中国地质科学院水文地质环境地质研究所主办
Groundwater Science and Engineering Limited出版

Ma Xin, Wen Dong-guang, Yang Guo-dong, Li Xu-feng, Diao Yu-jie, Dong Hai-hai, Cao Wei, Yin Shu-guo, Zhang Yan-mei. 2021. Potential assessment of CO2 geological storage based on injection scenario simulation: A case study in eastern Junggar Basin. Journal of Groundwater Science and Engineering, 9(4): 279-291. doi: 10.19637/j.cnki.2305-7068.2021.04.002
Citation: Ma Xin, Wen Dong-guang, Yang Guo-dong, Li Xu-feng, Diao Yu-jie, Dong Hai-hai, Cao Wei, Yin Shu-guo, Zhang Yan-mei. 2021. Potential assessment of CO2 geological storage based on injection scenario simulation: A case study in eastern Junggar Basin. Journal of Groundwater Science and Engineering, 9(4): 279-291. doi: 10.19637/j.cnki.2305-7068.2021.04.002

Potential assessment of CO2 geological storage based on injection scenario simulation: A case study in eastern Junggar Basin

More Information
  • 加载中
  • Figure 1. 

    Figure 2. 

    Figure 3. 

    Figure 4. 

    Figure 5. 

    Figure 6. 

    Figure 7. 

    Figure 8. 

    Figure 9. 

    Figure 10. 

    Figure 11. 

    Figure 12. 

    Figure 13. 

    Figure 14. 

    Figure 15. 

    Table 1.  Recommended values for $ {E_{{\text{saline}}}} $ (DOE-NETL, 2010; Bachu, 2015)

    LithologyP10/%P50/%P90/%
    Clasolite1.22.44.1
    Dolomite2.02.73.6
    Limestone1.32.02.8
    下载: 导出CSV

    Table 2.  CO2 sequestration capacity based on static modelling result

    P10P50P90
    Total volume of rocks(m3)3.255 1×10103.255 1×10103.255 1×1010
    Storage volume (m3)4.327×1094.327×1094.327×109
    Formation temperature (℃)666666
    Formation pressure (MPa)20.620.620.6
    CO2 density (kg/m3)693693693
    Storage capacity (million tons)35.9871.97122.94
    下载: 导出CSV

    Table 3.  The total amount of CO2 injection and its occurrence forms

    CO2 Storage Amounts in ReservoirCaseMillion tonsPercentage/%
    Total injectionCase184.414100.00
    Supercritical gas73.23486.76
    Residual trapping gas19.81323.47
    Dissolved gas in water11.18013.24
    Total trapping gas31.06336.71
    Total injectionCase 284.414100.00
    Supercritical gas68.43781.07
    Residual trapping gas22.06326.14
    Dissolved gas in water15.97718.93
    Total trapping gas38.07745.07
    Notes:The proportions of CO2 in different phases to the total injection volume in the saline aquifer are given in the table. In both scenarios, the total amount of CO2 injection is the same, and total trapping gas mainly consists of residual trapping gas + dissolved gas in saline water. The proportion of total trapping gas in Case 1 is 8.36% lower than that in Case 2, which is equivalent to 7.057 million tons of CO2. The injection mode of Case 2 has more advantages in this regard, but the storage capacity of the two scenarios is the same.
    下载: 导出CSV

    Table 4.  Maximum dynamic storage potential of CO2 in Case 1 and Case 2

    CaseTotal injection/Million tonsInjection duration/yrStorage efficiency/%
    Case1135.919814.5
    Case2145.295954.9
    下载: 导出CSV
  • [1]

    Bachu S. 2015. Review of CO2 storage efficiency in deep saline aquifers. International Journal of Greenhouse Gas Control, 40: 188-202. doi: 10.1016/j.ijggc.2015.01.007

    [2]

    Bachu S, Adams JJ. 2003. Sequestration of CO2 in geological media in response to climate change: Capacity of deep saline aquifers to sequester CO2 in solution. Energy Conversion and Management, 44(20): 3151-3175. doi: 10.1016/S0196-8904(03)00101-8

    [3]

    Bachu S, Bonijoly D, Bradshaw J, et al. 2007. CO2 storage capacity estimation: Methodology and gaps. International Journal of Greenhouse Gas Control, 1(4): 430-443. doi: 10.1016/S1750-5836(07)00086-2

    [4]

    CSLF(Carbon Sequestration Leadership Forum). 2005. “Phase I Final report from the task force for review and identification of standards for CO2 storage capacity measurement, prepared by the task force on CO2 storage capacity estimation for the technical group of the Carbon Sequestration Leadership Form August”. Technology Report: edition 22.

    [5]

    CSLF(Carbon Sequestration Leadership Forum), 2007. “Estimation of CO2 storage capacity in geological media (Phase), Prepared by the task force on CO2 storage capacity estimation for the technical group of the Carbon Sequestration Leadership Form 15 June ”. Technology Report: edition 24.

    [6]

    CSLF (Carbon Sequestration Leadership Forum), 2010. Task Force for Review and Identification of Standards for CO2 Storage Capacity Estimation.

    [7]

    De Silva PNK, Ranjith PG. 2012. A study of methodologies for CO2 storage capacity estimation of saline aquifers. Fuel, 93: 13-27. doi: 10.1016/j.fuel.2011.07.004

    [8]

    Diao YJ, Zhu GW, Cao H, et al. 2017. Mesoscale assessment of CO2 storage potential and geological suitability for target area selection in the Sichuan Basin. Geofluids, 2017(1): 1-17. doi: 10.1155/2017/9587872

    [9]

    DOE-NETL. 2006. Carbon Sequestration Atlas of the United States and Canada.

    [10]

    DOE-NETL. 2008. Carbon Sequestration Atlas of the United States and Canada, 2nd edition.

    [11]

    DOE-NETL. 2010. Carbon Sequestration Atlas of the United State and Canada, 3rd edition.

    [12]

    Flett M, Gurton R, Weir G. 2007. Heterogeneous saline formations for carbon dioxide disposal: Impact of varying heterogeneity on containment and trapping. Journal of Petroleum Science and Engineering, 57(1-2): 106-118. doi: 10.1016/j.petrol.2006.08.016

    [13]

    GCCSI. THE GLOBAL STATUS OF CCS. 2016. Available on https://www.globalccsinstitute.com/ resources/publications-reports-research/the-global-status-of-ccs-2016-summary-report/.

    [14]

    Goodman A, Hakala A, Bromhal G, et al. 2011. US DOE methodology for the development of geologic storage potential for carbon dioxide at the national and regional scale. International Journal of Greenhouse Gas Control, 5(4): 952-965. doi: 10.1016/j.ijggc.2011.03.010

    [15]

    Guo JQ, Wen DG, Zhang SQ, et al. 2015. Potential and suitability evaluation of CO2 geological storage in major sedimentary basins of China. Acta Geological Sinica (English Edition), 89(4): 1319-1332. doi: 10.1111/1755-6724.12531

    [16]

    He K, Zhu YS, Wang Z, et al. 2002. The Reservoir -Forming Conditions and Analyses of CretaceousExploration Prospect in the East of Junggar Basin. Journal of Xinjiang Petroleum Institute, 14(2): 6-9, 80. (in Chinese) doi: 10.3969/j.issn.1673-2677.2002.02.002

    [17]

    IPCC. 2005. Special Report on Carbon Dioxide Capture and Storage.

    [18]

    Jin C, Liu LT, Li YM, et al. Capacity assessment of CO2 storage in deep saline aquifers by mineral trapping and the implications for Songliao Basin, Northeast China. Energy Science & Engineering, 2017, 5(2): 81-89.

    [19]

    Lee H, Seo J, Lee Y, et al. 2016. Regional CO2 solubility trapping potential of a deep saline aquifer in Pohang basin, Korea. Geosciences Journal, 20(4): 561-568. doi: 10.1007/s12303-015-0068-4

    [20]

    Li PC, Zhou D, Zhang CM, et al. 2015. Assessment of the effective CO2, storage capacity in the Beibuwan Basin, offshore of southwestern PR China. International Journal of Greenhouse Gas Control, 37: 325-339. doi: 10.1016/j.ijggc.2015.03.033

    [21]

    Li Q, Chen ZA, Zhang JT, et al. 2016. Positioning and revision of CCUS technology development in China. International Journal of Greenhouse Gas Control, 46: 282-293. doi: 10.1016/j.ijggc.2015.02.024

    [22]

    Li Q, Wei YN, Liu G, et al. 2015. CO2-EWR: A cleaner solution for coal chemical industry in China. Journal of Cleaner Production, 103: 330-337. doi: 10.1016/j.jclepro.2014.09.073

    [23]

    Li Q, Wei YN, Liu GZ, et al. 2014. Combination of CO2 geological storage with deep saline water recovery in western China: Insights from numerical analyses. Applied Energy, 116: 101-110. doi: 10.1016/j.apenergy.2013.11.050

    [24]

    Li XC, Liu YF, Bai BF, et al. 2006. Ranking and screening of CO2 saline aquifer storage zones in China. Chinese Journal of Rock Mechanics and Engineering, 25(5): 963-968. (in Chinese) doi: 10.3321/j.issn:1000-6915.2006.05.015

    [25]

    Liu DQ, Li YL, Song SY, et al. 2016. Simulation and analysis of lithology heterogeneity on CO2 geological sequestration in deep saline aquifer: A case study of the Ordos Basin. Environmental Earth Sciences, 75(11): 1-13. doi: 10.1007/s12665-016-5754-7

    [26]

    Ma X, Li XF, Yang GD, et al. 2018. Study on Field-scale of CO2 Geological Storage Combined with Saline Water Recovery: A Case Study of East Junggar Basin of Xinjiang. Energy Procedia, 154: 36-41. doi: 10.1016/j.egypro.2018.11.007

    [27]

    Mi ZX, Wang FG, Yang YZ, et al. 2018. Evaluation of the potentiality and suitability for CO2 geological storage in the Junggar Basin, northwestern China. International Journal of Greenhouse Gas Control. 78: 62-72.

    [28]

    Oh J, Kim K Y, Han WS, et al. 2013. Experimental and numerical study on supercritical CO2/brine transport in a fractured rock: Implications of mass transfer, capillary pressure and storage capacity. Advances in Water Resources, 62(12): 442-453. doi: 10.1016/j.advwatres.2013.03.007

    [29]

    Thomas MW, Stewart M, Trotz M, et al. 2012. Geochemical modeling of CO2, sequestration in deep, saline, dolomitic-limestone aquifers: Critical evaluation of thermodynamic sub-models. Chemical Geology, 306-307: 29-39. doi: 10.1016/j.chemgeo.2012.02.019

    [30]

    Wang Y, Guo CH, Zhuang SR , et al. 2021. Major contribution to carbon neutrality by China’s geosciences and geological technologies. China Geology, 4: 329-352. doi: 10.31035/cg2021037

    [31]

    Wen DG, Ma X, Wang LQ, et al. 2019. Combined study of static and dynamic reservoir modelling for the CO2 storage project in deep saline aquifer in Zhundong, Xinjiang, China. In 14th Greenhouse Gas Control Technologies Conference Melbourne 21-26 October 2018 (GHGT-14). Melbourne. Social Science Electronic Publishing.

    [32]

    Wen DG, Guo JQ, Jia XF, et al. 2013. The progress of carbon dioxide geological storage research and pilot project in China. Acta Geologica Sinica, 87: 971. (in Chinese)

    [33]

    Xu TF, Kharaka YK, Doughty C, et al. 2010. Reactive transport modeling to study changes in water chemistry induced by CO2 injection at the Frio-I Brine Pilot. Chemical Geology, 271: 153-164. doi: 10.1016/j.chemgeo.2010.01.006

    [34]

    Yang ZJ, Xu TF, Wang FG, et al. 2019. A study on the CO2-Enhanced water recovery efficiency and reservoir pressure control strategies. Geofluids: 1-17. doi: 10.1155/2019/6053756

  • 加载中

(15)

(4)

计量
  • 文章访问数:  1475
  • PDF下载数:  47
  • 施引文献:  0
出版历程
收稿日期:  2021-05-31
录用日期:  2021-10-09
刊出日期:  2021-12-15

目录