中国地质科学院水文地质环境地质研究所主办
Groundwater Science and Engineering Limited出版
Niway Wondesen Fikade, Molla Dagnachew Daniel, Lohani Tarun Kumar. 2022. Holistic approach of GIS based Multi-Criteria Decision Analysis (MCDA) and WetSpass models to evaluate groundwater potential in Gelana watershed of Ethiopia. Journal of Groundwater Science and Engineering, 10(2): 138-152. doi: 10.19637/j.cnki.2305-7068.2022.02.004
Citation: Niway Wondesen Fikade, Molla Dagnachew Daniel, Lohani Tarun Kumar. 2022. Holistic approach of GIS based Multi-Criteria Decision Analysis (MCDA) and WetSpass models to evaluate groundwater potential in Gelana watershed of Ethiopia. Journal of Groundwater Science and Engineering, 10(2): 138-152. doi: 10.19637/j.cnki.2305-7068.2022.02.004

Holistic approach of GIS based Multi-Criteria Decision Analysis (MCDA) and WetSpass models to evaluate groundwater potential in Gelana watershed of Ethiopia

More Information
  • 加载中
  • Figure 1. 

    Figure 2. 

    Figure 3. 

    Figure 4. 

    Figure 5. 

    Figure 6. 

    Figure 7. 

    Figure 8. 

    Figure 9. 

    Figure 10. 

    Figure 11. 

    Figure 12. 

    Figure 13. 

    Figure 14. 

    Figure 15. 

    Figure 16. 

    Table 1.  Total weights of the thematic layers and normalized weights

    CR=0.0615CI=0.068
    Thematic layers Lith GM Rech LD DD Normalized Weights
    Lithology (Lith) 1 1 3 4 7 0.36
    Geomorphology (GM) 1 1 2 3 7 0.31
    Recharge (Rech) 1/3 1/2 1 3 6 0.19
    Lineament density (LD) 1/4 1/3 1/3 1 5 0.11
    Drainage Density (DD) 1/7 1/7 1/6 1/5 1 0.04
    Total weight (TW) 2.73 2.98 6.50 11.20 26.00 1.00
    下载: 导出CSV

    Table 2.  Normalized weights (NW) of thematic layers and classes

    Thematic layerClassesNWThematic layerClassesNW
    Lithology (0.36) CI=0.041 CR=0.037 Recharge (0.19) CI=0.027 CR=0.03
    Qs 0.32 >300 0.50
    Tv1 0.32 150–300 0.30
    Qdi 0.21 40–150 0.13
    Pqbs 0.12 0–40 0.07
    Qwpu 0.03
    Geomorphology (0.31) CI=0.088 CR=0.059 Lineament Density (0.11) CI=0.048 CR=0.054
    plains 0.29 0.62–1.064 0.51
    valleys 0.21 0.34–0.62 0.33
    open slopes 0.15 0.12–0.34 0.11
    upper slopes 0.11 0–0.12 0.05
    mid-slope drainage 0.08 Drainage Density (0.04) CI=0.036 CR=0.040
    stream 0.06 0–1.5 0.46
    upland drainage 0.04 1.5–2.5 0.27
    local ridge 0.03 2.5–3.5 0.18
    mid-slope ridge 0.02 >3.5 0.09
    high ridge 0.01
    下载: 导出CSV

    Table 3.  Annual water balance of Gelana watershed (mm/a)

    Water balance componentMinimumMaximumMeanStandard deviation
    Precipitation 857.15 1418.46 1066.35 173.83
    Evapotranspiration 395.89 1625..4 823.48 123.20
    Interception Fraction 0.00 61.62 33.08 15.09
    Surface runoff 0.00 549.70 176.31 52.40
    Groundwater Recharge 0.00 366.55 66.56 61.29
    P-(ET+S+R) = 0
    下载: 导出CSV

    Table 4.  The qualitative agreement between the groundwater inventory points and the identified GWPZ

    Class of GWPZYield (L/s)Total no of groundwater pointsGroundwater points coinciding GWPZAgreement weightage (%)
    High > 5 18 14 77.78
    Medium (1–5) 45 28 62.22
    Low <1 87 64 73.56
    sum 150 106 70.67
    下载: 导出CSV
  • Al-Kuisi M, El-Naqa A. 2013. GIS based spatial Groundwater recharge estimation in the Jafr basin, Jordan-Application of WetSpass models for Arid regions. Revista Mexicana de ciencias Geologicas, 30(1): 96-109.

    Andualem TG, Demeke GG. 2019. Groundwater potential assessment using GIS & RS: A case study of Guna Tana landscape, upper blue Nile Basin, Ethiopia. Journal of hydrology, 24: 100610.

    Arnous MO, El-Rayes AE, Geriesh MH, et al. 2020. Groundwater potentiality mapping of tertiary volcanic aquifer in IBB basin, Yemen by using remote sensing & GIS tools. Journal of Coastal Conservation, 24.

    Asrat A. 2016. Geological mapping (scale 1: 250 000) and geological investigation for shallow groundwater mapping in Southern Ethiopia. Addis Ababa, Ethiopia: Ethiopian Agricultural Transformation Agency (ATA).

    Batelaan O, De Smedt F. 2007. GIS-based recharge estimation by coupling surface-subsurface water balances. Journal of Hydrology, 337 (3–4): 337–355.

    Batelaan O, DeSmedt F. 2001. Flexible GIS-based distributed recharge methodology for regional groundwater modeling. Impact of Human Activity on Groundwater Dynamics, 11-17: 269.

    Berahanu KG, Hatiye SD. 2020. Identification of groundwater zones using proxy data: A case study of Megech watershed, Ethiopia. Journal of Hydrology, 28: 100676. doi: 10.1016/j.ejrh.2020.100676

    Cao XY, Zhai YZ, Li MZ, et al. 2022. The suitability assessment of groundwater recharge by leakage of the Yongding River. Hydrogeology & Engineering Geology, 49(1): 20-29. (in Chinese)

    EWWDSE. 2007. Design of Gelana irrigation project, hydrogeological study, Final feasibility report V. Addis Abeba: Ethiopia.

    Fanta AA, Kifle A, Gebreyohannis T, et al. 2014. Spatial analysis of groundwater potential using remote sensing & GIS-based multi-criteria evaluation in Raya valley, Northern Ethiopia. Hydrogeology, 23: 195-206.

    Gebreyohannes T, De smedt, F, Walraevens K, et al. 2013. Application of a spatially distributed water balance model for assessing surface water & groundwater resources in Geba basin, Tigray, Ethioipia. Journal of Hydrology, 499: 110-123. doi: 10.1016/j.jhydrol.2013.06.026

    Gintamo TT. 2015. Ground water potential evaluation based on integrated GIS and remote sensing techniques, in bilate River Catchment: South Rift Valley of Ethiopia. American Scientific Research Journal for Engineering Technology & Science, 10(1): 85-120.

    GSE. 2014. Hydrogeological and Hydrochemical maps of Dila NB 37-6. Chech Republic: Aquatest a. s., Geologicka 4, 15200 Prague 5, First edition.

    Hu LT, Guo JL, Zhang SQ, et al. 2020. Response of groundwater regime to ecological water replenishment of the Yongding River. Hydrogeology & Engineering Geology, 47(5): 5-11. (in Chinese)

    IAEA. 2013. Assessing & managing groundwater in Ethiopia. IAEA.

    Kahsay GH, Gebreyohannes T, Gebremedhin MA, et al. 2018. Spatial groundwater recharge estimation in Raya basin, Northern Ethiopia on approach GIS based WBM. Sustainable Water Resources Management.

    Kidanewold BB. 2014. Surface water & groundwater resources of Ethiopia: Potentials & challenges of water resources development. Chapter 6.

    Li HX, Han SB, Wu X, et al. 2021. Distribution, characteristics and influencing factors of fresh groundwater resources in the Loess Plateau, China. China Geology, 4: 509-526. doi: 10.31035/cg2021057

    Liu Q, Li RM, Wang Y, et al. 2020. Theory and methodology for evaluation of carrying capacity of regional groundwater resources in China. Hydrogeology & Engineering Geology, 47(6): 173-183. (in Chinese)

    Lyne VD, Hollick M. 1979. Stochastic time-variable rainfall-runoff modeling. Institue of Engineerings Australia National Conference: 89-93.

    Machiwal D, Jha MK, Mal BC. 2011. Assessment of groundwater potential in a semi arid region of India using remote sensing, GIS and MCDM techniques. Water Resources Management, 25: 1359-1386. doi: 10.1007/s11269-010-9749-y

    Molla DD, Tegaye TA, Fletcher CG. 2019. Simulated surface & shallow groundwater resources in Abaya-Chamo lake basin, Ethiopia using a spatially distributed water balance model. Journal of Hydrology, Regional Studies 24: 100615. doi: 10.1016/j.ejrh.2019.100615

    Nair CH, Padmalal D, Joseph A, et al. 2017. Delineation of groundwater potential zones in river basins using geospatial tools-An example from Southern Western Ghats, Kerala, India. Journal of Geovisualization and Spatial Analysis, 1(1-2): 5. doi: 10.1007/s41651-017-0003-5

    Nathan RJ, McMahon TA. 1990. Evaluation of automated techniques for baseflow and recession analysis. Water Resource Research, 26 (7): 1465–1473.

    Saaty RW. 1987. The analytic hierarchy process-What it is and how it is used. Mathematical Modelling, 9(3-5): 161-176. doi: 10.1016/0270-0255(87)90473-8

    Saaty T. 1980. The Analytical Hierarchy Process, Planning, Priority. Resource Allocation. RWS publication.

    Saaty TL. 2008. Decision making with the analytic hierarchy process. International Journal of Services Sciences, 1(1): 83-98. doi: 10.1504/IJSSCI.2008.017590

    Smakhtin V. 2004. Estimating continuous monthly baseflow time series and their possible applications in the context of the ecological reserve. Water SA, 27(2): 213-217.

    Wang Z, Assefa KA, Woodbury AD, et al. 2015. Groundwater estimation using physical-based modeling. In B. p. Goyal, Modeling methods & practices in soil & water engineering (Chapter 1). USA: Apple Academic press Inc.

    Yang S, Ge WY, Chen HH, et al. 2019. Investigation of soil and groundwater environment in urban area during post-industrial era: A case study of brownfield in Zhenjiang, Jiangsu Province, China. China Geology, 2: 501-511. doi: 10.31035/cg2018128

    Yifru BA, Mitiku DB, Tolera MB, et al. 2020. Groundwater potential mapping usng SWAT & GIS-based multi-criteria decision analysis. KSCE Journal of Civil Engineering, 24(8): 2546-2559. doi: 10.1007/s12205-020-0168-1

    Zegu HG, Gebreyohannes T, Girmay EH. 2020. Identification of GWPZ using analytical hierarchy process (AHP) & GIS-remote sensing integration, the case of Golina River Basin, Northern Ethiopia. International Journal of Advanced Remote Sensing & GIS, 9(1): 3289-3311.

  • 加载中

(16)

(4)

计量
  • 文章访问数:  2094
  • PDF下载数:  16
  • 施引文献:  0
出版历程
收稿日期:  2021-09-13
录用日期:  2022-04-08
刊出日期:  2022-06-30

目录