中国地质科学院水文地质环境地质研究所主办
Groundwater Science and Engineering Limited出版
Demisse Habtamu Semunigus, Ayalew Abebe Temesgen, Ayana Melkamu Teshome, Lohani Tarun Kumar. 2021. Extenuating the parameters using HEC-HMS hydrological model for ungauged catchment in the central Omo-Gibe Basin of Ethiopia. Journal of Groundwater Science and Engineering, 9(4): 317-325. doi: 10.19637/j.cnki.2305-7068.2021.04.005
Citation: Demisse Habtamu Semunigus, Ayalew Abebe Temesgen, Ayana Melkamu Teshome, Lohani Tarun Kumar. 2021. Extenuating the parameters using HEC-HMS hydrological model for ungauged catchment in the central Omo-Gibe Basin of Ethiopia. Journal of Groundwater Science and Engineering, 9(4): 317-325. doi: 10.19637/j.cnki.2305-7068.2021.04.005

Extenuating the parameters using HEC-HMS hydrological model for ungauged catchment in the central Omo-Gibe Basin of Ethiopia

More Information
  • 加载中
  • Figure 1. 

    Figure 2. 

    Figure 3. 

    Figure 4. 

    Figure 5. 

    Figure 6. 

    Table 1.  Summary of hydrologically gauged stations

    NoRiverStation/siteArea (km2)Latitude/DegreeLongitude/Degree
    1Upper GojebNear Shebe35777.436.5
    2Gilgel GibeNear Asendabo29667.737.3
    3Upper GumaNear Andra231.27.136.3
    下载: 导出CSV

    Table 2.  Model parameters estimated for ungauged catchments using regional model

    Ungauged catchmentsTCRISMSIDMDCRKXCC
    Mansa272517110.472.70.421.60.180.58
    Zigna252618110.392.60.240.60.180.67
    Denchiya262618110.462.60.250.60.180.82
    Lower Guma302618110.392.60.170.50.190.83
    Lower Gojeb52292390.472.80.351.60.230.84
    下载: 导出CSV

    Table 3.  Geographic and physiographic catchment characteristics correlation (R2) and Land Cover catchment characteristics correlation (R2)

    Ungauged
    Catchments
    Geographic and physiographic catchment characteristics correlation (R2)Land Cover catchment characteristics correlation (R2)
    Gauged catchmentsGauged catchments
    Upper GumaUpper GojebGilgel GibeUpper GumaUpper GojebGilgel Gibe
    Mansa0.920.820.830.520.060.62
    Zigna0.900.850.850.030.060.03
    Denchiya0.870.840.830.010.080.01
    Lower Guma0.900.840.840.770.050.88
    Lower Gojeb0.560.960.920.580.080.67
    下载: 导出CSV

    Table 4.  Correlation of Soil catchment characteristics (R2) and Climate catchment characteristics (R2)

    Ungauged
    Catchments
    Correlation of Soil catchment characteristics (R2)Climate catchment characteristics (R2)
    Gauged catchmentsGauged catchments
    Upper GumaUpper GojebGilgel GibeUpper GumaUpper GojebGilgel Gibe
    Mansa0.350.370.11111
    Zigna0.920.980.42111
    Denchiya0.480.530.14111
    Lower Guma0.930.980.41111
    Lower Gojeb0.450.480.15111
    下载: 导出CSV

    Table 5.  Correlation values between model parameters (MPs) and physical catchment characteristics (PCCs) for gauged catchments

    PCCsTCRISMSIDMDCRKXCC
    Avarge slope −0.64 −0.76 −0.44 −0.44 −0.98 −0.83 −0.99 −0.02 −0.77 −0.24
    Longest flow path −0.64 −0.51 0.96 −0.96 −0.04 0.69 0.34 0.99 −0.50 −0.91
    Mean elevation 0.99 0.97 −0.50 0.50 0.72 0.00 0.41 −0.82 0.96 0.94
    Minimum elevation 0.89 0.95 0.05 −0.05 0.98 0.55 0.84 −0.38 0.96 0.60
    Maximum elevation 0.57 0.44 −0.98 0.98 −0.04 −0.75 −0.42 −0.97 0.43 0.88
    Sum stream length −0.40 −0.25 1.00 −1.00 0.4 0.87 0.59 0.90 −0.24 −0.76
    Area −0.43 −0.29 1.00 −1.00 0.21 0.85 0.56 0.92 −0.27 −0.79
    Perimeter −0.21 −0.06 0.98 −0.98 0.43 0.95 0.74 0.80 −0.04 −0.62
    HI
    DD 0.44 0.29 −1.00 1.00 −0.20 −0.84 0.55 −0.92 0.28 0.79
    CI 0.73 0.61 −0.92 0.92 0.16 −0.60 −0.23 −1.00 0.60 0.96
    EL −0.99 −1.00 0.26 −0.26 −0.87 −0.26 −0.63 0.65 −1.00 −0.82
    Basin shape 0.30 0.15 −0.99 0.99 −0.34 −0.91 −0.67 −0.85 0.13 0.69
    Dystric nitosols −0.70 −0.80 −0.37 0.37 −0.99 −0.79 −0.97 0.06 −0.81 −0.31
    Dystric fluvisols 1.00 1.00 −0.32 0.32 0.84 0.20 0.58 −0.69 1.00 0.86
    Orthic acrisols 0.32 0.47 0.74 −0.74 0.83 0.98 0.98 0.38 0.48 −0.13
    Dystric gleysols 0.09 −0.07 −0.95 0.95 −0.54 −0.98 −0.81 −0.71 −0.08 0.52
    Leptosols −0.99 −0.96 0.50 0.50 −0.72 0.00 −0.41 −0.41 −0.96 −0.94
    Cambisols −0.99 −0.96 0.50 −0.50 −0.72 0.00 −0.41 −0.41 −0.96 −0.94
    Chromic vertisols 0.58 0.70 0.51 −0.51 0.96 0.87 1.00 0.10 0.71 0.16
    Eutric cambisol −0.99 −0.96 0.50 −0.50 −0.72 0.00 −0.41 −0.41 −0.96 −0.94
    Eutric nitosols −0.16 0.00 0.97 −0.97 0.48 0.96 0.77 0.77 0.01 −0.58
    Orthic solonchaks −0.99 −0.96 0.50 −0.50 −0.72 0.00 −0.41 0.82 −0.96 −0.94
    Gypsic yermosola −0.99 −0.96 0.50 −0.50 −0.72 0.00 −0.41 0.82 −0.96 −0.94
    Eutric fluvisols 0.59 0.71 0.50 −0.50 0.96 0.87 0.99 0.08 0.72 0.18
    Cultivation 0.99 1.00 −0.29 0.29 0.86 0.23 0.60 −0.67 1.00 0.84
    Natural forest −0.98 −1.00 0.22 −0.22 −0.90 −0.30 −0.66 0.61 −1.00 −0.71
    Shurb land
    Grass land −0.79 −0.68 0.88 −0.88 −0.24 0.53 0.14 1.00 −0.67 −0.98
    Wood land
    SAAR −0.18 −0.33 −0.83 0.83 −0.74 −1.00 −0.94 −0.51 −0.34 0.28
    MP dry −0.44 −0.57 −0.65 0.65 −0.90 −0.94 −1.00 −0.26 −0.59 0.00
    MP wet −0.20 −0.35 −0.82 0.82 −0.76 −1.00 −0.95 −0.49 −0.36 0.25
    PET 0.38 0.23 −1.00 1.00 −0.27 −0.88 −0.61 −0.89 0.21 0.75
    Note: CI-Circularity index, DD-Drainage density, EL-Elongation Ratio, HI-Hypsometric integral, PET-Potential Evapo-transpiration, SAAR-Standard Annual Average Rainfall.
    下载: 导出CSV
  • [1]

    Abebe NA, Ogden FL, Pradhan, NR. 2010. Sensitivity and uncertainty analysis of the conceptual HBV rainfall–runoff model: Implications for parameter estimation. Journal of Hydrology, 389: 301-310. doi: 10.1016/j.jhydrol.2010.06.007

    [2]

    Arsenault R, Breton-Dufour M, Poulin A, et al. 2019. Streamflow prediction in ungauged basins: analysis of regionalization methods in a hydrologically heterogeneous region of Mexico. Hydrological Sciences Journal, 64(11): 1297-1311. doi: 10.1080/02626667.2019.1639716

    [3]

    Bao Z, Zhang J, Liu J, et al. 2012. Comparison of regionalization approaches based on regression and similarity for predictions in Ungauged catchments under multiple hydro-climatic conditions. Journal of Hydrology, 466-467: 37-46

    [4]

    Barbarossa V, Huijbregts MAJ, Hendriks AJ, et al. 2017. Developing and testing a global-scale regression model to quantify mean annual stream-flow. Journal of Hydrology, 544: 479-487. doi: 10.1016/j.jhydrol.2016.11.053

    [5]

    Blöschl, G. 2005. Rainfall runoff modeling of ungauged catchments In M. L. Anderson, ed. Encyclopedia of hydrological sciences UK: John Wiley & Sons: 2061– 2080.

    [6]

    Donnelly C, Andersson JCM, Arheimer B. 2016. Using flow signatures and catchment similarities to evaluate the E-HYPE multi-basin model across Europe. Hydrological Sciences Journal, 61(2): 255-273. doi: 10.1080/02626667.2015.1027710

    [7]

    Goswami M, Connor KM, Bhattarai KP, et al. 2005. Assessing the performance of eight real-time updating models and procedure for the Brosna River. Hydrology and the Earth System Sciences, 9(4): 394-411. doi: 10.5194/hess-9-394-2005

    [8]

    Hailegeorgis TT, Abdella YS, Alfredsen, K, et al. 2015. Evaluation of regionalization methods for hourly continuous streamflow simulation using distributed models in Boreal Catchments. Journal of Hydrologic Engineering, 1-20: 04015028. doi: 10.1061/(ASCE)HE.1943-5584.0001218

    [9]

    Ibrahim B, Wisser D, Barry B, et al. 2015. Hydrological predictions for small ungauged watersheds in the Sudanian zone of the Volta basin in West Africa. Journal of Hydrology: Regional Studies, 4: 386-397. doi: 10.1016/j.ejrh.2015.07.007

    [10]

    IHMS. 2006. Integrated Hydrological Modeling System Manual. Version 5.1.

    [11]

    Javeed Y, Apoorva KV. 2015. Flow regionalization under limited data availability application of IHACRES in the Western Ghats. Aquatic Proceeding 4: (LCWRCOE) 2015: 933-941.

    [12]

    Li H, Zhang Y, Zhou X. 2015. Predicting surface runoff from Catchment to Large Region. Advances in Meteorology: 1-13. doi: 10.1155/2015/720967

    [13]

    Mazvimavi D. 2003. Estimation of flow characteristics of ungauged catchments: Case study in Zimbabwe. Wageningen Universiteit: 1-176.

    [14]

    Merz R, Bloschl G. 2004. Regionalization of catchment model parameters. Journal of Hydrology, 287(1-4): 95-123. doi: 10.1016/j.jhydrol.2003.09.028

    [15]

    Mosavi A, Golshan M, Choubin B. 2021. Fuzzy clustering and distributed model for streamflow estimation in ungauged watersheds. Scientific Reports, 11: 8243. doi: 10.1038/s41598-021-87691-0

    [16]

    Nega H, Seleshi Y. 2021. Regionalization of mean annual flow for ungauged catchments in case of Abbay River Basin, Ethiopia. Modeling Earth Systems and Environment, 7: 341-350. doi: 10.1007/s40808-020-01033-z

    [17]

    Oudin L, Andre´assian V, Perrin C, et al. 2008. Spatial proximity, physical similarity, regression and Ungauged catchments: A comparison of regionalization approaches based on 913 French catchments. Water Resources Research, 44: W03413. doi: 10.1029/2007WR006240

    [18]

    Pinheiro VB, Naghettini M. 2013. Calibration of the parameters of a rainfall-runoff model in Ungauged basins using synthetic flow duration curves as estimated by regional analysis. Journal of Hydrologic Engineering, 18: 1617-1626. doi: 10.1061/(ASCE)HE.1943-5584.0000737

    [19]

    Pool S, Viviroli D, Seibert J. 2017. Prediction of hydrographs and flow-duration curves in almost ungauged catchments: Which runoff measurements are most informative for model calibration? Journal of Hydrology, 554: 613-622.

    [20]

    Rajendran M, Gunawarden ERN, Dayawansa NDK. 2020. Runoff prediction in an ungauged catchment of Upper Deduru Oya Basin, Sri Lanka: A comparison of HEC-HMS and WEAP models. International Journal of Progressive Sciences and Technologies (IJPSAT), 18(2): 121-129.

    [21]

    Roy S, Mistri B. 2013. Estimation of peak flood discharge for an Ungauged River: A case study of the Kunur River, West Bengal, Geography Journal, 214140: 11.

    [22]

    Samuel J, Coulibaly P, Metcalfe RA. 2011. Metcalfe estimation of continuous stream flow in ontario ungauged basins: Comparison of regionalization methods. Journal of Hydrologic Engineering, 16(5): 447-459. doi: 10.1061/(ASCE)HE.1943-5584.0000338

    [23]

    Sawicz K, Wagener Sivapalan TM, Troch PA, et al. 2011. Catchment classification: Empirical analysis of hydrologic similarity based on catchment function in the eastern USA. Hydrology Earth Systems Sciences, 15(9): 2895-2911. doi: 10.5194/hess-15-2895-2011

    [24]

    Sellami H, Jeunesse IL, Benabdallah S, et al. 2014. Uncertainty analysis in model parameters regionalization: A case study involving the SWAT model in Mediterranean catchments (Southern France). Hydrology and Earth System Sciences, 18: 2393-2413. doi: 10.5194/hess-18-2393-2014

    [25]

    Shoaib SA, Bardossy A, Wagener T, et al. 2013. A different light in predicting Ungauged Basins: Regionalization approach based on Eastern USA Catchments. Journal of Civil Engineering and Architecture, 7 (3) (64): 364-378.

    [26]

    Sivapalan M, Takeuchi K, Franks SW, et al. 2003. IAHS decade on predictions in ungauged basins (PUB), 2003-2012: Shaping an exciting future for the hydrological sciences. Hydrologocal Sciences Journal, 48(6): 857-880. doi: 10.1623/hysj.48.6.857.51421

    [27]

    Solomon SM. 2001. Climate change 2007-The physical science basis: Working group1 contribution to the fourth assessment report of the IPCC: (vol. 4). Cambridge University Press.

    [28]

    Swain JB, Patra KC. 2019. Impact of catchment classification on streamflow regionalization in ungauged catchments. SN Applied Sciences 1: 456. doi: 10.1007/s42452-019-0476-6

    [29]

    Tamalew C, Kemal A. 2016. Estimation of discharge for ungauged catchments using rainfall-runo model in Didessa Subbasin: The case of Blue Nile River. International Journal of Innovations in Engineering Research and Technology, 3(9): 62-72.

    [30]

    Tesfalem A, Yan L, Sirak T, et al. 2021. Quantifying the regional water balance of the Ethiopian Rift Valley Lake basin using an uncertainty estimation framework. Hydrology and Earth Science System:1-25.

    [31]

    Teutschbein C, Grabs T, Hjalmar L, et al. 2018. Simulating streamflow in ungauged basins under a changing climate: The importance of landscape characteristics. Journal of Hydrology, 561: 160-178. doi: 10.1016/j.jhydrol.2018.03.060

    [32]

    Wagener T, Wheater HS, Gupta HV. 2004. Rainfall-runoff modelling in gauged and ungauged catchments. London, Imperial College Press: 300.

    [33]

    Wale A, Rientjes THM, Gieske ASM, et al. 2009. Ungauged catchment contributions to Lake Tana’s water balance. Hydrological Processes, 23(6): 3682-3692. doi: 10.1002/hyp.7284

    [34]

    Zamoum S, Souag-Gamane, D. 2019. Monthly streamflow estimation in ungauged catchments of northern Algeria using regionalization of conceptual model parameters. Arabian Journal of Geosciences, 342: 12 (11).

    [35]

    Zhang Y, Chiew FHS. 2009. Relative merits of different methods for runoff predictions in ungauged catchments. Water Resources Research, 45(7).

  • 加载中

(6)

(5)

计量
  • 文章访问数:  1935
  • PDF下载数:  87
  • 施引文献:  0
出版历程
收稿日期:  2021-05-31
录用日期:  2021-10-22
刊出日期:  2021-12-15

目录