang, AN Yan-ling. 2016. Hydrogochemical characteristics of thermal spring group in typical karst region. Journal of University of Chinese Academy of Sciences, 33(3): 403-411. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=zgkxyyjsyxb201603018

    LI Bing-hua, CUI Xue-hui, ZHU Ya-lei, et al. 2012. Hydrochemical characteristics and change of groundwater in Chaoyang District of Beijing City. Water Resources Protection, 28(5): 7-12. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=szybh201205002

    LIN ML, Jeng FS, Tsai LS, et al. 2005. Wetting weakening of tertiary sandstones-microscopic mechanism. Environmental Geology, 48 (2): 265-275. http://cn.bing.com/academic/profile?id=78cfe5b3152b057f120e442a10ea270c&encoded=0&v=paper_preview&mkt=zh-cn

    LIU Qing-xuan, WANG Gui-ling, ZHANG Fa-wang. 2004. Geochemical environment of trace element strontium (Sr) enriched in mineral waters. Hydrogeology and Engineering Geology, (6):19-23. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=swdzgcdz200406004

    MEI Hui-cheng, LI Zhong-she, CAI Liang. 2013. Geological features and causes and causes of the Huihuang geotherm in Xiushui, Jiangxi. Journal of Geological Hazards and Environment Preservation, 24(2): 49-53. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dzzhyhjbh201302010

    NEGREL. 1999. Geochemical study of a granitic area-the Margeride Mountains, France: Chemical element behavior and 87Sr/86Sr constraints. Aquatic Geochemistry, 5(2): 125-165.

    PANG Xu-gui, ZHAN Jin-cheng, WANG Cun-long, et al. 2016. Multi-objective regional geochemical survey report in Lower Yellow River Basin, Shandong Province. Jinan: Shandong Geological Survey Institute: 327-329.

    Prick A. 1995. Dilatometrical behaviour of porous calcareous rock samples subjected to freeze-thaw cycles. Catena, 25(1-4): 7-20. doi: 10.1016/0341-8162(94)00038-G

    SU Chun-tian, NIE Fa-yun, ZOU Sheng-zhang, et al. 2018. Hydrochemical characteristics and formation mechanism of strontium-rich groundwater in Xintian County, Hunan Province. Geoscience, 32(3): 554-564. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=xddz201803013

    SUN Hou-yun, WEI Xiao-feng, GAN Feng-wei, et al. 2020. Genetic type and formation mechanism of strontium-rich groundwater in the upper and middle reaches of Luanhe River Basin. Acta Geoscientica Sinica, (1): 65-79. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dqxb202001005

    WAN Li-qin, XU Hui-zhen, YIN Xiu-lan, et al. 2008. Formation of hydrochemistry components of karst groundwater in Jinan. Hydrogeology & Engineering Geology, (3): 61-64. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=swdzgcdz200803016

    WAN Ying, CHEN Rong, FENG Zhi-qiang, et al. 2014. Effect of Sr-rich mineral water on serum indexes of rats. Chinese Journal of Food Hygiene, 26(2): 133-136. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=zgspwszz201402007

    WANG Shi-yang, LU Tian-pi. 2018. Discussion of Sr-rich groundwater occurrence and its distribution rule of Guizhou Province. Guizhou Geology, 35(3): 225-232. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=gzdz201803009

    WANG Rui, BIAN Jian-min, ZHANG Zhen-zhen, et al. 2014. Research on groundwater chemical characteristics and pollution situation of Harbin Region in Songnen Plain. Journal of Jilin Agricultural University, 36(6): 690-696. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=jlnydxxb201406011

    WU Li-xin. 2014. Study on occurrence conditions and the formation mechanism of drinking natural mineral water in Zichuan District of Zibo City. Shandong Land and Resources, 30(6): 41-44. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=sddz201406010

    XU Jian-hua. 2002. Mathematical methods in modern geography. Beijing: Higher Education Press: 30-35.

    YU Yong-ting, LI Xiao, GUO Shuang, et al. 2008. Geo-chemical characteristic and reasoning analysis of hot spring water in Longling Area in Yunnan Province. Guangdong Trace Elements Science, 15(2): 39-46. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=gdwlyskx200802006

    ZHANG Guang-xin, DENG Wei, HE Yan, et al. 2006. Hydrochemical characteristics and evolution laws of groundwater in Songnen Plain, Northeast China. Advances in Water Science, 17(1): 20-28. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=skxjz200601004

    ZHANG Qun-li, GUO Hui-rong, WU Kong-jun, et al. 2011. Characteristics and in-dication of hydrogeochemisty for the karst groundwater system in the Xinggong coal field. Hydrogeology & Engineering Geology, 38(2): 1-7. doi: 10.1007/s12182-011-0118-0

    ZHAO Guang-tao, LI Yu-ying, Cao Qin-chen, et al. 1998. Chemical characteristics and the formation mechanism of the mineral water in the northwest Laoshan Mountain Area. Journal of Ocean University of Qingdao, 28(1): 135-141. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=QK199800454826

  • 加载中

(13)

(5)

计量
  • 文章访问数:  4118
  • PDF下载数:  104
  • 施引文献:  0
出版历程
收稿日期:  2020-03-02
录用日期:  2020-05-10
刊出日期:  2020-09-25

目录