中国地质科学院水文地质环境地质研究所主办
Groundwater Science and Engineering Limited出版
Juandi Muhammad, Nur Islami. 2021. Prediction criteria for groundwater potential zones in Kemuning District, Indonesia using the integration of geoelectrical and physical parameters. Journal of Groundwater Science and Engineering, 9(1): 12-19. doi: 10.19637/j.cnki.2305-7068.2021.01.002
Citation: Juandi Muhammad, Nur Islami. 2021. Prediction criteria for groundwater potential zones in Kemuning District, Indonesia using the integration of geoelectrical and physical parameters. Journal of Groundwater Science and Engineering, 9(1): 12-19. doi: 10.19637/j.cnki.2305-7068.2021.01.002

Prediction criteria for groundwater potential zones in Kemuning District, Indonesia using the integration of geoelectrical and physical parameters

More Information
  • 加载中
  • Figure 1. 

    Figure 2. 

    Figure 3. 

    Figure 4. 

    Figure 5. 

    Figure 6. 

    Table 1.  Coordinates of 12 measuring points in Kemuning

    No. Location Latitude Longitude
    1 Kerintang 00°51'35.81'' S 102°39'21.29'' E
    2 Sekara 00°52'05.90'' S 102°44'41.30'' E
    3 Kemuning Tua 00°54'14.23'' S 102°47'19.03'' E
    4 Air Balui 00°53'46.67'' S 102°45'47.70'' E
    5 Batu Ampar 00°58'20.49'' S 102°42'40.49'' E
    6 Selensen 00°58'23.70'' S 102°45'22.74'' E
    7 Tuk Jimun 00°54'52.46''S 102°48'02.06'' E
    8 Kemuning Muda 00°53'48.90'' S 102°49'27.67'' E
    9 Lubuk Besar 00°52'45.62'' S 102°50'05.44'' E
    10 Talang Jangkang 00°51'20.83'' S 102°49'24.84'' E
    11 Limau Manis 00°52'19.67'' S 102°48'24.63'' E
    12 Sekayan 00°51'15.26'' S 102°41'03.11'' E
    下载: 导出CSV

    Table 2.  Criteria of groundwater potential at Sekara and Kemuning Muda

    Resistivity (Ωm) Type of layer Depth (m) Thickness (m) Location Potential criteria
    145.59 Sand and pebble with enough water 6.88~14.29 7.41 Sekara at Layer 2 Medium
    112.47 Sand and pebble with abundant water 73.18~110 36.82 Sekara at Layer 5 Large
    70.79 Sand and pebble with enough water 6.20~17.31 11.11 Kemuning Muda at Layer 2 Medium
    153.79 Sand and pebble with abundant water 63.38~96 32.62 Kemuning Muda at Layer 5 Large
    下载: 导出CSV

    Table 3.  Characteristics of hydraulic properties in Kemuning

    Location Porosity (%) Description of soil porosity Hydraulic conductivity (cm/h) Ability to conduct water
    Kerintang 55.75 Good 4.91 Medium
    Sekara 54.10 Good 4.21 Medium
    Kemuning Tua 61.00 Porosity 6.76 Fairly fast
    Air Balui 65.22 Porosity 7.63 Fairly fast
    Batu Ampar 37.25 Bad 2.31 Medium
    Selensen 33.51 Bad 2.10 Medium
    Tuk Jimun 71.00 Porosity 9.95 Fairly fast
    Kemuning Muda 51.19 Good 3.52 Medium
    Lubuk Besar 76.25 Porosity 12.77 Fairly fast
    Talang Jangkang 42.10 Porosity 2.70 Medium
    Limau Manis 50.72 Good 3.34 Medium
    Sekayan 35.75 Bad 2.12 Medium
    下载: 导出CSV
  • Alley WM, Healy RW, LaBaugh JW, et al. 2002. Flow and storage in groundwater systems. Science, 296: 1985-1990. doi: 10.1126/science.1067123

    Bechte TD, Nico G. 2017. Geoelectrical finger-printing of two contrasting ecohydrological peatland types in the Alps. Wetlands, 37: 875-884. doi: 10.1007/s13157-017-0921-5

    Heriyanto H, Karya D, Choanji T, et al. 2019. Regression model in transitional geological environment for calculation farming and production of oil palm dominant factor in Indragiri Hilir Riau Province. Journal of Geoscience, Engineering, Environment and Technology, 4(1): 56-65. doi: 10.25299/jgeet.2019.4.1.2600

    Islami N, Taib S, Yusoff I, et al. 2011. Time lapse chemical fertilizer monitoring in agri-culture sandy soil. International Journal of Environmental Scince Technology, 8: 765-780. doi: 10.1007/BF03326260

    Juandi M, Syahril S. 2017. Empirical relationship between soil permeability and resistivity, and its application for determining the ground-water gross recharge in Marpoyan Damai, Pekanbaru, Indonesia. Water Practice and Technology, 12(3): 660-666. doi: 10.2166/wpt.2017.069

    Juandi M, Surbakti A, Syech R, et al. 2017. Poten-tial of aquifers for groundwater exploitation using Cooper-Jacob Equation. Journal of Environmental Science and Technology, 10: 215-219. doi: 10.3923/jest.2017.215.219

    Juandi M. 2019. Study of groundwater in the rock area using geoelectric survey. Journal of Ph-ysics Conference Series, 1351: 012010. doi: 10.1088/1742-6596/1351/1/012010

    Juandi M. 2020. Water sustainability model for estimation of groundwater availability in Kemuning district, Riau-Indonesia. Journal of Groundwater Science and Engineering, 8(1): 20-29. http://gwse.iheg.org.cn/en/article/doi/10.19637/j.cnki.2305-7068.2020.01.003

    Krüger JP, Dotterweich M, Kopf C, et al. 2017. Carbon balance of rewetted peatland forests in low mountain range areas, Germany. Pro-ceedings of EGU General Assembly Vienna, Austria, 3212, April 23-28.

    Lenkey L, Hámori Z, Mihálffy P. 2005. Investiga-ting the hydrogeology of a water-supply area using direct-current vertical electrical sound-ings. Geophysics, 70(4): 11-19. http://scitation.aip.org/getabs/servlet/GetabsServlet?prog=normal&id=GPYSA7000070000004000H11000001&idtype=cvips&prog=normal

    Loke MH, Chambers JE, Rucker DF, et al. 2013. Recent developments in the direct-current geoelectrical imaging method. Journal of Applied Geophysics, 95: 135-156. doi: 10.1016/j.jappgeo.2013.02.017

    LU Chuan, LI Long, LIU Yan-guang, et al. 2014. Capillary pressure and relative permeability model uncertainties in simulations of geological CO2 sequestration. Journal of Groundwater Science and Engineering, 2(2): 1-17. http://gwse.iheg.org.cn/en/article/id/120

    Muhammad J. 2020. Peat water purification by hybrid of slow sand filtration and coagulant treatment. Journal of Environmental Science and Technology, 13(1): 22-28. http://www.researchgate.net/publication/338647775_Peat_Water_Purification_by_Hybrid_of_Slow_Sand_Filtration_and_Coagulant_Treatment

    Powlson DS, Whitmore AP, Goulding KW. 2011. Soil carbon sequestration to mitigate climate change: A critical reexamination to identify the true and the false. European Journal of Soil Science, 62(1): 42-55. doi: 10.1111/j.1365-2389.2010.01342.x

    Revil A, Karaoulis M, Johnson T, et al. 2012. Review: Some low-frequency electrical me-thods for subsurface characterization and monitoring in hydrogeology. Hydrogeology Journal, 20: 617-658. doi: 10.1007/s10040-011-0819-x

    Sheriff RE. 2002. Encyclopedic dictionary of applied geophysics, 4th edition. Society of Exploration Geophysicists, Tulsa, Oklahoma, USA: 30-34.

    Silliman SE, Borum BI, Boukari M, et al. 2010. Issues of sustainability of coastal groundwater resources: Benin, West Africa. Sustainability, 2(8): 2652-2675. doi: 10.3390/su2082652

    Sultan SA, Santos FAM. 2008. Evaluating sub-surface structures and stratigraphic units using 2D electrical and magnetic data at the area North Greater Cairo, Egypt, International Journal Applied Earth Observation and Geoinformation, 10: 56-67.

    Telford WM, Geldart LP, Sheriff RE. 1991. Aplied Geophysic, 2nd Edition. New York: Cambridge University Press: 283-290.

    Udmale P, Shrestha S, Ichikawa Y, et al. 2014. Assessing groundwater resource and its sus-tainability in drought prone area of India. Journal of Japan Society of Civil Engineers, Ser. B1 (Hydraulic Engineering), 58: 235-240. http://www.jstage.jst.go.jp/article/jscejhe/70/4/70_40/_article

    Wada Y, Wisser D, Bierkens MFP. 2014. Global modeling of withdrawal, allocation and con-sumptive use of surface water and ground-water resources. Earth System Dynamics, 5: 15-40. doi: 10.5194/esd-5-15-2014

    Wagner B, Tarnawski VR, Hennings V, et al. 2001. Evaluation of pedo-transfer functions for unsaturated soil hydraulic conductivity using an independent data set. Geoderma, 102(3-4): 275-297. doi: 10.1016/S0016-7061(01)00037-4

  • 加载中

(6)

(3)

计量
  • 文章访问数:  1771
  • PDF下载数:  45
  • 施引文献:  0
出版历程
收稿日期:  2020-06-22
录用日期:  2020-08-18
刊出日期:  2021-03-15

目录