Geoelectrical survey over perched aquifers in the northern part of Upper Sakarya River Basin, Türkiye
-
Abstract:
In this study, a groundwater exploration survey was conducted using the DC Resistivity (DCR) method in a hydrogeological setting containing a perched aquifer. DCR data were gathered and an electrical tomography section was recovered using conventional four-electrode instruments with a Schlumberger array and a two-dimensional (2D) inversion scheme. The proposed scheme was tested over a synthetic three-dimensional (3D) subsurface model before deploying it in a field situation. The proposed method indicated that gathering data with simple four-electrode instruments at stations along a line and 2D inversion of datasets at multiple stations can recover depth intervals of the studied aquifer in the hydrogeological setting even if it has a 3D structure. In this study, 2D inversion of parallel profiles formed a pseudo-3D volume of the subsurface resistivity structures and mapped out multiple resistive (>25 ohm·m) bodies at shallow (between 50–100 m) and deep sections (>150 m). In general, the proposed method is convenient to encounter geological units that have limited vertical and spatial extensions in any direction and presents resistivity contrast from groundwater-bearing geologic materials.
-
Key words:
- Groundwater /
- Perched Aquifer /
- DC Resistivity /
- Inversion /
- Sakarya River /
- Türkiye
-
-
Table 1. The wells with their hydraulic test data close to the survey site
Well No Drilling date Depth (m) Static level (m) Dynamic level (m) Flow (lt/sn) W-1a 2009 150 22 25 40 W-2a 2009 150 28 30.5 30 W-4a 2009 156 24 31 33 W-5a 2009 161 30.5 60 6 W-6a 2009 152 12 17 53 28676b n/a 144 19.33 n/a n/a 33116b n/a 102 2.81 n/a n/a 33118b n/a 197 27.51 n/a n/a 41440b n/a 200 15.81 n/a n/a 4375319b n/a 92 4.96 n/a n/a Notes: The data compiled from TİGEM (2012) and General Directorate of State Hydraulic Works Data Archive by personal communication and the well locations are shown in Fig. 2 and Fig. 4.
n/a (no answer or no information verified)
a The groundwater depth from 2009, not including any season or duration
b The groundwater depth given as an arithmetic mean from 2009. By doing so, the data could be reduced to represent those from 2009 and handled to map with the data outlined in the first five columnsTable 2. Profile names, distance between first and last station and number of stations
Profile Name PH PJ PK PL PM PN PP PR PS Length 3600 3200 2800 2400 2000 1600 1600 2000 2000 # of stations 10 9 8 7 6 5 5 6 6 Table 3. Variation of misfit values in 2D inversion
Profiles PH PJ PK PL PM PN PP PR PS Initial misfit 7.8055 7.032 4.2337 5.3224 5.3085 4.1086 6.0178 9.2251 6.8185 Final misfit 0.0956 0.0536 0.0629 0.0480 0.0440 0.0283 0.03428 0.1734 0.2197 Iteration 100 100 100 100 86 100 100 99 74 -
Akbaş B, Akdeniz N, Aksay A, et al. 2011. 1:1 250 000 scale geological map of Turkey. General Directorate of Mineral Research and Exploration Publication: Ankara−Turkey.
Araffa SA, Mohamadin MI, Saleh Sabet H, et al. 2019. Geophysical interpretation for groundwater exploration around Hurghada area, Egypt. Journal of Astronomy and Geophysics, 8(1): 171−179. doi: 10.1080/20909977.2019.1647389
Awotoye KS, Selemo AO. 2006. Design and construction of a resistivity meter for shallow investigation. Nigerian Journal of Physics, 18(2): 261−270. doi: 10.4314/njphy.v18i2.38113
Bhattacharya BB, Shalivahan S. 2016. Geoelectric methods: Theory and application. McGraw-Hill Education. ISBN: 9789339221379
Boubaya D. 2017. Combining resistivity and aeromagnetic geophysical surveys for groundwater exploration in the Maghnia plain of Algeria. Journal of Geological Research: 1309053.
Briggs IC. 1974. Machine contouring using minimum curvature. Geophysics, 39(1): 39−48. doi: 10.1190/1.1440410
Clark JA, Page R. 2011. Inexpensive geophysical instruments supporting groundwater exploration in developing nations. Journal of Water Resource and Protection, 3(10): 768. doi: 10.4236/jwarp.2011.310087
Constable SC, Parker RL, Constable CG. 1987. Occam’s inversion: A practical algorithm for generating smooth models from electromagnetic sounding data. Geophysics, 52(3): 289−300. doi: 10.1190/1.1442303
EARTHDATA. 2021. SRTM Elevation Data of 1 arc-second. (A.D. 19.08.2021)
Ekinci YL, Demirci A. 2008. A damped least-squares inversion program for the interpretation of Schlumberger sounding curves. Journal of Applied Sciences, 8(22): 4070−4078. doi: 10.3923/jas.2008.4070.4078
Emre Ö, Duman TY, Özalp S, et al. 2013. Active fault map of Turkey with explanatory text. General Directorate of Mineral Research and Exploration Special Publication Series: 30.
Emre Ö, Duman TY, Özalp S, et al. 2018. Active fault database of Turkey. Bulletin of Earthquake Engineering, 16(8): 3229−3275. doi: 10.1007/s10518-016-0041-2
Esen E. 1978. Hydrogeological Investigation Report of Yukarı Sakarya Basin (in Turkish), General Directorate of State Hydraulic Works, 147, Ankara, Turkey
Fitts CR. 2013. Groundwater Science (2nd edn). Elsevier.
Florsch N, Muhlach F. 2017. Everyday applied geophysics 1: Electrical methods. Elsevier.
Freeze RA, Cherry JA. 1979. Groundwater. Prentice-Hall Inc. Eaglewood Cliffs, New Jersey. ISBN: 0133653129
Fretwell JD, Stewart MT. 1981. Resistivity study of a coastal karst terrain, Florida. Ground Water, 19: 156−162. doi: 10.1111/j.1745-6584.1981.tb03454.x
Gallardo LA, Meju MA. 2007. Joint two-dimensional cross-gradient imaging of magnetotelluric and seismic traveltime data for structural and lithological classification. Geophysical Journal International, 169(3): 1261−1272. doi: 10.1111/j.1365-246X.2007.03366.x
GMVDE 2016. Geoscience Map Viewer and Drawing Editor Version 2.9, (AD 19.08.2021)
Igboama WN, Ugwu NU. 2011. Fabrication of resistivity meter and its evaluation. American Journal of Scientific and Industrial Research, 2(5): 713−717. doi: 10.5251/ajsir.2011.2.5.713.717
IHME. 2021. International Hydrogeological Map of Europe 1: 1 500 000 scale. (AD 19.08.2021).
Jones AG. 1983. On the equivalence of the “Niblett” and “Bostick” transformations in the magnetotelluric method. Journal of Geophysics, 53(1): 72−73.
Kanar F, Kandemir Ö. 2018. 1: 100 000 Scaled Turkey Geological Map Series Eskişehir-İ25 Sheet (in Turkish), General Directorate of Mineral Research and Exploration Publication, Ankara, Turkey.
Lee CH. 1915. The determination of safe yield of underground reservoirs of the closed-basin type. Transactions of the American Society of Civil Engineers, 98: 148−218.
Loke MH, Barker RD. 1996a. Rapid least-squares inversion of apparent resistivity pseudo sections by a quasi-Newton method. Geophysical Prospecting, 44(1): 131−152. doi: 10.1111/j.1365-2478.1996.tb00142.x
Loke MH, Barker RD. 1996b. Practical techniques for 3D resistivity surveys and data inversion. Geophysical prospecting, 44(3): 499−523. doi: 10.1111/j.1365-2478.1996.tb00162.x
Maliva RG. 2016. Aquifer characterization techniques. Berlin: Springer. ISBN: 978-3-319-32137-0
Meju MA. 1994. Geophysical Data Analysis: Understanding Inverse Problem Theory and Practice: SEG Course Notes Series, 6: Tulsa: SEG.
Meju MA. 2002. Geoelectromagnetic exploration for natural resources: Models, case studies and challenges. Surveys in Geophysics, 23(2−3): 133−206. doi: 10.1023/A:1015052419222
Menke W. 1989. Geophysical data analysis: Discrete inverse theory. Academic press.
Mikailu A, Abdullahi I, Sani MG, et al. 2015. Development of Digital Resistivity Meter. Advances in Physics Theories and Applications, 42. ISSN 2224-719X
MTA. 1964. The general directorate of mineral research and exploration. Geological map of Turkey (1:500 000 scale). Ankara: Turkey.
Nwankwo LI. 2011. 2D resistivity survey for groundwater exploration in a hard rock terrain: A case study of MAGDAS observatory, UNILORIN, Nigeria. Journal of Asian Earth Sciences, 4(1): 46−53. doi: 10.3923/ajes.2011.46.53
Okay AI, Tüysüz O. 1999. Tethyan sutures of northern Turkey. Geological Society, London, Special Publications. 156(1): 475-515.
Okay AI. 2011. Tavşanli Zone: The northern subducted margin of the Anatolide-Tauride block. Bulletin of the Mineral Research and Exploration, 142: 191−211.
Oldenburg DW, Li Y. 1999. Estimating depth of investigation in dc resistivity and IP surveys. Geophysics, 64(2): 403−416. doi: 10.1190/1.1444545
Olorunfemi MO, Fasuyi SA. 1993. Aquifer types and the geoelectric/hydrogeologic characteristics of part of the central basement terrain of Nigeria (Niger State). Journal of African Earth Sciences (and the Middle East), 16(3): 309−317. doi: 10.1016/0899-5362(93)90051-Q
Özürlan G, Candansayar ME, Şahin HM. 2006. Deep resistivity structure of Dikili-Bergama region, West Anatolia, revealed by two dimensional inversion of vertical electrical sounding data. Geophysical Prospecting, 54: 187−197. doi: 10.1111/j.1365-2478.2006.00525.x
Palacky GJ. 1987. Clay mapping using electromagnetic methods. First Break, 5(8): 295−306. doi: 10.3997/1365-2397.1987015
Rijo L, Pelton WH, Feitosa EC, et al. 1977. Interpretation of apparent resistivity data from Apodi Valley, Rio Grande DoNorte, Brazil. Geophysics, 42: 811−822. doi: 10.1190/1.1440749
Roy A, Apparao A. 1971. Depth of investigation in direct current methods. Geophysics, 36(5): 943−959. doi: 10.1190/1.1440226
Saad R, Nawawi MNM, Mohamad ET. 2012. Groundwater detection in alluvium using 2-D electrical resistivity tomography (ERT). Electronic Journal of Geotechnical Engineering, 17: 369−376.
Sasaki Y, Meju MA. 2006. A multidimensional horizontal-loop controlled-source electromagnetic inversion method and its use to characterize heterogeneity in aquiferous fractured crystalline rocks. Geophysical Journal International, 166(1): 59−66. doi: 10.1111/j.1365-246X.2006.02957.x
Shaaban FF. 2001. Vertical electrical soundings for groundwater investigation in northwestern Egypt: A case study in a coastal area. Journal of African Earth Sciences, 33(3−4): 673−686. doi: 10.1016/S0899-5362(01)00092-6
Surfer. 2020. Contouring, gridding, and 3D surface mapping software (Software Version 18), Golden Software, Colorado, USA
Swartz JH. 1937. Resistivity studies of some salt-water boundaries in the Hawaiian Islands. Eos, Transactions American Geophysical Union, 18(2): 387-393. doi: 10.1029/TR018i002p00387
Swartz JH. 1939. Resistivity studies of some salt-water boundaries in the Hawaiian Islands Part II. Eos, Transactions American Geophysical Union, 20: 292. doi: 10.1029/TR020i003p00292
Szalai S, Novák A, Szarka, L. 2009. Depth of investigation and vertical resolution of surface geoelectric arrays. Journal of Environmental and Engineering Geophysics, 14(1): 15−23. doi: 10.2113/JEEG14.1.15
Telford WM, Geldart LP, Sheriff RE (editors). 1990. Applied Geophysics. Cambridge, UK: University Press.
Ulugergerli EU. 2017. Marine effects on vertical electrical soundings along shorelines. Turkish Journal of Earth Sciences, 26(1): 57−72. doi: 10.3906/yer-1610-10
USGS. 2021. https://www.usgs.gov/special-topic/water-science-school/science/groundwater-decline-and-depletion?qt-science_center_objects=0#qt-science_center_objects. Accessed 06/07/2021
Vedanti N, Srivastava RP, Sagode J, et al. 2005. An efficient 1D Occam’s inversion algorithm using analytically computed first-and second-order derivatives for DC resistivity soundings. Computers and Geosciences, 31(3): 319−328. doi: 10.1016/j.cageo.2004.10.015
Werkema Jr DD, Atekwana E, Sauck W, et al. 1998. A versatile Windows based multi-electrode acquisition system for dc electrical methods surveys. Environmental Geosciences, 5(4): 196−206. doi: 10.1046/j.1526-0984.1998.08027.x
Yang X, Lagmanson M. 2006. Comparison of 2D and 3D electrical resistivity imaging methods. In 19th EEGS Symposium on the Application of Geophysics to Engineering and Environmental Problems (pp. cp-181). European Association of Geoscientists and Engineers.
Zhdanov MS, Keller GV. 1994. The geoelectrical methods in geophysical exploration (Vol. 31). Elsevier Science Limited. ISBN-10: 0444896783.
Zürcher L, Bookstrom AA, Hammarstrom JM, et al. 2010. Porphyry copper assessment of the Tethys region of western and southern Asia: U. S. Geological Survey Scientific Investigations Report 2010–5090–V, 232, and spatial data.
-