中国地质科学院水文地质环境地质研究所主办
Groundwater Science and Engineering Limited出版
Tanzeel Khan, Muhammad Akhtar Malik, Gohram Malghani, Rabia Akhtar. 2022. Comparative analysis of bacterial contamination in tap and groundwater: A case study on water quality of Quetta City, an arid zone in Pakistan. Journal of Groundwater Science and Engineering, 10(2): 153-165. doi: 10.19637/j.cnki.2305-7068.2022.02.005
Citation: Tanzeel Khan, Muhammad Akhtar Malik, Gohram Malghani, Rabia Akhtar. 2022. Comparative analysis of bacterial contamination in tap and groundwater: A case study on water quality of Quetta City, an arid zone in Pakistan. Journal of Groundwater Science and Engineering, 10(2): 153-165. doi: 10.19637/j.cnki.2305-7068.2022.02.005

Comparative analysis of bacterial contamination in tap and groundwater: A case study on water quality of Quetta City, an arid zone in Pakistan

More Information
  • 加载中
  • Figure 1. 

    Figure 2. 

    Figure 3. 

    Figure 4. 

    Figure 5. 

    Figure 6. 

    Figure 7. 

    Figure 8. 

    Table 1.  Bacterial contamination in TW and GW

    Sr#.Name of schemeTWGW
    E.ColiColiformTotal ColiformE.ColiColiformTotal Coliform
    CFU/mLCFU/mLCFU/mLCFU/mLCFU/mLCFU/mL
    0/100 mL0/100 mL0/100 mL0/100 mL0/100 mL0/100 mL
    1 Brewery town 0 12 12 0 0 0
    2 0 8 8 0 0 0
    3 0 0 0 0 0 0
    4 0 0 0 0 0 0
    5 Jinnah town 0 12 12 0 0 0
    6 0 0 0 0 0 0
    7 0 8 8 0 0 0
    8 12 26 38 0 0 0
    9 0 0 0 0 0 0
    10 Shahbaz town 0 0 0 0 0 0
    11 0 16 16 0 4 4
    12 0 0 0 0 3 3
    13 8 26 34 0 0 0
    14 0 0 0 0 0 0
    15 Quetta main city 0 14 14 0 0 0
    16 0 12 12 0 7 7
    17 0 6 6 0 0 0
    18 0 14 14 0 0 0
    19 0 12 12 0 4 4
    20 14 18 32 0 0 0
    21 0 8 8 0 0 0
    22 0 6 6 0 0 0
    23 0 4 4 0 0 0
    24 Satallite town 0 0 0 0 6 6
    25 0 0 0 0 0 0
    26 0 16 16 0 0 0
    27 Chiltan town 0 0 0 0 0 0
    28 0 0 0 0 2 2
    29 0 0 0 0 0 0
    30 0 0 0 0 0 0
    31 0 0 0 0 0 0
    下载: 导出CSV

    Table 2.  Physiochemical parameters and microbes in TW

    TWGW
    MeanStd. DeviationMeanStd. Deviation
    pH 7.89 0.24 7.37 0.20
    EC (µS/cm) 718.71 314.39 580.96 132.56
    Turbidity (NTU) 5.15 8.30 2.48 0.58
    TDS (mg/L) 439.45 194.58 474.61 151.63
    E.coli 1.10 3.49 1.64 1.53
    Coliform 7.03 7.96 1.64 1.53
    Total coliform 8.13 10.54 7.37 0.20
    下载: 导出CSV

    Table 3.  Pearson Correlation of physiochemical parameters with Total Coliform in TW

    pHECTurbidityTDSE.coliColiformTotal coliform
    pH Pearson correlation 1 −0.099 −0.079 −0.102 −0.129 −0.080 −0.103
    Sig. (2- tailed) 0.596 0.672 0.584 0.487 0.669 0.580
    N 31 31 31 31 31 31 31
    EC Pearson correlation −0.099 1 0.101 0.997** 0.438* 0.360* 0.417*
    Sig. (2- tailed) 0.596 0.589 0.000 0.014 0.047 0.020
    N 31 31 31 31 31 31 31
    Turbidity Pearson correlation −0.079 0.101 1 0.110 0.821** 0.591** 0.718**
    Sig. (2- tailed) 0.672 0.589 0.556 0.000 0.000 0.000
    N 31 31 31 31 31 31 31
    TDS Pearson correlation −0.102 0.997** 0.110 1 0.428* 0.346 0.403*
    Sig. (2- tailed) 0.584 0.000 0.556 0.016 0.057 0.025
    N 31 31 31 31 31 31 31
    E.coli Pearson correlation −0.129 0.438* 0.821** 0.428* 1 638** 0.813**
    Sig. (2- tailed) 0.487 0.014 0.000 0.016 0.000 0.000
    N 31 31 31 31 31 31 31
    Coliform Pearson correlation −0.080 0.360* 0.591** 0.346 0.638** 1 0.967**
    Sig. (2- tailed) 0.669 0.047 0.000 0.057 0.000 0.000
    N 31 31 31 31 31 31 31
    Total coliform Pearson correlation −0.103 0.417* 0.718** 0.403* 0.813** 0.967** 1
    Sig. (2- tailed) 0.580 0.020 0.000 0.025 0.000 0.000
    N 31 31 31 31 31 31 31
    Notes: **Correlation is significant at the 0.01 level (2-tailed)
    *Correlation is significant at the 0.05 level (2-tailed)
    下载: 导出CSV

    Table 4.  Physiochemical Water Quality Analysis of TW and GW

    Sr#.Name of schemeTWGW
    pHECTurbidityTDSpHECTurbidityTDS
    -µS/cmNTUmg/L-µS/cmNTUmg/L
    6.5–8.5-510006.5–8.5-51000
    1 Brewery Town 8.2 730 2.4 443 7.62 1178 3.1 753
    2 7.8 726 1.9 442 7.68 575 2.6 666
    3 8.0 787 2.1 482 7.54 685 1.8 423
    4 7.82 520 2.1 309 7.32 433 3.1 565
    5 Jinnah Town 7.5 1343 2.6 872 7.5 522 2.9 675
    6 7.9 998 3.6 600 7.39 674 1.8 431
    7 7.8 890 2 531 7.29 528 2.6 484
    8 7.8 1 942 8.9 1159 7.45 573 3.5 314
    9 7.99 896 2.6 574 7.32 493 2.1 566
    10 Shahbaz Town 7.6 543 1.6 327 7.56 555 1.6 287
    11 7.8 777 14.6 469 7.26 498 2.6 318
    12 7.5 500 1.2 296 7.24 500 1.8 289
    13 7.6 562 26.8 333 7.35 575 2.3 415
    14 8.1 592 1.6 351 7.65 587 2.6 498
    15 Quetta Main city 8.2 435 4.2 262 7.15 512 1.8 555
    16 8.0 940 1.8 564 7.2 422 1.8 269
    17 7.9 686 1.9 413 7.14 485 3.1 384
    18 7.6 534 2.2 324 7.25 512 2.9 396
    19 7.9 603 5.6 367 7.34 576 2.6 483
    20 7.9 792 40.6 507 7.23 587 3.5 666
    21 8.26 460 7.6 286 7.12 432 2.6 789
    22 8.1 405 2.2 239 7.16 522 1.8 724
    23 7.9 450 1.4 266 7.12 595 3.5 381
    24 Satallite Town 8.2 1025 4.6 656 7.38 678 2.1 277
    25 7.9 731 3 454 7.54 674 1.6 532
    26 8.1 625 2.6 390 7.12 566 1.8 354
    27 Chiltan Town 8.1 840 1.6 509 7.14 589 2.3 655
    28 7.8 410 2 248 7.81 651 2.6 417
    29 8.2 424 1.4 257 7.65 655 3.1 345
    30 8.0 542 1.4 333 7.72 623 2.9 389
    31 7.2 572 1.6 360 7.38 555 2.6 413
    下载: 导出CSV

    Table 5.  Pearson Correlation of physiochemical parameters with total coliform in GW

    pHECturbidityTDSColiformTotal coliform
    pH Pearson Correlation 1 0.487** 0.094 −0.051 −0.139 −0.139
    Sig. (2-tailed) 0.005 0.615 0.787 0.455 0.455
    N 31 31 31 31 31 31
    EC Pearson Correlation 0.487** 1 0.117 0.182 −0.135 −0.135
    Sig. (2-tailed) 0.005 0.530 0.327 0.470 0.470
    N 31 31 31 31 31 31
    Turbidity Pearson Correlation 0.094 0.117 1 0.148 −0.241 −0.241
    Sig. (2-tailed) 0.615 0.530 0.427 0.191 0.191
    N 31 31 31 31 31 31
    TDS Pearson Correlation −0.051 0.182 0.148 1 −0.442* −0.442*
    Sig. (2-tailed) 0.787 0.327 0.427 0.013 0.013
    N 31 31 31 31 31 31
    Coliform Pearson Correlation −0.139 −0.135 −0.241 −0.442* 1 1.000**
    Sig. (2-tailed) 0.455 0.470 0.191 0.013 0.000
    N 31 31 31 31 31 31
    Total coliform Pearson Correlation −0.139 −0.135 −0.241 −0.442* 1.000** 1
    Sig. (2-tailed) 0.455 0.470 0.191 0.013 0.000
    N 31 31 31 31 31 31
    Notes: **. Correlation is significant at the 0.01 level (2-tailed).
    *. Correlation is significant at the 0.05 level (2-tailed).
    下载: 导出CSV
  • Aftab SM, Siddiqui RH, Farooqui MA. 2018. Strategies to manage aquifer recharge in Balochistan, Pakistan: An overview. In IOP Conference Series: Materials Science and Engineering, 414(1): 012023. IOP Publishing.

    Ahmed J, Wong LP, Chua YP, et al. 2020. Quantitative microbial risk assessment of drinking water quality to predict the risk of waterborne diseases in primary-school children. International Journal of Environmental Research and Public Health, 17(8): 2774. doi: 10.3390/ijerph17082774

    Akhtar MM, Mohammad AD, Ehsan M, Akhtar R, ur Rehman J, Manzoor Z. 2021. Water resources of Balochistan, Pakistan — A review. Arabian Journal of Geosciences, 14(4): 1-6. doi: 10.1007/s12517-021-06940-8

    Alam K. 2010. Evaluation of aquifer system in Quetta valley through geophysical methods and groundwater flow modeling. Ph.D thesis, University of the Punjab, Lahore-Pakistan.

    Alam K, Ahmad N. 2014. Determination of aquifer geometry through geophysical methods: A case study from Quetta Valley, Pakistan. Acta Geophysica, 62(1): 142-163. doi: 10.2478/s11600-013-0171-8

    Azizullah A, Khattak MNK, Richter P, et al. 2011. Water pollution in Pakistan and its impact on public health — A review. Environment International, 37(2): 479-497. doi: 10.1016/j.envint.2010.10.007

    Craun GF, Calderon RL. 2006. Workshop summary: Estimating waterborne disease risks in the United States. Journal of Water and Health, 4(S2): 241-253. doi: 10.2166/wh.2006.025

    Daud MK, Nafees M, Ali S, et al. 2017. Drinking water quality status and contamination in Pakistan. Biomed Research International, 2017: 7908183.

    Dawood F, Akhtar MM, Ehsan M. 2021. Evaluating urbanization impact on stressed aquifer of Quetta Valley, Pakistan. Desalination and Water Treatment, 222: 103-113.

    Din M, Ahmad Z, Aleem A. et al. 2014. Pathogens from drinking water; Isolation and antibiogram of pathogenic organisms from drinking water in Quetta city. Professional Medical Journal, 21(4): 760-765.

    Durrani IH, Adnan S, Ahmad M. et al. 2018. Observed long-term climatic variability and its impacts on the ground water level of Quetta alluvial. Iranian Journal of Science and Technology, Transactions A: Science, 42(2): 589-600.

    Ferrer N, Folch A, Masó G, et al. 2020. What are the main factors influencing the presence of faecal bacteria pollution in groundwater systems in developing countries. Journal of Contaminant Hydrology, 228: 103556. doi: 10.1016/j.jconhyd.2019.103556

    Ghani A, Chaudary ZA, Rehman H, et al. 2019. Assessment of sustainable groundwater extraction rate for Quetta city using MODFLOW. Pakistan Journal of Engineering and Applied Sciences, 24. Corpus ID: 135115506.

    Ilyas SZ, Khattak AI, Nasir SM, et al. 2010. Air pollution assessment in urban areas and its impact on human health in the city of Quetta, Pakistan. Clean Technologies and Environmental Policy, 12(3): 291-299. doi: 10.1007/s10098-009-0209-4

    Jang WS, Engel B, Harbor J, et al. 2017. Aquifer vulnerability assessment for sustainable groundwater management using DRASTIC. Water, 9(10): 792. doi: 10.3390/w9100792

    Kamran HW, Omran A. 2020. Water contamination and health hazards in Pakistan: An overview of the current scenario and contemporary challenges. Sustaining our Environment for Better Future: 75-84. doi: 10.1007/978-981-13-7158-5

    Khan M, Abro SH, Taj MK, et al. 2016. Bacterial contamination of drinking water used at dairy farms in Quetta, Balochistan. Pure and Applied Biology, 5(4): 1. doi: 10.19045/bspab.2016.50089

    Knappett PS, mckay LD, Layton A, et al. 2012. Unsealed tubewells lead to increased fecal contamination of drinking water. Journal of Water and Health, 10(4): 565-578. doi: 10.2166/wh.2012.102

    Liu K, Luo X, Jiao JJ, et al. 2021. Gene abundances of AOA, AOB, and anammox controlled by groundwater chemistry of the Pearl River Delta, China. China Geology, 4: 463-475. doi: 10.31035/cg2021054

    Muhammad AM, Zhonghua T, Sissou Z, et al. 2016. Analysis of geological structure and anthropological factors affecting arsenic distribution in the Lahore aquifer, Pakistan. Hydrogeology Journal, 24(7): 1891-1904. doi: 10.1007/s10040-016-1453-4

    Ngwenya N, Ncube E J, Parsons J. 2013. Recent advances in drinking water disinfection: Successes and challenges. Reviews of Environmental Contamination and Toxicology: 111-170. doi: 10.1007/978-1-4614-4717-7_4

    Oyelakin JF, Ahmad SM, Aiyelokun OO, et al. 2020. Water quality assessment of groundwater in selected potable water sources for household use in Ibadan, Southwest, Nigeria. International Journal of Energy and Water Resources: 1-8. doi: 10.1007/s42108-020-00090-5

    Pandey PK, Kass PH, Soupir ML, et al. 2014. Contamination of water resources by pathogenic bacteria. Amb Express, 4(1): 1-16. doi: 10.1186/s13568-014-0051-x

    PSO Pakistan Buraue of Statistics. 2020. District at a glance Quetta, in 2020, May 11.

    WHO. 1993. World Health Organization. Guidelines for drinking-water quality. 1: Recommendations, second Edition. World Health Organization.

    WHO. 2008. Guidelines for Drinking water Quality, incorporating the first and second addenda: Third edition, 1: Recommendations.

  • 加载中

(8)

(5)

计量
  • 文章访问数:  1126
  • PDF下载数:  22
  • 施引文献:  0
出版历程
收稿日期:  2021-09-13
录用日期:  2022-04-05
刊出日期:  2022-06-30

目录