中国地质科学院水文地质环境地质研究所主办
Groundwater Science and Engineering Limited出版
Yu Chu, Wu Li-jie, Zhang Yi-long, Wang Xiu-ya, Wang Zhan-chuan, Zhang Zhou. 2022. Effect of groundwater on the ecological water environment of typical inland lakes in the Inner Mongolian Plateau. Journal of Groundwater Science and Engineering, 10(4): 353-366. doi: 10.19637/j.cnki.2305-7068.2022.04.004
Citation: Yu Chu, Wu Li-jie, Zhang Yi-long, Wang Xiu-ya, Wang Zhan-chuan, Zhang Zhou. 2022. Effect of groundwater on the ecological water environment of typical inland lakes in the Inner Mongolian Plateau. Journal of Groundwater Science and Engineering, 10(4): 353-366. doi: 10.19637/j.cnki.2305-7068.2022.04.004

Effect of groundwater on the ecological water environment of typical inland lakes in the Inner Mongolian Plateau

More Information
  • 加载中
  • Figure 1. 

    Figure 2. 

    Figure 3. 

    Figure 4. 

    Figure 5. 

    Figure 6. 

    Figure 7. 

    Table 1.  Calculation of groundwater recharge flux based on 222Rn activity

    Source-sink termsParameterUnitValueDescription
    Atmospheric loss Radon concentration in surface lake (Cws) Bq·m−3 78.96±5.28 Measured in the field
    Radon concentration in air (Cair) Bq·m−3 9.61 Measured in the field
    Partition coefficient (α) Dimensionless 0.27 Burnett and Dulaiova, 2003
    Temperature in lake (T) °C 18.4 Measured in the field
    Gas transfer coefficient (k) m·d−1 0.18 Rodellas et al. 2018
    Wind speed (u) m·s−1 1.77 Measured in the field
    Schmidt number (Sc) Dimensionless 1064.37 Pilson, 1998
    Atmospheric loss flux (Fatm) Bq·m−2·d−1 14.03±0.96 Macintyre et al. 1995
    Radon from atmospheric loss Bq·d−1 (6.50±0.45)×108 Equation (1)
    Decay of radon Decay constant of radon d−1 0.181 Wang et al. 2020
    Radon inventory (I222) Bq 1.37×1010 Product of storage and the concentration of radon in lake
    Decay from radon Bq·d−1 (2.49±0.17)×109 Equation (1)
    Sediment diffusion Radon concentration in pore water (Ceq) Bq·m−3 15102.7±1744.47 Assumed to be equal to groundwater
    Radon concentration in bottom lake (Cwb) Bq·m−3 163.88±12.59 Measured in the field
    Radon molecular diffusion coefficient (Ds) cm2·s−1 4.09×10−6 Ullman and Aller, 1982
    Porosity (θ) Dimensionless 0.38 Empirical value according to lithology
    Sediment diffusive flux (Fdiff) Bq·m−2·d−1 37.78±4.41 Martens et al. 1980
    Radon from sediment diffusion Bq·d−1 (1.89±0.22)×109 Equation (1)
    Decay of radium Decay of radium d−1 1.37×10−11 Huang, 2019
    Radium inventory (I226) Bq 8.70×109 Product of storage and the concentration of radium in lake
    Radon from radium decay Bq·d−1 0.12±4.77×10−3 Equation (1)
    River input Radon concentration in river (222Rnin) Bq·m−3 337.50±102.57 Measured in the field
    River inflow flux (Qin) m3·d−1 7084.80±574.78 Measured in the field
    Radon from river input Bq·d−1 (2.39±0.75)×106 Equation (1)
    Groundwater input Radon concentration in groundwater (222Rngw) Bq·m−3 15102.7±1744.47 Measured in the field
    Groundwater recharge (Qgw) m3·d−1 8.27×104 Radon from groundwater input divided by its concentration
    Radon from groundwater input Bq·d−1 (1.25±0.28)×109 Equation (1)
    下载: 导出CSV
  • Arnoux M, Barbecot F, Gibert-Brunet E, et al. 2017. Geochemical and isotopic mass balances of kettle lakes in southern Quebec (Canada) as tools to document variations in groundwater quantity and quality. Environmental Earth Sciences, 76: 106. doi: 10.1007/s12665-017-6410-6

    Burnett WC, Dimova. 2012. A Radon-Based mass balance model for assessing groundwater inflows to lakes. In: Taniguchi M, Shiraiwa T. (Eds.), The Dilemma of Boundaries: Toward a new concept of catchment. Springer, Tokyo, 55-66.

    Burnett WC, Dulaiova H. 2003. Estimating the dynamics of groundwater input into the coastal zone via continuous radon-222 measurements. Journal of Environmental Radioactivity, 69: 21−35. doi: 10.1016/S0265-931X(03)00084-5

    Cao JT, Wang SM, Shen J, et al. 2002. The main causes of water level drawdown of daihai lake in Inner Mongolia since the last 40 years. Arid Zone Research, 19(01): 1−6. (in Chinese) doi: 10.13866/j.azr.2002.01.001

    Chen JS, Ji BC, Liu Z, et al. 2013. Isotopic and hydro-chemical evidence on the origin of groundwater through deep-circulation ways in Lake Daihai region, Inner Mongolia plateau. Journal of Lake Sciences, 25(04): 521−530. (in Chinese) doi: 10.18307/2013.0409

    Corbett DR, Burnett WC, Cable PH, et al. 1997. Radon tracing of groundwater input into Par Pond, Savannah River Site. Journal of Hydrology, 203(1): 209−227. doi: 10.1016/S0022-1694(97)00103-0

    Dimova NT, Burnett WC, Chanton JP, et al. 2013. Application of radon-222 to investigate groundwater discharge into small shallow lakes. Journal of Hydrology, 486: 112−122. doi: 10.1016/j.jhydrol.2013.01.043

    Dimova NT, Burnett WC. 2011. Evaluation of groundwater discharge into small lakes based on the temporal distribution of radon-222. Limnology and Oceanography, 56(2): 486−494. doi: 10.4319/lo.2011.56.2.0486

    Förster W, Scholten JC, Schubert M, et al. 2021. Phosphorous supply to a eutrophic artificial lake: Sedimentary versus groundwater sources. Water, 13: 563. doi: 10.3390/w13040563

    Huang Q, Jiang JH. 1999. Analysis of water level descent in Daihai lake. Journal of Lake Sciences, 11(04): 304−310. (in Chinese) doi: 10.18307/1999.0403

    Huang YM. 2019. Evaluation of submarine groundwater discharge into the west of Bohai Bay, China using 222Rn. M. S. thesis. Beijing: China University of Geosciences (Beijing): 44-45. (in Chinese)

    Jeppesen E. 2013. Focused groundwater discharge of phosphorus to a eutrophic seepage lake (Lake Væng, Denmark): Implications for lake ecological state and restoration. Hydrogeology Journal, 21: 1787−1802. doi: 10.1007/s10040-013-1043-7

    Kazmierczak J, Nilsson B, Postma D, et al. 2021. Transport of geogenic phosphorus to a groundwater-dominated eutrophic lake. Journal of Hydrology, 598: 126175. doi: 10.1016/j.jhydrol.2021.126175

    Kazmierczak J, Postma D, Müller S, et al. 2020. Groundwater-controlled phosphorus release and transport from sandy aquifer into lake. Limnology and Oceanography, 65(9): 2188−2204. doi: 10.1002/lno.11447

    Kluge T, Rohden CV, Sonntag P, et al. 2012. Localising and quantifying groundwater inflow into lakes using high-precision 222Rn profiles. Journal of Hydrology, 450-451: 70−81. doi: 10.1016/j.jhydrol.2012.05.026

    Liang WJ, Chun X, Liu JY, et al. 2017. Research on the area change processes in the past 40a of Daihai Lake. Journal of Arid Land Resources and Environment, 31(04): 93−98. (in Chinese) doi: 10.13448/j.cnki.jalre.2017.116

    Liang X. 2021. Temporal and spatial distribution characteristics and source analysis of COD in daihai. M. S. thesis. Huhhot: Inner Mongolia University: 27-28. (in Chinese).

    Liu Z, Zhao H, Yang JS, et al. 2022. Stratigraphy and chronology of a Late Pleistocene sediment core from Hasuhai Lake in Inner Mongolia. Geological Bulletin of China, 41(2−3): 271−281. (in Chinese)

    Luo X, Jiao JJ, Wang XS, et al. 2016. Temporal 222Rn distributions to reveal groundwater discharge into desert lakes: Implication of water balance in the Badain Jaran Desert, China. Journal of Hydrology, 534: 87−103. doi: 10.1016/j.jhydrol.2015.12.051

    Ma JL. 2021. Research on the combined effect of daihai ecological water demand and ecological water replenishment. M. S. thesis. Huhhot: Inner Mongolia University: 26-28. (in Chinese).

    Macintyre S, Wanninkof R, Chanton JP. 1995. Trace gas exchange across the air-water interface in freshwater and coastal marine environments//Matson PA, Harriss RC eds. Biogenic trace gases: Measuring emissions from soil and water. New York: Blackwell Science: 52-97.

    Martens CS, Kipphut GW, Klump JV. 1980. Sediment-Water chemical exchange in the coastal zone traced by in situ radon-222 flux measurements. Science, 208(4441): 285−288. doi: 10.1126/science.208.4441.285

    Nisbeth CS, Kidmose J, Weckström K, et al. 2019. Dissolved inorganic geogenic phosphorus load to a groundwater-fed lake: Implications of terrestrial phosphorus cycling by groundwater. Water, 11: 2213. doi: 10.3390/w11112213

    Petermann E, Gibson JJ, Knöller K, et al. 2018. Determination of groundwater discharge rates and water residence time of groundwater-fed lakes by stable isotopes of water (18O, 2H) and radon (222Rn) mass balances. Hydrological Processes, 32(6): 805−816. doi: 10.1002/hyp.11456

    Pilson MEQ. 1998. An introduction to the chemistry of the sea. Upper Saddle River, New Jersey: Prentice Hall. 431.

    Rodellas V, Stieglitz TC, Andrisoa A, et al. 2018. Groundwater-driven nutrient inputs to coastal lagoons: The relevance of lagoon water recirculation as a conveyor of dissolved nutrients. Science of the Total Environment, 642: 764−780. doi: 10.1016/j.scitotenv.2018.06.095

    Rosenberry DO, Winter TC. 2009. Hydrologic processes and the water budget. In Mirror Lake: Interactions among Air, Land, and Water. Winter TC, Likens GE (eds). University of California Press: Berkeley: 23-68.

    Sadat-Noori M, Rutlidge H, Andersen MS, et al. 2021. Quantifying groundwater carbon dioxide and methane fluxes to an urban freshwater lake using radon measurements. Science of the Total Environment, 797: 149184. doi: 10.1016/j.scitotenv.2021.149184

    Schallenberg M, De Winton MD, Verburg P, et al. 2013. Ecosystem services of lakes. In Dymond JR ed. Ecosystem services in New Zealand - Conditions and trends. Manaaki Whenua Press, Lincoln, New Zealand, 203-225.

    Song C, Han GL, Wang P, et al. 2017. Hydrochemical and isotope characteristics of spring water discharging from Qiushe Loess Section in Lingtai, northwestern China and their implication to groundwater recharge. Journal of Groundwater Science and Engineering, 5(4): 364−373.

    Stets EG, Winter TC, Rosenberry DO, et al. 2010. Quantification of surface water and groundwater flows to open- and closed-basin lakes in a headwaters watershed using a descriptive oxygen stable isotope model. Water Resources Research, 46: W03515. doi: 10.1029/2009WR007793

    Su N, Burnett WC, MacIntyre HL, et al. 2014. Natural radon and radium isotopes for assessing groundwater discharge into little lagoon, AL: Implications for harmful algal blooms. Estuaries and Coasts, 37: 893−910. doi: 10.1007/s12237-013-9734-9

    Sukanya S, Jacob N, Sabu J. 2022. Application of radon (222Rn) as an environmental tracer in hydrogeological and geological investigations: An overview. Chemosphere, 303(03): 135141. doi: 10.1016/j.chemosphere.2022.135141

    Sun QL, Zhou J, Shen J, et al. 2006. Environmental characteristics of Mid-Holocene recorded by lacustrine sediments from Lake Daihai, north environment sensitive zone, China. Science in China Series D: Earth Sciences, 49(9): 968−981. doi: 10.1007/s11430-006-0968-2

    Sun ZD, Jiang JH, Huang Q. 2005. Analysis of climate and lake hydrological change in Daihai Basin in the late 50 years. Water Resources Protection, 21(05): 16−18+26. (in Chinese)

    Sun ZD, Wang R, Huang Q. 2006. Comparison of water level changes during the past 20 years between Daihai and Bositen lakes. Journal of Arid Land Resources and Environment, 20(05): 56−60. (in Chinese)

    Tao SL, Fang JY, Zhao X, et al. 2015. Rapid loss of lakes on the Mongolian Plateau. Proceedings of the National Academy of Sciences of the United States of America, 112(7): 2281−2286. doi: 10.1073/pnas.1411748112

    Ullman WJ, Aller RC. 1982. Diffusion coefficients in nearshore marine sediments. Limnology and Oceanography, 27(3): 552−556. doi: 10.4319/lo.1982.27.3.0552

    Wang L. 2021. Characteristics of groundwater in Daihai basin and its influence on the change of seawater balance in Daihai basin. M. S. thesis. Huhhot: Inner Mongolia University: 54-56. (in Chinese).

    Wang QQ, Li HL, Zhang Y, et al. 2020. Submarine groundwater discharge and its implication for nutrient budgets in the western Bohai Bay, China. Journal of Environmental Radioactivity, 212: 106132. doi: 10.1016/j.jenvrad.2019.106132

    Wang QX, Chen XK, Peng WQ et al. 2021. Changes in runoff volumes of inland terminal lake: a case study of lake Daihai. Earth and Space Science, 8: e2021EA001954. doi: 10.1029/2021EA001954

    Wang SH, Bai MX, Chen JY, et al. 2019. Research on the ecological protection and restoration of mountain-river-forest-farmland-lake-grassland system in typical farming-pastoral ecotone: Taking Daihai Lake Basin in Inner Mongolia as an example. Journal of Environmental Engineering Technology, 9(05): 515−519. (in Chinese) doi: 10.12153/j.issn.1674-991X.2019.08.050

    Wang T, Chen JS, Xu Y, et al. 2017. Isotopes and hydrochemistry of Daihai Lake recharging sources, Northern China. Journal of Radioanalytical and Nuclear Chemistry, 312(3): 615−629. doi: 10.1007/s10967-017-5241-y

    Xiao JL, Xu QH, Nakamura T, et al. 2004. Holocene vegetation variation in the Daihai Lake region of north-central China: A direct indication of the Asian monsoon climatic history. Quaternary Science Reviews, 23: 1669−1679. doi: 10.1016/j.quascirev.2004.01.005

    Xu LC, Liu Y, Sun QL, et al. 2017. Climate change and human occupations in the Lake Daihai basin, north-central China over the last 4500 years: A geo-archeological perspective. Journal of Asian Earth Sciences, 138: 367−377. doi: 10.1016/j.jseaes.2017.02.019

    Zhang H, Chen ZY, Tang CY. 2021. Quantifying groundwater recharge and discharge for the middle reach of Heihe River of China using isotope mass balance method. Journal of Groundwater Science and Engineering, 9(3): 225−232. doi: 10.19637/j.cnki.2305-7068.2021.03.005

    Zhang YF, Xu XM, Liao ZL, et al. 2021. Response of surface runoff to land use and land cover change and its impact on Daihai Lake shrinkage in Inner Mongolia, China. Theoretical and Applied Climatology, 144: 555−569. doi: 10.1007/s00704-021-03561-9

    Zhao L, Chen JY, Jiang X, et al. 2020. Temporal and spatial distribution characteristics and difference analysis of nitrogen and phosphorus in Daihai Lake. Environmental Science, 41(04): 1676−1683. (in Chinese) doi: 10.13227/j.hjkx.201909090

    Zhou SQ, Kang SC, Chen F, et al. 2013. Water balance observations reveal significant subsurface water seepage from Lake Nam Co, south-central Tibetan Plateau. Journal of Hydrology, 491: 89−99. doi: 10.1016/j.jhydrol.2013.03.030

    Zhou YK. 2006. Changes of inland lake and analysis of its causes in arid and semi-arid regions of China: A Case Study of Daihai Lake. M. S. thesis. Nanjing: Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences: 48-53. (in Chinese).

    Zhou YK, Jiang JH. 2009. Changes in the ecological environment in the daihai lake basin over the last 50 years. Arid Zone Research, 26(02): 162−168. (in Chinese)

    Yang JS, Jiang GL, Zhao H, et al. 2022. Geological mapping practice and exploration of Quaternary alluvial-pluvial fans along the Daqing Mountain, Inner Mongolia. Geological Bulletin of China, 41(2−3): 262−270. (in Chinese)

  • 加载中

(7)

(1)

计量
  • 文章访问数:  1616
  • PDF下载数:  32
  • 施引文献:  0
出版历程
收稿日期:  2022-07-15
录用日期:  2022-10-25
刊出日期:  2022-12-31

目录