中国地质科学院水文地质环境地质研究所主办
Groundwater Science and Engineering Limited出版
Nasiri Shima, Ansari Hossein, Ziaei Ali Naghi. 2022. Determination of water balance equation components in irrigated agricultural watersheds using SWAT and MODFLOW models : A case study of Samalqan plain in Iran. Journal of Groundwater Science and Engineering, 10(1): 44-56. doi: 10.19637/j.cnki.2305-7068.2022.01.005
Citation: Nasiri Shima, Ansari Hossein, Ziaei Ali Naghi. 2022. Determination of water balance equation components in irrigated agricultural watersheds using SWAT and MODFLOW models : A case study of Samalqan plain in Iran. Journal of Groundwater Science and Engineering, 10(1): 44-56. doi: 10.19637/j.cnki.2305-7068.2022.01.005

Determination of water balance equation components in irrigated agricultural watersheds using SWAT and MODFLOW models : A case study of Samalqan plain in Iran

More Information
  • 加载中
  • Figure 1. 

    Figure 2. 

    Figure 3. 

    Figure 4. 

    Figure 5. 

    Figure 6. 

    Figure 7. 

    Figure 8. 

    Figure 9. 

    Figure 10. 

    Figure 11. 

    Figure 12. 

    Figure 13. 

    Table 1.  General geological characteristics and soil units in the study area

    Permeability based on geological characteristicSoil depth based on geological characteristicGeological characteristicLand useSoil textureUnit
    high high Antelopes, young conifers, alluvial plains, young alluvial river Pasture Moderate 3 001
    Moderate Moderate Conglomerate with poor consolidation Forest Moderate 3 002
    Low Low Thick layer limestone, chert limestone, clayey limestone and marl Forest Moderate 3 003
    Low Low Shale Orchard-agriculture Moderate 3 004
    Low Low Thick layer limestone, chert limestone, clayey limestone and marl Bare Ground Tundra Moderate 3 005
    high high Antelopes, young conifers, alluvial plains, young alluvial river Orchard-agriculture Moderate 3 007
    Low Low Red marl and sandstone with layers of conglomerate Pasture Moderate 3 008
    Moderate high Antelopes, old cones, alluvial plains Orchard-agriculture Moderate 3 009
    Low Low Antelopes, old cones, alluvial plains Orchard-agriculture Moderate 3 010
    Low Moderate to high Orbital insoluble limestone Pasture Moderate 3 011
    Low Moderate to high Orbital insoluble limestone Forest Moderate 3 012
    Low Moderate to high Orbital insoluble limestone Orchard-agriculture Moderate 3 013
    Low Low Clay limestone, marl, sandstone and conglomerate, coarse sandstone and conglomerate Orchard-agriculture Moderate to strong 3 014
    Moderate Moderate Conglomerate with poor consolidation Pasture Moderate 3 016
    high high Antelopes, young conifers, alluvial plains, young alluvial river Pasture Moderate 3 017
    high high Antelopes, young conifers, alluvial plains, young alluvial river Orchard-agriculture Moderate 3 018
    Low Moderate to high Orbital insoluble limestone Forest Moderate 3 019
    下载: 导出CSV

    Table 2.  Model evaluation statistics, calibration - validation periods

    Coefficients
    Station NameCalibrated period (2004-2012)Validation Period (2013-2014)
    P-factor R-factor R2 NSE PBIAS PSR P-factor R-factor R2 NSE PSR PBIAS
    Darband
    Shirabad
    Darkesh
    0.82
    0.75
    0.72
    0.90
    0.78
    0.76
    0.92
    0.85
    0.82
    0.85
    0.80
    0.75
    −3.0
    2.5
    3.8
    0.58
    0.50
    0.48
    0.80
    0.78
    0.75
    0.87
    0.75
    0.70
    0.85
    0.80
    0.76
    0.80
    0.78
    0.72
    0.55
    0.52
    0.46
    −2.8
    1.5
    2.6
    下载: 导出CSV

    Table 3.  Average annual surface water balance components calculated by the SWAT model

    Surface water balance component(mm)Calibrated period(2004-2012)Validation Period(2013-2014)
    Precipitation; Precip
    Potential evapotranspiration; PET
    486.5
    1 359.0
    468.3
    1 377.8
    Actual evapotranspiration; ET
    Water yield; WYLD
    Surface runoff; Sur_Q
    Soil water; SW
    Lateral flow; Lat_Q
    Contribution of groundwater to stream flow; Gw_Q
    Percolation out of soil
    420.5
    43.7
    1.2
    61.5
    20.2
    18.5
    45.0
    429.0
    46.5
    2.5
    45.5
    14.4
    15.8
    26.5
    下载: 导出CSV

    Table 4.  Groundwater balance components

    ComponentsIn-flow (Mm3/a)Out-flow (Mm3/a)
    Inflow boundaries 20.5
    Infiltration of river bed and sewage well 5.8
    Infiltration of Surface water(Precipitation, irrigation return flow) 11.64
    Outflow boundaries 0.68
    Discharge and extraction (well, spring) 46.4
    Total 37.94 47.08
    Storage −9.14
    下载: 导出CSV
  • [1]

    Abbaspour KC, J Yang, Maximov I, et al. 2007. Modelling hydrology and water quality in the pre-alpine/alpine Thur watershed using SWAT. Journal of hydrology, 333(2-4): 413-430. doi: 10.1016/j.jhydrol.2006.09.014

    [2]

    Anderson MP, Woessner WW, Hunt RJ. 1992. Applied groundwater modeling: Simulation of flow and advective transport. Academic Press Inc. , San Diego, CA. Journal of Hydrology, 140: 393-395.

    [3]

    Arnold JG, Moriasi DN, Gassman PW, et al. 2012. SWAT: Model use, calibration, and validation. Transactions of the ASABE 55 (4): 1491-1508.

    [4]

    Borsi I, R Rossetto C, Schifani, et al. 2013. Modeling unsaturated zone flow and runoff processes by integrating MODFLOW-LGR and VSF, and creating the new CFL package. Journal of hydrology, 488: 33-47. doi: 10.1016/j.jhydrol.2013.02.020

    [5]

    Cao GL, Zheng CM, Scanlon BR , et al. 2013. Use of flow modeling to assess sustainability of groundwater resources in the North China Plain. Water Resources Research, 49(1): 159-175. doi: 10.1029/2012WR011899

    [6]

    Chakraborty S, Maity PK, Das S. 2020. Investigation, simulation, identification and prediction of groundwater levels in coastal areas of Purba Midnapur, India, using MODFLOW. Environment, Development and Sustainability, 22, (4): 3805-3837.

    [7]

    Chatterjee R, Jain A, Chandra S, et al. 2018. Mapping and management of aquifers suffering from over-exploitation of groundwater resources in Baswa-Bandikui watershed, Rajasthan, India. Environmental Earth Sciences, 77(5): 1-14.

    [8]

    Cho J, Barone V, Mostaghimi S. 2009. Simulation of land use impacts on groundwater levels and streamflow in a Virginia watershed. Agricultural water management, 96(1): 1-11. doi: 10.1016/j.agwat.2008.07.005

    [9]

    Daloğlu I, JI Nassauer R Riolo, Scavia D. 2014. An integrated social and ecological modeling framework—Impacts of agricultural conservation practices on water quality. Ecology and Society, 19 (3).

    [10]

    Epting J, Müller MH, Genske D, et al. 2018. Relating groundwater heat-potential to city-scale heat-demand: A theoretical consideration for urban groundwater resource management. Applied Energy, 228: 1499-1505. doi: 10.1016/j.apenergy.2018.06.154

    [11]

    Gassman PW, Reyes MR, Green CH, et al. 2007. The soil and water assessment tool: Historical development, applications, and future research directions. Transactions of the ASABE 50 (4): 1211-1250.

    [12]

    Iran Water Resources Management Company. Available online: https://www.wrm.ir (accessed on 23 April 2019).

    [13]

    Jalut QH, Abbas NL, Mohammad AT. 2018. Management of groundwater resources in the Al-Mansourieh zone in the Diyala River Basin in Eastern Iraq. Groundwater for Sustainable Development, 6: 79-86. doi: 10.1016/j.gsd.2017.11.004

    [14]

    Karimi L, Motagh M, Entezam I. 2019. Modeling groundwater level fluctuations in Tehran aquifer: Results from a 3D unconfined aquifer model. Groundwater for Sustainable Development, 8: 439-449. doi: 10.1016/j.gsd.2019.01.003

    [15]

    Khalili K, Tahoudi MN, Mirabbasi R, et al. 2016. Investigation of spatial and temporal variability of precipitation in Iran over the last half century. Stochastic environmental research and risk assessment, 30(4): 1205-1221. doi: 10.1007/s00477-015-1095-4

    [16]

    Llamas MR, Custodio E. 2002. Intensive Use of Groundwater: Challenges and Opportunities: CRC Press.

    [17]

    Lobo-Ferreira J, Chachadi A, Diamantino C, et al. 2005. Assessing aquifer vulnerability to seawater intrusion using GALDIT Method. Part 1: Application to the Portuguese aquifer of Monte Gordo.

    [18]

    McDonald MG, Harbaugh AW. 1988. A modular three-dimensional finite-difference ground-water flow model: US Geological Survey.

    [19]

    Meredith E, Blais N. 2019. Quantifying irrigation recharge sources using groundwater modeling. Agricultural water management, 214: 9-16. doi: 10.1016/j.agwat.2018.12.032

    [20]

    Mojarrad BB, Betterle A, T Singh C Olid, et al. 2019. The effect of stream discharge on hyporheic exchange. Water, 11(7): 1436. doi: 10.3390/w11071436

    [21]

    Moriasi DN, Arnold JG, Van Liew MW, et al. 2007. Model evaluation guidelines for systematic quantification of accuracy in watershed simulations. Transactions of the ASABE 50 (3): 885-900.

    [22]

    Moridi A, Tabatabaie MRM, Esmaeelzade S. 2018. Holistic approach to sustainable groundwater management in semi-arid regions. International Journal of Environmental Research, 12(3): 347-355. doi: 10.1007/s41742-018-0080-4

    [23]

    Nan T, Li K, Wu J, et al. 2018. Assessment of groundwater exploitation in an aquifer using the random walk on grid method: A case study at Ordos, China. Hydrogeology journal, 26(5): 1669-1681. doi: 10.1007/s10040-018-1762-x

    [24]

    Pholkern K, P Saraphirom V Cloutier, et al. 2019. Use of alternative hydrogeological conceptual models to assess the potential impact of climate change on groundwater sustainable yield in central Huai Luang Basin, Northeast Thailand. Water, 11(2): 241. doi: 10.3390/w11020241

    [25]

    Qiu SW, Liang XJ, Xiao CL, et al. 2015. Numerical simulation of groundwater flow in a river valley basin in Jilin urban area, China. Water, 7(10): 5768-5787. doi: 10.3390/w7105768

    [26]

    Rejani R, Jha MK, Panda S, et al. 2008. Simulation modeling for efficient groundwater management in Balasore coastal basin, India. Water Resources Management, 22(1): 23-50. doi: 10.1007/s11269-006-9142-z

    [27]

    Sattari MTR Mirabbasi, Sushab RS, Abraham J. 2018. Prediction of groundwater level in Ardebil plain using support vector regression and M5 tree model. Groundwater, 56(4): 636-646. doi: 10.1111/gwat.12620

    [28]

    Su XS, Yuan WZ, SH Du, et al. 2017. Responses of groundwater vulnerability to groundwater extraction reduction in the Hun River Basin, northeastern China. Human and Ecological Risk Assessment:An International Journal, 23(5): 1121-1139. doi: 10.1080/10807039.2017.1300858

    [29]

    Tabios III GQ, Salas JD. 1985. A comparative analysis of techniques for spatial interpolation of precipitation 1. Journal of the American Water Resources Association, 21(3): 365-380. doi: 10.1111/j.1752-1688.1985.tb00147.x

    [30]

    Thangarajan M. 2007. Groundwater: Resource evaluation, augmentation, contamination, restoration, modeling and management: Springer Science & Business Media.

    [31]

    Xue S, Liu Y, Liu SL, et al. 2018. Numerical simulation for groundwater distribution after mining in Zhuanlongwan mining area based on visual MODFLOW. Environmental Earth Sciences, 77(11): 1-9.

  • 加载中

(13)

(4)

计量
  • 文章访问数:  2859
  • PDF下载数:  50
  • 施引文献:  0
出版历程
收稿日期:  2021-02-05
录用日期:  2021-10-18
刊出日期:  2022-03-15

目录