中国地质科学院水文地质环境地质研究所主办
Groundwater Science and Engineering Limited出版
Qu Ci-xiao, Wang Ming-yu, Wang Peng. 2022. Experimental and numerical investigation of groundwater head losses on and nearby short intersections between disc-shaped fractures. Journal of Groundwater Science and Engineering, 10(1): 33-43. doi: 10.19637/j.cnki.2305-7068.2022.01.004
Citation: Qu Ci-xiao, Wang Ming-yu, Wang Peng. 2022. Experimental and numerical investigation of groundwater head losses on and nearby short intersections between disc-shaped fractures. Journal of Groundwater Science and Engineering, 10(1): 33-43. doi: 10.19637/j.cnki.2305-7068.2022.01.004

Experimental and numerical investigation of groundwater head losses on and nearby short intersections between disc-shaped fractures

More Information
  • 加载中
  • Figure 1. 

    Figure 2. 

    Figure 3. 

    Figure 4. 

    Figure 5. 

    Figure 6. 

    Figure 7. 

    Table 1.  The parameters assigned in the corresponding numerical models

    ParametersUnitsValues
    Boundary (flow in and flow out) Length (L) cm 10, 8, 6, 4 corresponding with each experiment
    Specified flux (Q) cm3/s corresponding with each experiment
    Aperture (b) cm 0.215, 0.125 corresponding with each experiment
    Reference fluid density ( kg/cm3 9.98E-4
    Reference fluid viscosity (μ) kg/(cm·s) 9.53E-6
    Acceleration due to gravity () cm/s2 9.81E+2
    下载: 导出CSV

    Table 2.  The experimental results of $ {\Delta \mathit{H}}_{\mathit{i}\mathit{n}-\mathit{o}\mathit{u}\mathit{t}\_\mathit{e}\mathit{x}\mathit{p}} $ and $ \Delta {\mathit{H}}_{\mathit{p}1-2\_\mathit{e}\mathit{x}\mathit{p}} $ along with the percentage of $ \Delta {\mathit{H}}_{\mathit{s}\_\mathit{e}\mathit{x}\mathit{p}} $ to $ \Delta {\mathit{H}}_{\mathit{i}\mathit{n}-\mathit{o}\mathit{u}\mathit{t}\_\mathit{e}\mathit{x}\mathit{p}} $

    b=0.152 cmb=0.215 cm
    Q
    (cm3/s)

    (cm)

    (cm)

    (-)
    Q
    (cm3/s)

    (cm)

    (cm)

    (-)
    L=10 cm 14.41 0.48 0.34 29.17% 35.34 0.45 0.29 35.56%
    26.53 0.95 0.65 31.58% 43.55 0.60 0.35 41.67%
    35.54 1.35 0.88 34.81% 54.91 0.88 0.48 45.45%
    42.88 1.72 1.10 36.05% 69.03 1.22 0.66 45.90%
    70.97 3.38 1.89 44.08% 75.28 1.48 0.71 52.03%
    L=8 cm 14.53 0.47 0.35 25.53% 35.28 0.49 0.30 38.78%
    26.54 0.97 0.66 31.96% 43.57 0.68 0.38 44.12%
    35.68 1.36 0.89 34.56% 54.70 0.97 0.48 50.52%
    43.51 1.77 1.08 38.98% 68.48 1.36 0.66 51.47%
    71.83 3.40 1.87 45.00% 75.06 1.58 0.67 57.59%
    L=6 cm 14.61 0.54 0.35 35.19% 35.58 0.55 0.28 49.09%
    26.30 1.04 0.65 37.50% 43.10 0.71 0.36 49.30%
    35.68 1.49 0.88 40.94% 55.17 1.08 0.47 56.48%
    43.43 1.89 1.07 43.39% 68.55 1.48 0.57 61.49%
    71.66 3.60 1.83 49.17% 75.78 1.75 0.62 64.57%
    L=4 cm 14.61 0.59 0.36 38.98% 35.25 0.97 0.29 70.10%
    26.51 1.22 0.66 45.90% 42.94 1.31 0.31 76.34%
    35.57 1.81 0.86 52.49% 55.76 2.00 0.41 79.50%
    42.94 2.37 1.05 55.70% 69.71 2.92 0.53 81.85%
    71.07 4.86 1.74 64.20% 74.82 3.46 0.52 84.97%
    下载: 导出CSV

    Table 3.  The derivate results of $ {\Delta \mathit{H}}_{\mathit{i}\mathit{n}-\mathit{o}\mathit{u}\mathit{t}\_\mathit{d}\mathit{e}\mathit{r}} $ and the ratios of $ \Delta {\mathit{H}}_{\mathit{i}\_\mathit{d}\mathit{e}\mathit{r}} $ to $ \Delta {\mathit{H}}_{\mathit{i}\mathit{n}-\mathit{o}\mathit{u}\mathit{t}\_\mathit{e}\mathit{x}\mathit{p}} $

    b=0.152 cmb=0.215 cm
    Q
    (cm3/s)

    (-)

    (cm)

    (-)
    Q
    (cm3/s)

    (-)

    (cm)

    (-)
    L=10 cm 14.41 1.46 0.49 0.00% 35.34 1.46 0.42 6.23%
    26.53 1.46 0.95 0.44% 43.55 1.46 0.52 15.12%
    35.54 1.46 1.28 5.15% 54.91 1.46 0.69 20.63%
    42.88 1.46 1.60 6.94% 69.03 1.46 0.97 21.28%
    70.97 1.46 2.74 18.65% 75.28 1.46 1.04 30.20%
    L=8 cm 14.53 1.52 0.54 0.00% 35.28 1.52 0.47 6.96%
    26.54 1.52 1.00 0.00% 43.57 1.52 0.58 15.08%
    35.68 1.52 1.36 0.55% 54.70 1.52 0.72 24.81%
    43.51 1.52 1.65 7.27% 68.48 1.52 1.01 26.25%
    71.83 1.52 2.84 16.42% 75.06 1.52 1.03 35.56%
    L=6 cm 14.61 1.61 0.57 0.00% 35.58 1.61 0.46 17.90%
    26.30 1.61 1.05 0.00% 43.10 1.61 0.57 18.23%
    35.68 1.61 1.41 4.76% 55.17 1.61 0.76 29.82%
    43.43 1.61 1.73 8.70% 68.55 1.61 0.92 37.90%
    71.66 1.61 2.96 18.02% 75.78 1.61 1.01 42.87%
    L=4 cm 14.61 1.76 0.63 0.00% 35.25 1.76 0.52 47.42%
    26.51 1.76 1.16 4.85% 42.94 1.76 0.54 58.38%
    35.57 1.76 1.51 16.44% 55.76 1.76 0.73 63.95%
    42.94 1.76 1.85 22.09% 69.71 1.76 0.94 68.08%
    71.07 1.76 3.06 37.05% 74.82 1.76 0.91 73.57%
    下载: 导出CSV
    Major lossMinor loss
    下载: 导出CSV
  • [1]

    Baecher GB, Lanney NA. 1978. Trace length biases in joint surveys, 19th U. S. Symposium on Rock Mechanics: 56–65.

    [2]

    Bear. 1972. Dynamics of fluids in porous media, Dover Publications.

    [3]

    Borgne TL, Bour O, Paillet FL, et al. 2006. Assessment of preferential flow path connectivity and hydraulic properties at single-borehole and cross-borehole scales in a fractured aquifer. Journal of Hydrology, 328(1-2): 347-359. doi: 10.1016/j.jhydrol.2005.12.029

    [4]

    Cacas MC. 1990. Modeling fracture flow with a stochastic discrete fracture network: Calibration and Validation 1. The flow model. Water Resources Research, 26(3): 491-500. doi: 10.1029/WR026i003p00491

    [5]

    Cao C, Xu ZG, Chai JR, et al. 2019. Radial fluid flow regime in a single fracture under high hydraulic pressure during shear process. Journal of Hydrology, 579: 124-142. doi: 10.1016/j.jhydrol.2019.124142

    [6]

    Dershowitz WS, Einstein HH. 1988. Characterizing rock joint geometry with joint system models. International Journal of Rock Mechanics and Mining Sciences & Geomechanics Abstracts, 21(1): 21-51. doi: 10.1007/BF01019674

    [7]

    Dverstorp B, Andersson J, Nordqvist W. 1992. Discrete fracture network interpretation of field tracer migration in sparsely fractured rock. Water Resources Research, 28(9): 2327-2343. doi: 10.1029/92WR01182

    [8]

    Gong Y, Mehana M, El-Monier I, et al. 2020. Proppant placement in complex fracture geometries: A computational fluid dynamics study. Journal of Natural Gas Science and Engineering, 79: 103295. doi: 10.1016/j.jngse.2020.103295

    [9]

    Grechka V, Kachanov M. 2006. Effective elasticity of rocks with closely spaced and intersecting cracks. Geophysics. 71: 85-91.

    [10]

    Guo JC, Zheng J, Lyu Q, et al. 2020. A procedure to estimate the accuracy of circular and elliptical discs for representing the natural discontinuity facet in the discrete fracture network models. Computers and Geotechnics, 121: 103483. doi: 10.1016/j.compgeo.2020.103483

    [11]

    Hartley L, Roberts D. 2013. Summary of discrete fracture network modelling as applied to hydrogeology of the Forsmark and Laxemar sites, Swedish: 8-9.

    [12]

    Hunter Rouse. 1946. Elementary mechanics of fluids. New York, John Wiley & Sons, Inc. Chapter, 7: 192-226.

    [13]

    Hu YJ, Mao GH, Cheng WP, Zhang JJ. 2005. Theoretical and experimental study on flow distribution at fracture intersections,. Journal of Hydraulic Research, 43(3): 321-327. doi: 10.1080/00221680509500126

    [14]

    Jing LR. 2007. The basics of fracture system characterization – Field mapping and stochastic simulations. Developments in geotechnical engineering, 85: 147-177. doi: 10.1016/s0165-1250(07)85005-x

    [15]

    Johnson J, Brown S, Stockman H. 2006. Fluid flow and mixing in rough-walled fracture intersections. Journal of Geophysical Research: Solid Earth, 111(B12).

    [16]

    Kemler E. 1933. A study of the sata on the flow of fluid in pipes. Transactions of the ASME. 55 (Hyd-55-2): 7–32.

    [17]

    Kolditz O. 2001. Non‐linear flow in fractured rock. International Journal of Numerical Methods for Heat & Fluid Flow, 11(6): 547-575. doi: 10.1108/eum0000000005668

    [18]

    Koudina N, Gonzalez Garcia R, Thovert JF, et al. 1998. Permeability of three-dimensional fracture networks. Physical Review E, 57(4): 4466-4479. doi: 10.1103/physreve.57.4466

    [19]

    Lei Q, Latham JP, Tsang CF. 2017. The use of discrete fracture networks for modelling coupled geomechanical and hydrological behaviour of fractured rocks. Computers and Geotechnics, 85: 151-176. doi: 10.1016/j.compgeo.2016.12.024

    [20]

    Liu R, Jiang Y, Li B. 2016. Effects of intersection and dead-end of fractures on nonlinear flow and particle transport in rock fracture networks. Geosciences Journal, 20(3): 415-426. doi: 10.1007/s12303-015-0057-7

    [21]

    Long JCS, Gilmour P, Witherspoon PA. 1985. A model for steady fluid flow in random three-dimensional networks of disc-shaped fractures. Water Resources Research, 21(8): 1105-1115. doi: 10.1029/wr021i008p01105

    [22]

    Moody LF, Princeton NJ. 1944. Friction factors for pipe flow. Transactions of the ASME, 66: 671-684.

    [23]

    Petchsingto T, Karpyn ZT. 2009. Deterministic modeling of fluid flow through a CT-scanned fracture using computational fluid dynamics. Energy Sources, Part A: Recovery, Utilization, and Environmental Effects, 31(11): 897–905.

    [24]

    Pollard DD. 1976. On the form and stability of open hydraulic fractures in the earth’s crust. Geophysical Research Letters, 3(9): 513-516. doi: 10.1029/GL003i009p00513

    [25]

    Pruess K. 1998. On water seepage and fast preferential flow in heterogeneous, unsaturated rock fractures. Journal of Contaminant Hydrology, 30(3-4): 333-362. doi: 10.1016/s0169-7722(97)00049-1

    [26]

    Reza J, Maria K et al. 2018. A multi-scale approach to identify and characterize preferential flow paths in a fractured crystalline rock. Proceedings of the 52nd U. S. Rock Mechanics/Geomechanics Symposium 17-20, Seattle: Washington.

    [27]

    Su GW, Geller JT, Pruess K et al. 2001. Solute transport along preferential flow paths in unsaturated fractures. Water Resources Research, 37(10): 2481-2491. doi: 10.1029/2000wr000093

    [28]

    Tuckwell GW, Lonergan L, Jolly RJH. 2003. The control of stress history and flaw distribution on the evolution of polygonal fracture networks. Journal of Structural Geology 25(8): 1241–1250.

    [29]

    Vu MN, Pouya A, Seyedi DM. 2018. Effective permeability of three-dimensional porous media containing anisotropic distributions of oriented elliptical disc-shaped fractures with uniform aperture. Advances in Water Resources, 118: 1-11. doi: 10.1016/j.advwatres.2018.05.014

    [30]

    Wang M, Kulatilake PHSW, Um J, et al. 2002. Estimation of REV size and three dimensional hydraulic conductivity tensor for a fractured rock mass through a single well packer test and discrete fracture fluid flow modeling. International Journal of Rock Mechanics and Mining Sciences, 39(7): 887-904. doi: 10.1007/s00603-018-1422-4

    [31]

    Wang Y, Liu YG, Bian K, et al. 2020. Seepage-heat transfer coupling process of low temperature return water injected into geothermal reservoir in carbonate rocks in Xian County, China. Journal of Groundwater Science and Engineering, 8(4): 305-314. doi: 10.19637/j.cnki.2305-7068.2020.04.001

    [32]

    Wilson CR, Witherspoon PA. 1976. Flow interference effects at fracture intersections. Water Resources Research, 12(1): 102-104. doi: 10.1029/wr012i001p00102

    [33]

    Witherspoon PA, Wang JSY, Gale JE. 1980. Validity of cubic law for fluid flow in a deformable rock fracture. Water Resources Research, 16(6): 1016-1024. doi: 10.1029/WR016i006p01016

    [34]

    Xiong F, Wei W, Xu C, et al. 2020. Experimental and numerical investigation on nonlinear flow behaviour through three dimensional fracture intersections and fracture networks. Computers and Geotechnics, 121, May 103446.

    [35]

    Zimmerman RW, Al-Yaarubi A, Pain CC, et al. 2004. Non-linear regimes of fuid fow in rock fractures. International Journal of Rock Mechanics and Mining Sciences, 41(1): 1-7. doi: 10.1016/j.ijrmms.2004.03.036

    [36]

    Zhang Z, Nemcik J, Ma S. 2013. Micro- and macro-behaviour of fluid flow through rock fractures: An experimental study. Hydrogeology Journal, 21(8): 1717-1729. doi: 10.1007/s10040-013-1033-9

  • 加载中

(7)

(4)

计量
  • 文章访问数:  2215
  • PDF下载数:  39
  • 施引文献:  0
出版历程
收稿日期:  2021-07-12
录用日期:  2021-12-28
刊出日期:  2022-03-15

目录